首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horizontal limb of diagonal band of Broca (hDB) is a part of the limbic system. It has been shown that microinjection of L-glutamate into the hDB elicited cardiovascular depressive responses in anesthetized rats and pressor effect in unanesthetized rats. But the role of glutamate receptor subtypes has not yet been investigated. In addition the role of the GABAergic system of the hDB in cardiovascular responses is not known. Therefore, we examined the cardiovascular responses elicited by glutamate and GABA receptors in the hDB by using their agonists and antagonists. Drugs (50 nl) were microinjected into the hDB of anaesthetized rats. Blood pressure and heart rate were recorded before and throughout each experiment. The average changes in the mean arterial pressure and heart rate at different intervals were compared both within each case group and between the case and control groups using repeated measures of ANOVA. Microinjection of GABAA receptor antagonist, bicuculline methiodide (BMI, 1 mM) increased both the mean arterial pressure and heart rate, and muscimole, a GABAA agonist (500 pmol) caused a significant decrease in the mean arterial pressure and heart rate. Microinjection of L-glutamate (0.25 M) into the hDB resulted in a maximum decrease of the mean arterial pressure of 24.4±3.7 mmHg and heart rate of 25.2±3.08 beats/min. Injection of AP5, an antagonist of glutamate NMDA receptor (1 and 2.5 mM), and CNQX, an antagonist of glutamate AMPA receptor (0.5 and 1 mM) caused small, nonsignificant changes of the heart rate and the blood pressure. Either AP5 or CNQX when coinjected with glutamate abolished the depressor effect of glutamate, suggesting that simultaneous activation of both glutamate receptors is necessary for the effect of glutamate to emerge. The depressor effect of the glutaminergic system of the hDB on the cardiovascular system was similar to the previous studies. For the first time, the effects of CNQX, AP5, BMI, and muscimole have been shown in this study.  相似文献   

2.
《Neuroscience research》2010,66(4):347-352
The bed nucleus of the stria terminalis (BST) is an important part of the limbic system. It has been shown that chemical stimulation of the BST elicited cardiovascular depressive and bradycardic responses. It was also demonstrated that GABA is present in the BST, though its role in cardiovascular control is not yet understood. This study was performed to find the effects of GABA receptor subtypes in the BST on cardiovascular responses and to find the possible mechanisms that mediate these responses in urethane-anesthetized rats. Microinjection of muscimol (500 pmol/100 nl), a GABAA agonist, into the BST produced a weak unsignificant decrease in the mean arterial pressure (MAP) and heart rate (HR). Injection of bicuculline methiodide (BMI, 100 pmol/100 nl), a GABAA antagonist, caused a significant increase in the MAP (41.3 ± 5.1 mmHg) as well as in the HR (33.2 ± 5.6 beats/min). Injection of two doses (500 and 1000 pmol/100 nl) of phaclofen, a GABAB antagonist, produced no significant change in either MAP or HR. Administration (i.v.) of the muscarinic receptor blocker, homatropine methyl bromide had no effect on the magnitude of mean arterial pressure or heart rate responses to BMI. This suggests that the parasympathetic system is not involved in these responses. However, administration (i.v.) of the nicotinic receptor blocker, hexamethonium bromide had no effect on the magnitude of mean arterial pressure response but abolished heart rate response to BMI. This suggests that the sympathetic system is involved in the bradycardic effect of GABA. On the other hand, administration (i.v.) of a selective vasopressin V1 receptor antagonist abolished the pressor effect of BMI, which indicates that the GABAergic system of the BST decreases the arterial pressure via tonic inhibition of vasopressin release. In summary, we demonstrated, for the first time, that GABA exerts its influence in the BST through the activation of GABAA, but not GABAB, receptors that, in turn, tonically inhibit vasopressin release and sympathetic outflow to the heart.  相似文献   

