首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific angiotensin II (Ang II) binding sites are present in the dorsal medulla of several species and dose-related cardiovascular effects are produced by microinjection of the peptide into this region. Because the anatomical location of Ang II binding sites in the area postrema (ap), nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX) coincides with the topography of vagal afferent fibers and efferent motor neurons, the effect of either nodose ganglionectomy or cervical vagotomy on Ang II binding sites in the dorsomedial medulla was investigated in dogs by in vitro receptor autoradiography. Two weeks after unilateral ganglionectomy, there was a marked reduction in the density of specific Ang II binding sites in the ipsilateral ap, nTS and dmnX and an absence of binding sites in the region where vagal afferent fibers course through the rostral medulla. Unilateral cervical vagotomy, which has been shown to spare central processes of afferent fibers, resulted in a loss of binding only in the ipsilateral dmnX. We also show that Ang II binding sites are present in the nodose ganglion and central and peripheral processes of the vagus nerve. The data indicate that medullary Ang II binding sites are associated with both vagal afferent fibers and efferent motor neurons.  相似文献   

2.
We have examined the distribution of neurotensin immunoreactivity within subnuclear regions of the nucleus of the tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DVN) in the rat. In order to determine which regions of the NTS were involved in the regulation of baroreceptor reflexes, we mapped the central distribution of the aortic branch of the vagus nerve using transganglionic transport of horseradish peroxidase. Comparison of the pattern of aortic nerve innervation with that of the distribution of neurotensin-immunoreactive cells and fibers shows the dorsomedial nucleus of the NTS both to be the primary site of aortic baroreceptor termination and to contain the highest concentration of neurotensin-immunoreactive elements within the NTS. Neurotensin-immunoreactive fibers are also present in medial regions of the NTS adjacent to the area postrema where they may be involved in the modulation of vagal gastric afferents. Double-label experiments, in which, on the same tissue sections, neurotensin immunohistochemistry was combined with retrograde horseradish peroxidase labeling of DVN neurons, reveal a topographic innervation of vagal preganglionic motoneurons by neurotensin-immunoreactive fibers. The heaviest innervation is of lateral portions of the DVN and adjacent ventral portions of the NTS at the level of the obex, an area which may contain cardiac motoneurons. In this region neurotensin-immunoreactive fibers can be observed in close proximity to retrogradely labeled cells. The concentration of neurotensin elements in a region of the NTS which is involved in the control of baroreceptor reflexes provides a morphological basis for the cardiovascular effects produced by central administration of the peptide. Additional control may be exerted at the level of the motoneuron, as evidenced by apparent neurotensin fiber innervation of presumptive cardiac preganglionic neurons. Similarly, the distribution of neurotensin fibers suggests that the peptide may be acting in gastric regulatory areas of the NTS or on vagal secretomotor neurons to regulate gastric acid secretion.  相似文献   

3.
Quantitative receptor autoradiography with L-[3H]glutamate was employed to examine the distribution and properties of glutamate binding sites in the rat brain 14 days after excision of the right nodose ganglion. Slide-mounted coronal sections of the brain showed reduced L-[3H]glutamate binding in the nucleus tractus solitarius/dorsal motor nucleus of the vagus in the ipsilateral relative to the sham-operated side. Densitometric and saturation analyses of binding data indicated a significant reduction in the density of glutamate binding sites (57% decrease relative to sham), while there was a significant increase in receptor affinity (40% greater than sham). Binding was unaltered in the inferior olivary complex. Glutamate receptors are likely to exist on synaptic nerve terminals of vagal afferent fibres within the nucleus tractus solitarius and on vagal preganglionic neurones within the dorsal motor nucleus of the vagus and/or their dendritic processes within the nucleus tractus solitarius. Additionally, our receptor autoradiographic studies provide evidence for L-glutamate being a transmitter of vagal afferent neurones.  相似文献   

