首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective Zopiclone is a short acting hypnotic, which is metabolised by cytochrome P450 (CYP) 3A4 and 2C8 in vitro. We studied the possible effect of gemfibrozil, an inhibitor of CYP2C8, on the pharmacokinetics and pharmacodynamics of zopiclone.Methods In a randomised 2-phase crossover study, 10 healthy volunteers took 600 mg gemfibrozil or placebo orally twice daily for 3 days. On day 3, each ingested a 7.5 mg dose of zopiclone. Plasma concentrations and urinary excretion of zopiclone and its two primary metabolites, plasma gemfibrozil, and psychomotor performance were measured. The effects of CYP2C8, CYP2C9 and CYP3A4 inhibitors on the depletion of zopiclone (500 nM) were studied in vitro in human liver microsomes.Results The pharmacokinetic variables of the parent zopiclone were not significantly affected by gemfibrozil. However, gemfibrozil raised the mean peak plasma concentration (Cmax) of N-oxide-zopiclone (1.6-fold; P<0.001) and that of N-desmethyl-zopiclone (1.2-fold; P<0.001). The mean area under the plasma concentration-time curve () values of N-oxide-zopiclone and N-desmethyl-zopiclone were raised 2-fold (P<0.001) and 1.2-fold (P<0.01), respectively. The renal clearance of N-oxide-zopiclone was reduced by 48% by gemfibrozil (P<0.001). The pharmacodynamic effects of zopiclone, measured using psychometric tests, were not affected by gemfibrozil. In vitro, ketoconazole (1 μM) and itraconazole (8 μM) decreased the elimination rate of zopiclone enantiomers by about 65–95%, while montelukast (16 μM), gemfibrozil (200 μM) and sulfaphenazole (10 μM) had no appreciable effect.Conclusions Gemfibrozil does not increase the plasma concentrations of the parent zopiclone. Accordingly, CYP2C8 does not significantly metabolise zopiclone in vivo. However, as gemfibrozil raises the concentrations of two potentially active metabolites of zopiclone, slightly enhanced effects of zopiclone by gemfibrozil can not be excluded.  相似文献   

2.
Objective Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. Methods In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. Results During the pioglitazone phase, the mean peak plasma repaglinide concentration (Cmax) and the total area under the concentration-time curve [AUC(0-∞)] of repaglinide were 100% (range 53–157%, P=0.99) and 90% (range 63–120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Conclusions Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.  相似文献   

3.
Introduction: Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3.

Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail.

Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.  相似文献   


4.
Objective Pioglitazone, a thiazolidinedione antidiabetic drug, is metabolised mainly by the cytochrome P450 (CYP) 2C8 enzyme. The leukotriene receptor antagonists montelukast and zafirlukast have potently inhibited CYP2C8 activity and the metabolism of pioglitazone in vitro. Our objective was to determine whether montelukast and zafirlukast increase the plasma concentrations of pioglitazone in humans.Methods In a randomised, double-blind crossover study with three phases and a washout period of 3 weeks, 12 healthy volunteers took either 10 mg montelukast once daily and placebo once daily, or 20 mg zafirlukast twice daily, or placebo twice daily, for 6 days. On day 3, they received a single oral dose of 15 mg pioglitazone. The plasma concentrations of pioglitazone and its metabolites M-IV, M-III, M-V and M-XI were measured for 96 h.Results The total area under the plasma concentration-time curve of pioglitazone during the montelukast and zafirlukast phases was 101% (range 71–143%) and 103% (range 78–146%), respectively, of that during the placebo phase. Also, the peak plasma concentration and elimination half-life of pioglitazone remained unaffected by montelukast and zafirlukast. There were no statistically significant differences in the pharmacokinetics of any of the metabolites of pioglitazone between the phases.Conclusions Montelukast and zafirlukast do not increase the plasma concentrations of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo, despite their strong inhibitory effect on CYP2C8 in vitro. The results highlight the importance of in vivo interaction studies and of the incorporation of relevant pharmacokinetic properties of drugs, including plasma protein binding data, to in vitro-in vivo interaction predictions.Supported by grants from the National Technology Agency (Tekes), the Helsinki University Central Hospital Research Fund and the Sigrid Jusélius Foundation, Finland.  相似文献   