3.
Nicotinic cholinergic receptors play a role in cardiovascular regulation in the lower brain stem. Herein, we present evidence that l-3,4-dihydroxyphenylalanine (DOPA), a putative neurotransmitter in the central nervous system, is involved in the depressor response to microinjection of nicotine into the nucleus tractus solitarii (NTS). Microinjection of nicotine into the medial area of the NTS led to decreases in arterial blood pressure and heart rate in anesthetized rats. Mecamylamine, a nicotinic receptor antagonist, microinjected into NTS, blocked the depressor and bradycardic responses to nicotine. Nicotine-induced depressor and bradycardic responses were blocked by DOPA cyclohexyl ester (DOPA CHE), an antagonist for DOPA. DOPA CHE did not modify the action of carbachol on excitatory postsynaptic potential in rat cortical slices. These results suggest that endogenous DOPA is involved in nicotine-induced depressor responses in the NTS of anesthetized rats.  相似文献   

4.
The cuneiform nucleus (CnF) is a sympathoexcitatory area involved in the central cardiovascular regulation. Its role in the maintaining vasomotor tone has, however, not yet been clarified. In the present study the effects of cobalt chloride (CoCl(2)) a nonselective synapse blocker and NMDA and non-NMDA glutamate receptors on resting mean arterial blood pressure and heart rate of CnF have been evaluated. CoCl(2), AP5 (an NMDA receptor antagonist) and CNQX (an AMPA/kinase receptor antagonist) (100nl) were microinjected into the CnF of anesthetized rats. The blood pressure and heart rate were recorded throughout the experiment. The responses of blood pressure and heart rate were compared with the pre-injection (paired t-test) and control (independent t-test) values. Microinjection of CoCl(2), AP5 and CNQX did not change the basal blood pressure and heart rate. In conclusion, our present study indicates that the CnF is not important in the regulation of cardiovascular tone.  相似文献   

5.
L-Glutamate has been considered to be a neurotransmitter in the nucleus tractus solitarius (NTS) of the afferent baroreflex pathway, though this has not yet been decisively shown. A bolus injection of a neurotransmitter candidate amino acid L-proline into the cisterna magna and that of L-glutamate shows the same pressor action in the freely moving rat, but the actual nuclei responding L-proline remain undetermined. Besides L-glutamate, L-proline might be another candidate amino acid in the NTS. The present study was therefore performed to characterize the circulatory action of L-proline injected into the NTS where responses to glutamate in the anesthetized rat had already been shown. The NTS was first determined as a site on the dorsal surface of the medulla where a microinjection of L-glutamate decreased arterial pressure and heart rate. Microinjected L-proline (1.65 to 13.2 nmol, 33 nl) into the NTS decreased arterial pressure and heart rate in a dose-dependent manner. The injection of a mixed solution (66 nl) of kynurenate, an ionotropic excitatory amino acid receptors antagonist (1.32 nmol), and L-proline (6.6 nmol) into the NTS abolished the depressor and bradycardic actions with L-proline alone (6.6 nmol, 66 nl). However, a mixture of an increased concentration of kynurenate (6.6 nmol) with glutamate augmented the actions seen with glutamate alone (0.66 nmol, 66 nl). D-Proline (13.2 nmol, 66 nl), the optic isomer of L-proline, produced no change in arterial pressure or heart rate, suggesting that the actions of L-proline in the NTS were optically specific. The results indicate that L-proline but not D-proline induces its depressor and bradycardic actions through ionotropic excitatory amino acid receptors in the NTS of the anesthetized rat. L-Proline may become a candidate transmitter of baroreceptor information in the NTS.  相似文献   

6.
Effects of glutamate and kainate (KA) on Bergmann glial cells were investigated in mouse cerebellar slices using the whole-cell configuration of the patch-clamp technique combined with SBFI-based Na+ microfluorimetry. l-Glutamate (1 mM) and KA (100 μM) induced inward currents in Bergmann glial cells voltage-clamped at −70 mV. These currents were accompanied by an increase in intracellular Na+ concentration ([Na+]i) from the average resting level of 5.2 ± 0.5 mM to 26 ± 5 mM and 33 ± 7 mM, respectively. KA-evoked signals (1) were completely blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/KA ionotropic glutamate receptors; (2) reversed at 0 mV, and (3) disappeared in Na+-free, N-methyl-D-glucamine (NMDG+)-containing solution, but remained almost unchanged in Na+-free, Li+-containing solution. Conversely, l-glutamate-induced signals (1) were marginally CNQX sensitive (∼10% inhibition), (2) did not reverse at a holding potential of +20 mV, (3) were markedly suppressed by Na+ substitution with both NMDG+ and Li+, and (4) were inhibited by d,l-threo-β-benzyloxyaspartate. Further, d-glutamate, l-, and d-aspartate were also able to induce Na+-dependent inward current. Stimulation of parallel fibres triggered inward currents and [Na+]i transients that were insensitive to CNQX and MK-801; hence, we suggested that synaptically released glutamate activates glutamate/Na+ transporter in Bergmann glial cells, which produces a substantial increase in intracellular Na+ concentration.  相似文献   