4.
The experiments reported here were designed to examine whether angiotensin II (AII) receptors in the rat solitary-vagal area (SVA) are associated with the neuronal components of the baroreceptor reflex. AII receptors were characterized both in membrane preparations from the rat brainstem and by in vitro autoradiography using the radiolabeled AII antagonist [125I]Sar1,Ile8-AII([ 125I]SI-AII). Saturation analysis of [125I]SI-AII binding to membrane preparations from rat brainstem indicated binding to two high affinity sites (Kd1 0.32 nM and Bmax1 5.10 fmol/mg protein, Kd2 0.99 nM and Bmax2 7.94 fmol/mg protein). The rank order competition by unlabeled angiotensin peptides (SI-AII greater than AII greater than AIII greater than AI) in both membrane preparations and by quantitative autoradiography was consistent with the labeling of the brain AII receptor. Autoradiography of the [125I]SI-AII binding in sections through the SVA revealed that the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) were heavily labeled. Bilateral sinoartic denervation, which disrupts primary baroreceptor afferents, resulted in a small decrease in [125I]SI-AII binding in the rostral and intermediate NTS and DMV. Unilateral nodose ganglionectomy, which disrupts completely the vagal afferent input to the NTS and produces retrograde degeneration of the vagal efferent neurons in the DMV, resulted in a marked decrease in [125I]SI-AII binding at all levels of the ipsilateral NTS and 56% decrease within the ipsilateral DMV. These results indicate that AII receptors within the SVA are distributed heterogeneously, with a large portion associated with vagal afferent fibers in the NTS and vagal efferent neurons of the DMV, and a small but significant portion associated with baroreceptor afferents. The majority of AII receptors in the NTS, however, were not affected by these surgical interventions and therefore appear to be located on intrinsic interneurons or non-vagal afferents in the NTS.  相似文献   

5.
The effects of various vagal lesions on cholecystokinin (CCK) binding sites in the nucleus tractus solitarii (NTS) and area postrema (AP) and the peripheral transport of CCK binding sites in the cervical vagus were examined in rats by in vitro autoradiography with [125I]CCK-8. Unilateral supraganglionic, but not subdiaphragmatic vagotomy significantly reduced CCK binding in the ipsilateral NTS. Specific unilateral afferent, but not efferent, vagal rootlet transections also significantly reduced NTS CCK binding ipsilateral to the transections. None of the vagal lesions altered CCK binding in the AP. Infraganglionic but not supraganglionic vagotomy eliminated the peripheral transport of vagal CCK binding sites. Together these results demonstrate that CCK receptors in the NTS are located on vagal afferent terminals, that CCK receptors in the AP are likely postsynaptic to a vagal afferent input and that the peripheral and central transport of vagal CCK binding sites occurs in afferent fibers.  相似文献   

6.
The influence of nodose ganglionectomy or transection of the peripheral branches of the afferent vagus nerve on choline acetyltransferase (ChAT) activity in the nucleus tractus solitarius (NTS) was studied. ChAT activity was reduced in the microdissected caudal and intermediate portions of the NTS in vagotomized as well as ganglionectomized rats. However, only the ganglionectomy resulted in the degeneration of medullary nerve fibers. These results suggest that the changes in ChAT activity in the NTS are independent of neuronal degeneration and may be due to transynaptic modulation of ChAT activity by afferent vagal impulses. The presence of ChAT in the sensory nodose projection to the NTS, however, cannot be ruled out.  相似文献   

7.
Lee PG  Cai F  Helke CJ 《Brain research》2002,941(1-2):127-136
Diabetes-induced alterations in nerve function include reductions in the retrograde axonal transport of neurotrophins. A decreased axonal accumulation of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of streptozotocin (STZ)-induced diabetic rats was previously shown. In the current study, no changes in the NGF and NT-3 protein or mRNA levels in the stomach or atrium, two vagally innervated organs, were noted after 16 or 24 weeks of diabetes. Moreover, the amounts of neurotrophin receptor (p75, TrkA, TrkC) mRNAs in the vagus nerve and vagal afferent nodose ganglion were not reduced in diabetic rats. These data suggest that neither diminished access to target-derived neurotrophins nor the loss of relevant neurotrophin receptors accounts for the diabetes-induced alteration in the retrograde axonal transport of neurotrophins. To assess whether diabetes causes a defect in axonal transport that may not be specific to neurotrophin transport, we studied the ability of a neuronal tracer (FluoroGold, FG) to be retrogradely transported by vagal neurons of control and diabetic rats. After vagal target tissue (stomach) injections of FG, the numbers of FG-labeled afferent and efferent vagal neurons were counted in the nodose ganglion and in the dorsal motor nucleus of the vagus, respectively. After 24 weeks of diabetes, FG was retrogradely transported to more than 50% fewer afferent and efferent vagal neurons in the STZ-diabetic compared to control rats. The diabetes-induced deficit in retrograde axonal transport of FG is likely to reflect alterations in basic axonal transport mechanisms in both the afferent and efferent vagus nerve that contribute to the previously observed reductions in neurotrophin transport.  相似文献   