5.
AIMS: Our aim was to investigate the effect of the CYP2C8 inhibitor trimethoprim on the pharmacokinetics and pharmacodynamics of the antidiabetic drug repaglinide, and to examine the influence of the former on the metabolism of the latter in vitro. METHODS: In a randomized, double-blind, crossover study with two phases, nine healthy volunteers took 160 mg trimethoprim or placebo orally twice daily for 3 days. On day 3, 1 h after the last dose of trimethoprim or placebo, they ingested a single 0.25 mg dose of repaglinide. Plasma repaglinide and blood glucose concentrations were measured for up to 7 h post-dose. In addition, the effect of trimethoprim on the metabolism of repaglinide by human liver microsomes was investigated. RESULTS: Trimethoprim raised the AUC(0, infinity ) and C(max) of repaglinide by 61% (range, 30-117%; P= 0.0008) and 41% (P = 0.005), respectively, and prolonged the t((1/2)) of repaglinide from 0.9 to 1.1 h (P = 0.001). Trimethoprim had no significant effect on the pharmacokinetics of its aromatic amine metabolite (M1), but decreased the M1 : repaglinide AUC(0, infinity ) ratio by 38% (P = 0.0005). No effect of trimethoprim on the blood glucose-lowering effect of repaglinide was detectable. In vitro, trimethoprim inhibited the metabolism of (220 nm) repaglinide in a concentration-dependent manner. CONCLUSIONS: Trimethoprim raised the plasma concentrations of repaglinide probably by inhibiting its CYP2C8-mediated biotransformation. Although the interaction did not significantly enhance the effect of repaglinide on blood glucose concentration at the drug doses used, the possibility of an increased risk of hypoglycaemia should be considered during concomitant use of trimethoprim and repaglinide in patients with diabetes.  相似文献   

6.
Objective The purpose of the study was to study the distribution of poor and extensive metabolizers of CYP2C19 and CYP2D6 and to genotype for CYP2C8 and CYP2C9 among 312 randomly selected Faroese.Methods and results The participants were phenotyped for CYP2D6 with the use of sparteine. The distribution of the sparteine metabolic ratio (sparteine/didehydrosparteines) was bimodal, and 14.5% (n=44; 95% CI: 10.7–18.9%) of the subjects were phenotyped as poor metabolizers. The frequency of poor metabolizers was higher (P=0.0002; 2 test) among the Faroese than in other European populations (7.4%). Genotype analyses for the CYP2D6*3, *4, *6 and *9 alleles were performed using real-time polymerase chain reaction (PCR) (TaqMan, Foster City, CA, USA), and we found 14.6% (n = 45) (95% CI: 10.8–19.0%) with deficient CYP2D6 genes (*3/*4, *4/*4, *4/*6, *6/*6) in the Faroese population. The subjects were phenotyped for CYP2C19 with the use of mephenytoin and 10 subjects, i.e., 3.2% (95% CI: 1.6–5.9%) were phenotyped as poor metabolizers. Genotype analysis for the CYP2C19*2 and *3 alleles was performed by means of PCR analysis, and 2.9% (n=9) (95% CI: 1.3–5.4%) of the Faroese were found to have a deficient CYP2C19 gene all explained by the CYP2C19*2/*2 genotype. The allele frequencies of the CYP2C9*2 and CYP2C9*3 alleles were 8.8% (95% CI: 6.7–11.4%) and 5.3% (95% CI: 3.77.4%), respectively, while the CYP2C8*3 allele frequency was 6.9% (95% CI: 5.0–9.2%). Real-time PCR (TaqMan) was used for both CYP2C9 and CYP2C8 genotype analyses.Conclusion The frequency of CYP2D6 poor metabolizers is twofold higher among the Faroese population than other Caucasians, while the frequencies of Faroese subjects with decreased CYP2C19, CYP2C8 and CYP2C9 enzyme activity are the same as seen in other Caucasian populations. A possible consequence might be a higher incidence of side effects among Faroese patients taking pharmaceuticals that are CYP2D6 substrates.  相似文献   