7.
Kindling induced by 13 intraperitoneal injections of 40 mg/kg pentylenetetrazole (PTZ) over a period of 4 weeks resulted in a significant long-lasting increase in both the convulsive susceptibility of animals to the convulsant and the density of the specific [3H]-l-glutamate binding sites in the hippocampus. The quisqualate- and kainate-sensitive [3H]-l-glutamate binding sites were increased 24 h after the final PTZ injection, whereas the N-methyl-d-aspartate (NMDA)-sensitive sites had only a tendency to be enhanced. Furthermore, we investigated [3H]-l-glutamate binding on metabotropic receptors and found a significant increase in the hippocampus following PTZ kindling. In addition, in hippocampal tissue of kindled rats (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD)-stimulated inositol phosphate formation is increased. It can be concluded that the increase in metabotropic glutamate receptor (mGluR) density may be the expression of a specific enhancement in susceptibility of the glutamatergic systems to this excitatory amino acid developing in the course of PTZ-induced kindling. Received: 15 September 1997 / Accepted: 5 March 1998  相似文献   

8.
The expression and activity of the glutamate transporter, excitatory amino acid transporter 2 (EAAT2), in cardiac hypertrophy were investigated with respect to glutamate’s potential as a cardioprotective agent. Sarcolemmal vesicles (SV) isolated from hypertrophic hearts of male spontaneously hypertensive rats (SHR) or normotrophic hearts from age-matched male Wistar Kyoto rats (WKY) were used to measure the relative level of EAAT2 expression by Western blotting and the initial rate of 0–0.3 mM l-[14C]glutamate uptake. The effects of 20-min global normothermic ischaemia ±0.5 mM glutamate on cardiac function were measured in isolated working SHR/WKY hearts. In a separate series of hearts, glutamate, lactate and ATP levels were measured. Both the level of EAAT2 expression and the V max for sodium-dependent l-[14C]glutamate uptake were significantly greater in SHR SV compared to WKY SV. The reperfusion cardiac output (CO) of SHR hearts was significantly worse than that of the WKY hearts (24.3±2.2 ml/min vs 39.8±3.3 ml/min, n=7/9±SE, p<0.01). The addition of 0.5 mM l-glutamate improved the SHR reperfusion CO to 45.2±5 ml/min, (n=6±SE, p<0.01) but had no effect on WKYs (46.2±3.8 ml/min, n=6±SE). SHR with 0.5 mM l-glutamate had higher glutamate levels at the start of ischaemia, plus higher glutamate and ATP levels at the end of ischaemia compared to any other group. These results suggest that increased glutamate transporter expression and activity in the SHR hearts helped facilitate glutamate entry into the SHR cardiomyocytes leading to improved myocardial metabolism during ischaemia and better functional recovery on reperfusion.  相似文献   

9.
Binding of [3H]l-aspartate to thaw-mounted coronal sections of frozen rat forebrain was strong in grey regions of telencephalon (neocortex, hippocampus and neostriatum), but it was weaker and unevenly distributed in diencephalon. At low nanomolar concentrations of ligand used in the present studies, [3H]l-aspartate binding was strongly inhibited by l-threo-3-hydroxyaspartate and l-trans-pyrrolidine-2,4-dicarboxylate, compounds known to be substrate/inhibitors of the high affinity uptake of l-glutamate and l-aspartate. None of the typical ligands for the glutamate and aspartate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), N-methyl-d-aspartate and kainate, produced a strong enough inhibition (only CNQX at 100 M weakly inhibited) of the Na+-dependent [3H]l-aspartate binding to suggest that [3H]l-aspartate was bound to the receptor binding sites. Furthermore, the binding was absolutely dependent on the presence of Na+ in the incubation medium. It is concluded that [3H]l-aspartate is a ligand suitable for autoradiographic studies of the distribution of Na+-dependent, high affinity uptake of acidic amino acids in the central nervous system (CNS). However, feasibility of using [3H]l-aspartate as a specific marker of glutamatergic and/or aspartergic synapses in the CNS requires further investigation.  相似文献   

10.