8.
Fong AY  Talman WT  Lawrence AJ 《Brain research》2000,878(1-2):240-246
Previous studies have shown that the NO(ccirf)-cGMP pathway may be functionally relevant in the nodose ganglion and at afferent terminations of the vagus nerve. The technique of unilateral vagal ligations, using double ligatures, was combined with the techniques of NADPH-diaphorase histochemistry, as an index of nitric oxide synthase (NOS) activity, and autoradiography using the radioligands [(3)H]nitro-L-arginine and [(3)H]cGMP, to examine axonal transport of NOS and cGMP-dependent effectors by the rat vagus nerve. A population of perikarya in the nodose ganglia was NADPH-diaphorase positive, and binding of both [(3)H]nitro-L-arginine and [(3)H]cGMP was found on the nodose ganglia. Following vagal ligation, NADPH-diaphorase reactivity accumulated proximal to the proximal ligature and distal to the distal ligature. Vagus nerve transection beyond the distal ligature eliminated NADPH-diaphorase reactivity at the distal ligature. Similarly, [(3)H]nitro-L-arginine binding was found over the nodose ganglion; and after vagal ligation, an accumulation of [(3)H]nitro-L-arginine binding was seen adjacent to the proximal ligature, though little binding was found adjacent to the distal ligature. No accumulation of [3H]cGMP binding was found adjacent to either the proximal or the distal ligatures. These findings suggest that the rat vagus nerve bidirectionally transports NOS, the enzyme involved in biosynthesis of NO(ccirf) by nitroxidergic nerves. As anticipated, [(3)H]nitro-L-arginine, a competitive inhibitor of the amino acid precursor for NO(ccirf), binds only to a centrifugally transported moiety that we conjecture is NOS, while cGMP apparently is not subject to transport. These data further support the use of NO(&z.ccirf;) in transmission at vagal afferent terminals.  相似文献   

9.
The medullary distribution of afferent fibers and cells of origin of the cervical vagal trunk and of the vagal innervation of the stomach have been studied using the anterograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP were made into the cervical vagus nerve, the stomach wall, the proximal small intestine, or the peritoneal cavity. Two to four days following the injections, the rats were perfused and the medullae oblongatae and nodose ganglia were processed using the tetramethyl benzidine method. Cervical vagus nerve injections of HRP resulted in heavy anterograde labeling in the ipsilateral nucleus of the tractus solitarius (NTS) and the commissural nucleus. Lighter labeling was seen in these regions on the contralateral side, but did not extend as far rostrally in the NTS. Labeling was also seen in the area postrema. Retrogade labeling of somata was present in the ipsilateral side in the nodose ganglion, throughout the whole extent of the dorsal motor nucleus of the vagus, much of the nucleus ambiguus and in rostral levels of the cervical spinal cord. After stomach injections, labeling indicative of afferent fibers was observed bilaterally in the dorsomedial and medial portions of the NTS and in the commissural nucleus. Labeled efferent fibres arose from neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus and the cervical spinal cord. Retrogradely labeled somata were found bilaterally, throughout the rostrocaudal length of the dorsal motor nucleus in all cases with stomach injections. In some, but not all cases, labeled somata were seen bilaterally in compact areas within the nucleus ambiguus, particularly rostrally. Control injections of HRP into the intestinal wall and peritoneal cavity indicated that the stomach was the primary source of afferent and efferent labeling in the medulla following subdiaphragmatic injections.  相似文献   