7.
8.
中国2型糖尿病人中CYP2C8、CYP2C9基因多态性   总被引:1,自引:1,他引:0  
目的:查明CYP2C9、CYV2C8等抗糖尿病药物主要代谢酶的基因多态性在中国2型糖尿病(T2DM)A-群中的分布频率和分布特征。方法:运用多聚酶链反应.限制性长度多态性(PCR.RFLP)方法和变性高效液相色谱法(DHPLC)对222名中国T2DM患者进行了有功能意义的CYP2C8*3、CYP2C8P404A和CYP2C9*3,以及可能存在功能意义的CYP2C8IVs2(-5insertt)突变体等等位基因型检测,并计算了各等位基因的频率。结果:222名中国T2DM患者的CYP2C8基因中未检出CYP2C8*3、P404A型,CYP2C8IVS2(-5insertt)和CYP2C9*3等位基因的频率分别为43.0%、2.48%,二者突变等位基因在男、女性别分布中不存在差异(P〉0.05),同时为CYP2C8IVS2(-5insertt)和CYP2C9*1*3基因的频率为6.3%,该联合突变基因型的分布也不存在性别差异(P〉0.05)。结论:中国T2DM患者中CYP2C9*3的等位基因频率为2.48%;未检出CYP2C8。3和P404A型,CYP2C81VS2(-5insertt)突变体发生频率为43.0%,其是否影响CYV2C8的代谢活力有待于进-步研究。  相似文献   

9.
Polymorphisms in CYP2C8 and CYP3A5 genes have implications for responses elicited by the ingestion of some xenobiotics, the metabolism of which are mediated by these enzymes. CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A5*6 and CYP3A5*7 are a few functionally-relevant variants of these genes which this study provides data for, in the Nigerian population. Blood samples were processed for genomic DNA from 178 unrelated subjects spread across Nigerian ethnicities and screened for these polymorphism through the Sequenom iPLEX MassARRAY platform. Results obtained were further validated with Sanger sequencing of a few samples and thereafter, the genotype data were statistically processed. All alleles were in Hardy–Weinberg equilibrium and CYP2C8*2 occurred at a frequency (95% CI) of 0.194 (0.154, 0.239), while CYP3A5*3, CYP3A5*6 and CYP3A5*7 were found at frequencies (95% CI) of 0.160 (0.124, 0.202), 0.096 (0.067, 0.131) and 0.126 (0.094, 0.166), respectively. However, CYP2C8*3 was not detected in the population. The study observed a 60% prevalence of carriers of at least a CYP3A5 polymorphism in the population, suggesting the probable existence of huge variability in CYP3A5 activity which may prove significant in the administration of drugs with narrow therapeutic windows and whose metabolism is largely mediated by CYP3A5.  相似文献   

10.

AIM

According to product information, montelukast is extensively metabolized by CYP3A4 and CYP2C9. However, CYP2C8 was also recently found to be involved. Our aim was to study the effects of selective CYP2C8 and CYP3A4 inhibitors on the pharmacokinetics of montelukast.

METHODS

In a randomized crossover study, 11 healthy subjects ingested gemfibrozil 600 mg, itraconazole 100 mg (first dose 200 mg) or both, or placebo twice daily for 5 days, and on day 3, 10 mg montelukast. Plasma concentrations of montelukast, gemfibrozil, itraconazole and their metabolites were measured up to 72 h.

RESULTS

The CYP2C8 inhibitor gemfibrozil increased the AUC(0,∞) of montelukast 4.3-fold and its t1/2 2.1-fold (P < 0.001). Gemfibrozil impaired the formation of the montelukast primary metabolite M6, reduced the AUC and Cmax of the secondary (major) metabolite M4 by more than 90% (P < 0.05) and increased those of M5a and M5b (P < 0.05). The CYP3A4 inhibitor itraconazole had no significant effect on the pharmacokinetic variables of montelukast or its M6 and M4 metabolites, but markedly reduced the AUC and Cmax of M5a and M5b (P < 0.05). The effects of the gemfibrozil-itraconazole combination on the pharmacokinetics of montelukast did not differ from those of gemfibrozil alone.