OBJECTIVES:

The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life.

METHOD:

The animals were assigned to control (control, n = 10) and monosodium glutamate (monosodium glutamate, n = 13) groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol.

RESULTS:

Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%), an increased area under the curve of total insulin secretion during glucose overload (39.3%), and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times), bradycardic responses (>4 times), and vagal (∼38%) and sympathetic effects (∼36%) were reduced as compared to the control group.

CONCLUSION:

Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.  相似文献   

11.
To investigate whether nitric oxide is involved in the cardiovascular responses mediated via the locus coeruleus, the effects of microinjections of L-arginine and L-glutamate into the locus coeruleus on blood pressure and heart rate were investigated in sodium pentobarbitone-anaesthetized rats. Unilateral microinjection of L-arginine (25, 50 nmol) elicited dose-related depressor (-17 +/- 4, -25 +/- 4 mmHg) and bradycardic (13 +/- 3, 24 +/- 6 b.p.m.) effects. Furthermore, these effects were attenuated by prior local microinjection of N(G)-nitro-L-arginine (40 nmol). Peripheral muscarinic receptor blockade with atropine methyl nitrate (1 mg/kg, i.v.) attenuated the bradycardic but not the depressor responses to L-arginine. L-Glutamate (2 nmol) microinjections also mediated depressor (-27 +/- 6 mmHg) and bradycardic (53 +/- 23 b.p.m.) effects that were attenuated by microinjections of dizocilpine maleate (1 nmol) into the locus coeruleus. In addition, pretreatment with N(G)-nitro-L-arginine (40 nmol) also significantly attenuated the depressor response elicited by L-glutamate. These results suggest that nitrergic and glutamatergic pathways are operative within the locus coeruleus to modulate cardiovascular function, and also that a functional interaction may exist between the nitrergic and glutamatergic systems within the rat locus coeruleus.  相似文献   

12.
The depressor mechanism of imidazoline-like drugs is believed to result from activation of I(1)-imidazoline receptors (I(1)R) and/or alpha(2)-adrenoceptors within the central nervous system, which are associated with the glutamatergic system. The rostral ventrolateral medulla (RVLM) has been recognized as a specific target area that mediates the depressor action of imidazoline-like drugs. The objective of this study was to determine the comparative effects of blockade of the central glutamate receptor subtypes N-methyl-d-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate on the cardiovascular actions of imidazoline-like drugs (clonidine and moxonidine) in anaesthetized rats. Intracerebroventricular (i.c.v.) injection of the NMDA receptor antagonist MK801 or the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) produced similar reductions in blood pressure (BP) and heart rate (HR) to those induced by I.C.V. injection of clonidine. Intracerebroventricular injection of the glutamate receptor antagonist kynurenic acid not only abolished clonidine-induced hypotension and bradycardia but converted the responses to a pressor action and tachycardia. Unilateral injection of MK801 or CNQX into RVLM significantly attenuated intra-RVLM clonidine-induced decreases in BP and HR. We also found that unilateral injection of a selective I(1)R agonist, moxonidine, significantly decreased BP and HR, which were also attenuated to a similar extent by prior injection of MK801 or CNQX. In conclusion, these data show that blockade of central (RVLM) NMDA and AMPA/kainate receptors produces similar attenuation of the decrease in BP and HR induced by clonidine or moxonidine. It is suggested that both NMDA and AMPA/kainate receptors are involved in the cardiovascular inhibition produced by imidazoline-like drugs, which is probably at least partly dependent on an I(1)R mechanism in the RVLM.  相似文献   