CONCLUSIONS

CYP2C8 is the dominant enzyme in the biotransformation of montelukast in humans, accounting for about 80% of its metabolism. CYP3A4 only mediates the formation of the minor metabolite M5a/b, and is not important in the elimination of montelukast. Montelukast may serve as a safe and useful CYP2C8 probe drug.  相似文献   

11.
AIMS: Rosiglitazone, a thiazolidinedione antidiabetic medication used in the treatment of Type 2 diabetes mellitus, is predominantly metabolized by the cytochrome P450 (CYP) enzyme CYP2C8. The anti-infective drug trimethoprim has been shown in vitro to be a selective inhibitor of CYP2C8. The purpose of this study was to evaluate the effect of trimethoprim on the CYP2C8 mediated metabolism of rosiglitazone in vivo and in vitro. METHODS: The effect of trimethoprim on the metabolism of rosiglitazone in vitro was assessed in pooled human liver microsomes. The effect in vivo was determined by evaluating rosiglitazone pharmacokinetics in the presence and absence of trimethoprim. Eight healthy subjects (four men and four women) completed a randomized, cross-over study. Subjects received single dose rosiglitazone (8 mg) in the presence and absence of trimethoprim 200 mg given twice daily for 5 days. RESULTS: Trimethoprim inhibited rosiglitazone metabolism both in vitro and in vivo. Inhibition of rosiglitazone para-hydroxylation by trimethoprim in vitro was found to be competitive with apparent K(i) and IC(50) values of 29 microm and 54.5 microm, respectively. In the presence of trimethoprim, rosiglitazone plasma AUC was increased by 31% (P = 0.01) from 2774 +/- 645 microg l(-1) h to 3643 +/- 1051 microg l(-1) h (95% confidence interval (CI) for difference 189, 1549), and half-life was increased by 27% (P = 0.006) from 3.3 +/- 0.5 to 4.2 +/- 0.8 h (95% CI for difference 0.36, 1.5). Trimethoprim reduced the para-O-sulphate rosiglitazone/rosiglitazone and the N-desmethylrosiglitazone/rosiglitazone AUC(0-24) ratios by 22% and 38%, respectively. CONCLUSIONS: These results indicate that trimethoprim is a competitive inhibitor of CYP2C8-mediated rosiglitazone metabolism in vitro and that trimethoprim administration increases plasma rosiglitazone concentrations in healthy subjects.  相似文献   

12.
The CYP2C8 and CYP2C9 are two major isoforms of the cytochrome P450 enzyme family, which is involved in drug response, detoxification, and disease development. This study describes the differential distribution of amino acid substitution variants of CYP2C8 (*2‐I269F & *3‐R139K) and CYP2C9 (*2‐C144R & *3‐L359A) genes in 234 type 2 diabetes mellitus (T2DM) patients and 218 healthy controls from Andhra Pradesh, South India. Single locus genotype analysis has revealed that homozygous recessive genotypes of 2C8*2‐TT (P ≤ .03), 2C9*2‐TT (P ≤ .02), and heterozygous 2C9*3‐AC (P ≤ .006) are seen to be increasingly present in the case group, indicating a significant level of their association with diabetes in Andhra population. The statistical significance of these recessive genotypes has persisted even under their corresponding allelic forms (P ≤ .01). Genotype association results were further examined by computational protein structure and stability analysis to assess the deleteriousness of the amino acid changes. The mutant CYP 2C8 and 2C9 (both *2 and *3) proteins showed structural drifts at both amino acid residue (range 0.43Å‐0.77Å), and polypeptide chain levels (range 0.68Å‐1.81Å) compared to their wild‐type counterparts. Furthermore, the free energy value differences (range –0.915 to –1.38 Kcal/mol) between mutant and native protein structures suggests the deleterious and destabilizing potential of amino acid substitution polymorphisms of CYP genes. The present study confirms the variable distribution of CYP2C8 (*2 and *3) and CYP2C9 (*2 and *3) allelic polymorphisms among South Indian diabetic populations and further warrants the serious attention of CYP gene family, as a putative locus for disease risk assessment and therapy.  相似文献   

13.
Objective Loperamide is biotransformed in vitro by the cytochromes P450 (CYP) 2C8 and 3A4 and is a substrate of the P-glycoprotein efflux transporter. Our aim was to investigate the effects of itraconazole, an inhibitor of CYP3A4 and P-glycoprotein, and gemfibrozil, an inhibitor of CYP2C8, on the pharmacokinetics of loperamide.Methods In a randomized crossover study with 4 phases, 12 healthy volunteers took 100 mg itraconazole (first dose 200 mg), 600 mg gemfibrozil, both itraconazole and gemfibrozil, or placebo, twice daily for 5 days. On day 3, they ingested a single 4-mg dose of loperamide. Loperamide and N-desmethylloperamide concentrations in plasma were measured for up to 72 h and in urine for up to 48 h. Possible central nervous system effects of loperamide were assessed by the Digit Symbol Substitution Test and by subjective drowsiness.Results Itraconazole raised the peak plasma loperamide concentration (Cmax) 2.9-fold (range, 1.2–5.0; P<0.001) and the total area under the plasma loperamide concentration-time curve (AUC0-∞) 3.8-fold (1.4–6.6; P<0.001) and prolonged the elimination half-life (t½) of loperamide from 11.9 to 18.7 h (P<0.001). Gemfibrozil raised the Cmax of loperamide 1.6-fold (0.9–3.2; P<0.05) and its AUC0-∞ 2.2-fold (1.0–3.7; P<0.05) and prolonged its t½ to 16.7 h (P<0.01). The combination of itraconazole and gemfibrozil raised the Cmax of loperamide 4.2-fold (1.5–8.7; P<0.001) and its AUC0-∞ 12.6-fold (4.3–21.8; P<0.001) and prolonged the t½ of loperamide to 36.9 h (P<0.001). The amount of loperamide excreted into urine within 48 h was increased 3.0-fold, 1.4-fold and 5.3-fold by itraconazole, gemfibrozil and their combination, respectively (P<0.05). Itraconazole, gemfibrozil and their combination reduced the plasma AUC0–72 ratio of N-desmethylloperamide to loperamide by 65%, 46% and 88%, respectively (P<0.001). No significant differences were seen in the Digit Symbol Substitution Test or subjective drowsiness between the phases.Conclusion Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide. Although not seen in the psychomotor tests used, an increased risk of adverse effects should be considered during concomitant use of loperamide with itraconazole, gemfibrozil and especially their combination.  相似文献   

14.
Inter-individual variability in pharmacokinetics can lead to unexpected side effects and treatment failure, and is therefore an important factor in drug development. CYP2C8 is a major drug-metabolizing enzyme known to be involved in the metabolism of over 100 drugs. In this study, we predicted the inter-individual variability in AUC/Dose of CYP2C8 substrates in healthy volunteers using the Monte Carlo simulation. Inter-individual variability in the hepatic intrinsic clearance of CYP2C8 substrates (CLint,h,2C8) was estimated from the inter-individual variability in pharmacokinetics of pioglitazone, which is a major CYP2C8 substrate. The coefficient of variation (CV) of CLint,h,2C8 was estimated to be 40%. Using this value, the CVs of AUC/Dose of other major CYP2C8 substrates, rosiglitazone and amodiaquine, were predicted to validate the estimated CV of CLint,h,2C8. As a result, the reported CVs of both substrates were within the 2.5–97.5 percentile range of the predicted CVs. Furthermore, the CVs of AUC/Dose of the CYP2C8 substrates loperamide and chloroquine, which are affected by renal clearance, were also successfully predicted. Combining this value with previously reported CVs of other CYPs, we were able to successfully predict the inter-individual variability in pharmacokinetics of various drugs in clinical.  相似文献   

15.
细胞色素CYP2C19基因多态性与药物相互作用   总被引:3,自引:0,他引:3  
张平平  王明波  张鉴  李军 《齐鲁药事》2009,28(6):352-355
CYP2C19酶是一种重要的药物代谢酶,参与多种药物的体内代谢。本文综述了CYP2C19酶的基因多态性及临床应用方面的研究进展,讨论经CYP2C19代谢的药物在联合用药时药物之间的相互作用及可能出现的临床后果,为临床合理用药提供参考依据。  相似文献   