13.
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.  相似文献   

14.
Agmatine was isolated from bovine brain in 1994. It exhibits various functions, as a consequence of which it meets the criteria for an endogenous brain neurotransmitter. However, its physiological action on the cardiovascular system remains unclear. This study was designed to clarify its cardiovascular effects when administered into the rostral ventrolateral medulla (RVLM) in anesthetized and paralyzed rats. Unilateral injection of clonidine (5 nmol) into the RVLM significantly decreased mean arterial pressure (MAP) and heart rate (HR). Unilateral injection of agmatine (5 nmol) produced similar effects to clonidine. The amplitude of the decrease in HR was the same as with clonidine, but the amplitude of the decrease in MAP was less pronounced. The cardiovascular inhibition induced by clonidine (5 nmol) and agmatine was abolished by idazoxan (5 nmol). Similar to clonidine, agmatine inhibited the pressor effect of l-glutamate (2 nmol) injected into the RVLM. The duration of this effect (about 6 min) was shorter than that observed with clonidine (about 12 min). Bilateral injection of agmatine into the RVLM inhibited the depressor response induced by baroreflex activation (electrical stimulation of the aortic nerve), and this effect was similar to, but less pronounced than, that induced by clonidine. Idazoxan (5 nmol) antagonized the cardiovascular effects of clonidine and agmatine within the RVLM. However, it produced a similar effect to clonidine injected into the RVLM. It is concluded that agmatine exerts a similar cardiovascular effect to clonidine, with less potency within the RVLM. Idazoxan might be a partial agonist for imidazoline I1 receptors.  相似文献   

15.
Microinjections of l-DOPA (10–100 ng) into the medial area of the nucleus tractus solitarii (NTS) led to dose-dependent decreases in arterial blood pressure and heart rate in rats treated with i.p. 3-hydroxybenzylhydrazine, a central inhibitor of DOPA decarboxylase, or similarly with intraventricular 6-hydroxydopamine. d-DOPA, dopamine or noradrenaline (100 ng) produced no effect. l-DOPA methyl ester (1 μg), a competitive antagonist for l-DOPA, microinjected into NTS, blocked the depressor and bradycardic responses to l-DOPA. High K+ (40 mM) released endogenous DOPA in a Ca2+-dependent manner from slices of the rat dorsomedial medulla including NTS. These results support the hypothesis that there exist systems of l-DOPA itself responsible for cardiovascular regulation in NTS of rats. This regulatory action of l-DOPA seems to be postsynaptic in nature.  相似文献   

16.
Changes in baroreceptor vagal reflex performance in the developing rat   总被引:5,自引:0,他引:5  
 Ontogenesis of both vagal control of heart rate and the baroreceptor vagal reflex were evaluated in rats at postnatal ages (P) of 5/6, 10, 15, 20, 25 and >42 days anaesthetised with urethane (1.5 g/kg). Between P5/6 and P25 heart rate rose from 372 ± 12 to 448 ± 20 beats per minute and mean arterial pressure increased from 33.9 ± 3.1 to 74.59 ± 3.25 mm Hg (mean ± SEM, n = 7 and 11 respectively). Cardiac vagal tone was absent at P10 but significant at P20 (P < 0.05) as revealed with atropine (0.5–1 mg/kg i.v.). Baroreceptor cardiac reflex sensitivity, tested with phenylephrine (10–50 μg/kg i.v.), was attenuated significantly in P10–20 rats compared with P5/6, P25 and mature animals. In P14–17 rats stimulation of neurones in either the solitary tract or ambiguual nuclei, by microinjection of L-glutamate (100–200 pmol), evoked an atropine-sensitive bradycardia indicating a functional integrity of central and peripheral efferent pathways mediating the baroreceptor reflex. Thus, the baroreceptor vagal reflex is functional in P5/6 rats but becomes attenuated between P10–P20, which is coincident with the maturational rise in arterial pressure. Received: 8 January 1997 / Received after revision: 26 March 1997 / Accepted: 14 April 1997  相似文献   

17.
Microinjections of N-methyl-D-aspartate (NMDA) into the medial area of the nucleus tractus solitarii (NTS) of the rat led to a decrease in arterial pressure and heart rate. The NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP5) reduced the cardiovascular responses to NMDA. Depressor and bradycardic responses to aortic nerve stimulation were reduced by AP5 but not by a substance P antagonist, injected into the NTS. High K+ stimulation caused a calcium-dependent release of glutamate and aspartate from tissues in the area of the NTS. These results provide evidence of NMDA receptor-mediated modulation of the aortic baroreceptor reflex in the rat NTS.  相似文献   