16.
BACKGROUND AND AIMS: Gemfibrozil, and particularly its combination with itraconazole, greatly increases the area under the plasma concentration-time curve [AUC(0, infinity)] and response to the cytochrome P450 (CYP) 2C8 and 3A4 substrate repaglinide. In vitro, gemfibrozil is a more potent inhibitor of CYP2C9 than of CYP2C8. Our aim was to investigate the effects of the gemfibrozil-itraconazole combination on the pharmacokinetics and pharmacodynamics of another meglitinide analogue, nateglinide, which is metabolized by CYP2C9 and CYP3A4. METHODS: In a randomized crossover study with two phases, nine healthy subjects took 600 mg gemfibrozil and 100 mg itraconazole (first dose 200 mg) twice daily or placebo for 3 days. On day 3, they ingested a single 30-mg dose of nateglinide. Plasma nateglinide and blood glucose concentrations were measured for up to 12 h. RESULTS: During the gemfibrozil-itraconazole phase, the AUC(0, infinity) and C(max) of nateglinide were 47% (range 23-74%; P < 0.0001) and 30% (range - 8% to 104%; P = 0.0146) higher than during the placebo phase, respectively, but the t(max) and t1/2 of nateglinide remained unchanged. The combination of gemfibrozil and itraconazole had no effect on the formation of the M7 metabolite of nateglinide but impaired its elimination. The blood glucose response to nateglinide was not significantly changed by coadministration of gemfibrozil and itraconazole. CONCLUSIONS: The combination of gemfibrozil and itraconazole has only a limited influence on the pharmacokinetics of nateglinide. This is in marked contrast to the substantial effect of this combination on the pharmacokinetics of repaglinide. The findings suggest that in vivo gemfibrozil, probably due to its metabolites, is a much more potent inhibitor of CYP2C8 than of CYP2C9.  相似文献   

17.
AIMS: The primary aim of the study was to investigate the possible effect of the CYP2C8*3 allele and of grapefruit juice on the pharmacokinetics of repaglinide. Furthermore, the impact of a single dose of grapefruit juice on the pharmacokinetics of repaglinide in relation to dose. METHODS: Thirty-six healthy male subjects, genotyped for CYP2C8*3 (11 genotyped as CYP2C8*1/*3, one as CYP2C8*3/*3 and 24 as CYP2C8*1/*1), participated in a randomized, cross-over trial. In the two phases, the subjects drank 300 mL water or 300 mL grapefruit juice, in randomized order, 2 h before administration of a single dose of either 0.25 mg or 2 mg repaglinide. RESULTS: Neither the mean AUC(0-infinity) (geometric mean ratio: 1.01; 95% CI: 0.93-1.1, P = 0.88) nor the mean C(max) (geometric mean ratio: 1.05; 95% CI: 0.94-1.2, P = 0.35) of repaglinide were statistically significantly different in the group carrying the CYP2C8*3 mutant allele compared with wild-types. Grapefruit juice caused a 19% decrease in the geometric mean ratio of the 3-hydroxyquinidine to quinidine ratio (difference: 0.81; 95% CI: 0.75-0.87, P < 0.0001), which was used as an index of CYP3A4 activity, and an increase in the mean AUC(0-infinity) of repaglinide (geometric mean ratio: 1.13; 95% CI: 1.04-1.2, P = 0.0048), but had no statistically significant effect on the t(1/2). There was no statistically significant difference in blood glucose concentration in subjects who had or had not ingested grapefruit juice. The effect was more pronounced at the low dose of repaglinide (0.25 mg) than at the therapeutic dose of 2 mg. CONCLUSIONS: The pharmacokinetics of repaglinide in subjects carrying the CYP2C8*3 mutant allele did not differ significantly from those in the wild-types. Grapefruit juice increased the bioavailability of repaglinide, suggesting significant intestinal elimination of the drug which was assumed to be primarily mediated by CYP3A4 in the gut.  相似文献   

18.
磺脲类口服降糖药在人体内主要经过肝脏代谢。肝脏中的细胞色素氧化酶P450是一种重要的药物代谢酶系统,在人群中存在基因多态性,导致药物疗效和不良反应在个体间存在着较大的差异。本文将对CYP450中的几种重要的代谢酶亚型CYP2C9、CYP2C19、CYP3A4的基本结构、基因多态性、种族差异及其对磺脲类降糖药代谢的影响作一综述。  相似文献   

19.
AIMS: To study the effect of CYP2C8*3, the most common CYP2C8 variant allele on the dis-position of (R)-ibuprofen and the association of CYP2C8*3 with variant CYP2C9 alleles. METHODS: Three hundred and fifty-five randomly selected Spanish Caucasians were screened for the common CYP2C8 and CYP2C9 mutations. The pharmacokinetics of (R)-ibuprofen were studied in 25 individuals grouped into different CYP2C8 genotypes. RESULTS: The allele frequency of CYP2C8*3 (0.17) was found to be higher than that reported for other Caucasian populations (P = 0.0001). The frequencies of CYP2C9*2 and CYP2C9*3 were 0.19 (0.16-0.21) and 0.10 (0.08-0.12), respectively. An association between CYP2C8*3 and CYP2C9*2 alleles was observed, occurring together at a frequency 2.4-fold higher than expected for a random association of alleles (P = 0.0001). The presence of the CYP2C8*3 allele was found to influence the pharmacokinetics of (R)-ibuprofen in a gene-dose effect manner. Thus, after administration of 400 mg ibuprofen, the plasma half-life (95% confidence intervals) for individuals with genotypes CYP2C8*1/*1, CYP2C8*1/*3 and CYP2C8*3/*3, was 2.0 h (1.8-2.2), 4.2 h (1.9-6.5; P < 0.05) and 9.0 h (7.8-10.2; P < 0.002), respectively. A statistically significant trend with respect to the number of variant CYP2C8*3 alleles was also observed for the area under the concentration-time curve (P < 0.025), and drug clearance (P < 0.03). CONCLUSION: Polymorphism of the CYP2C8 gene was found to be common, with nearly 30% of the population studied carrying the variant CYP2C8*3 allele. The presence of the latter caused a significant effect on the disposition of (R)-ibuprofen. This suggests that a substantial proportion of Caucasian subjects may show alterations in the disposition of drugs that are CYP2C8 substrates.  相似文献   

20.
Delta9-tetrahydrocannabinol (delta9-THC), the primary psychoactive constituent of marijuana, is subject to first pass hepatic metabolism primarily by hydroxylation to yield active and inactive oxygenated products. The primary metabolite is formed via oxidation of the allylic methyl group to yield 11-hydroxy-delta9-THC, which is oxidized further to 11-nor-9-carboxy-delta9-THC. The hydroxylation is thought to be mediated by CYP2C9. The present study was designed to address the kinetics and pharmacogenetics of CYP2C-mediated metabolism of (delta9)-THC by studying its metabolism in human liver microsomes and expressed enzymes. Expressed CYP2C9.1 exhibited high affinity for the hydroxylation of delta9-THC (apparent Km, 2 microM), similar to that observed in human liver microsomes (apparent Km 0.8 microM). In contrast, the calculated intrinsic clearance (apparent Vm/Km) for CYP2C9.2 and CYP2C9.3 was approximately 30% that of the wild type, CYP2C9.1. Given the high affinity of CYP2C9 for the hydroxylation of delta9-THC, we evaluated the potential for an interaction between delta9-THC, 11-hydroxy-delta9-THC, or 11-nor-9-carboxy-delta9-THC and the CYP2C9 substrate, phenytoin. Surprisingly, delta9-THC increased the rate of phenytoin hydroxylation in human liver microsomes and expressed CYP2C9 enzyme. Similar increases in rate were observed with co-incubation of 11-hydroxy-delta9-THC and 11-nor-9-carboxy-delta9-THC with phenytoin. These in vitro data suggest the potential for an interaction from the concomitant administration of delta9-THC and phenytoin that could result in decreased phenytoin concentrations in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号