18.
The presence of adrenocorticotropin (ACTH) containing cells and melanocortin (MC) receptors has been reported in the nucleus tractus solitarius (NTS) of the rat. The importance of the NTS in the regulation of cardiovascular function is also well established. Based on these reports, it was hypothesized that ACTH acting within the NTS may modulate the central regulation of cardiovascular function. To test this hypothesis, cardiovascular effects of ACTH in the NTS were investigated in intact urethane-anesthetized and unanesthetized decerebrate, artificially ventilated, adult male Wistar rats. Microinjections of ACTH (0, 0.5, 1, 2, and 4 mM) into the medial subnucleus of NTS (mNTS) elicited decreases in mean arterial pressure (MAP; 0+/-0, 24.4+/-3.5, 35.7+/-4.3, 44.5+/-5.8 and 53.7+/-5.6 mm Hg, respectively) and heart rate (HR; 0+/-0, 25.7+/-5.3, 35.5+/-6.4, 47.5+/-12.1 and 55.0+/-5.6 beats/min, respectively). The onset and duration of the responses to microinjections of ACTH (0.5-4 mM) were 5-10 s and 45-120 s, respectively. Control microinjections of artificial cerebrospinal fluid (aCSF) did not elicit any response. The volume of all microinjections was 100 nl. The concentrations of ACTH that elicited depressor and bradycardic responses when microinjected into the mNTS (e.g. 1 or 2 mM, 100 nl), did not elicit a response when injected i.v. (n=5) or i.c.v. (n=2) indicating that there was no leakage of the drug from the injection site in the mNTS. Microinjections of MC3/4 receptor antagonists (acetyl-[Nle(4), Asp(5), d-2-Nal(7), Lys(10)]-cyclo-alpha-MSH amide, fragments 4-10 (SHU9119) and agouti-related protein (83-132) amide) into the mNTS blocked the responses to ACTH. Microinjections of ACTH (2 mM) into the mNTS decreased efferent greater splanchnic nerve activity. Bilateral vagotomy significantly attenuated ACTH-induced bradycardia. These results indicated that: 1) microinjections of ACTH into the mNTS elicited depressor and bradycardic responses, 2) these responses were mediated via MC3/4 receptors, 3) the depressor effects were mediated via a decrease in the activity of the sympathetic nervous system, and 4) the bradycardic responses were vagally mediated.  相似文献   

19.
20.
Experiments were done in urethane-anesthetized, barodenervated, male Wistar rats. Chemical stimulation of the hypothalamic paraventricular nucleus (PVN) by unilateral microinjections of N-methyl-d-aspartic acid (NMDA) elicited increases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA). The increases in the MAP and GSNA induced by chemical stimulation of the PVN were significantly exaggerated by bilateral microinjections of d(−)-2-amino-7-phosphono-heptanoic acid (d-AP7) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydro-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX) (ionotropic glutamate receptor antagonists) into the medial subnucleus of the nucleus tractus solitarius (mNTS). These results were confirmed by single unit recordings; i.e. excitation of mNTS barosensitive neurons caused by chemical stimulation of the ipsilateral PVN was blocked by application of d-AP7 and NBQX to these neurons. Bilateral microinjections of d-AP7 and NBQX into the mNTS elicited pressor responses which were significantly attenuated by inhibition of PVN neurons by bilateral microinjections of muscimol. Unilateral microinjections of fluorogold into the mNTS resulted in bilateral retrograde labeling of the PVN neurons. Unilateral microinjections of biotinylated dextran amine into the PVN resulted in anterograde labeling of axons and terminals in the mNTS bilaterally and the labeled terminals exhibited vesicular glutamate transporter-2 immunoreactivity. These results indicated that 1) a tonically active glutamatergic bilateral projection from the PVN to the mNTS exists; 2) bilateral blockade of ionotropic glutamate receptors in the mNTS exaggerates the increases in MAP and GSNA, but not heart rate, to the chemical stimulation of the PVN; and 3) this projection may serve as a restraint mechanism for excitatory cardiovascular effects of PVN stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号