10.
The present study has employed in vitro receptor autoradiography with (S)-[(3)H]-5-fluorowillardiine (10 nM) to visualise the presence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding sites in the brain stems of adult (16-18 weeks) normotensive (Wistar-Kyoto (WKY) and Don Ryu (DRY)) and Spontaneously Hypertensive (SHR) rats. Similar topographic distribution and density of (S)-[(3)H]-5-fluorowillardiine binding was observed in the nucleus tractus solitarius (NTS) of all three strains. Specific (S)-[(3)H]-5-fluorowillardiine binding sites were also visualised in sections of nodose ganglion from adult WKY rats, demonstrating that vagal afferent perikarya possess AMPA binding sites. However, while unilateral vagal deafferentation did not result in a significant decrease in binding site density in the caudal half of the rat NTS, the visualisation of AMPA binding sites on the nodose ganglion is consistent with the existence of a population of binding sites on vagal afferent terminals. In the caudal half of the rat NTS, AMPA binding sites appear to be predominantly postsynaptic in nature.  相似文献   

11.
The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern the role of specific neurotrophins in the functions of these visceral sensory and motor neurons in vivo. J. Comp. Neurol. 393:102–117, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    12.
    The central organization of the vagus nerve innervating the stomach of the rat   总被引:14,自引:0,他引:14  
    We employed the neural tracers cholera toxin-horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase to examine the organization of the afferent and efferent connections of the stomach within the medulla oblongata of the rat. The major finding of this study is that gastric motoneurons of the dorsal motor nucleus (DMN) possess numerous dendrites penetrating discrete regions of the overlying nucleus of the solitary tract (NTS). In particular, dendritic labelling was present in areas of NTS which also received terminals of gastric vagal afferent fibers such as the subnucleus gelatinosus, nucleus commissuralis, and medial nucleus of NTS. This codistribution of afferent and efferent elements of the gastric vagus may provide loci for monosynaptic vagovagal interactions. A small number of dendrites of DMN neurons penetrated the ependyma of the fourth ventricle and a few others entered the ventral aspect of the area postrema, thus making possible the direct contact of preganglionic neurons with humoral input from the cerebrospinal fluid and/or the peripheral plasma. Nucleus ambiguus neurons projecting to the stomach predominantly innervate the forestomach. The dendrites of these cells, when labelled, were generally short, and extended beyond the compact cluster of ambiguus neurons in a ventrolateral direction, parallel to the fascicles of vagal efferent fibers traversing the medulla.  相似文献   

    13.
    The presence of cholinergic fibers in the afferent vagal system of various species was shown using biochemical and immunohistochemical methods. Biochemical activity of choline acetyl transferase, the synthesizing enzyme for acetylcholine, was detected in the nodose ganglion of cat, rabbit, dog and sheep. Immunohistochemistry, using a monoclonal antibody raised against choline acetyl transferase, revealed labelled cell bodies in the nodose ganglion of the rabbit. Acetylcholine endogenous content, measured in nodose ganglia devoid of efferent fibers, was twice as high in the right ganglion as compared to the left. Enzyme transport and choline acetyl transferase activity analysis were each determined on separate peripheral vagus nerves. These results are discussed in terms of functional properties of the vagal afferent neurons, including the modulation of vagal afferent messages at the level of the nodose ganglion and the eventual control of peripheral intrinsic neurons by sensory vagal terminals.  相似文献   

    14.
    Vagal primary afferent neurons have their cell bodies located in the nodose (inferior) and jugular (superior) vagal ganglia and send terminals into the nucleus tractus solitarii (NTS) which lies in the dorsomedial medulla. The presence of glutamate (Glu)-containing neurons in the rat nodose ganglion was investigated using immunohistochemistry. Glu-immunoreactivity on nodose sections was found in neuronal perikarya and nerve fibers, but not in non-neuronal elements such as Schwann cells and satellite cells. Both immunoreactive and non-immunoreactive ganglion cells were observed. The immunoreactive ganglion cells amounted to about 60% of the nodose population. No specific intraganglionic localization was observed for the non-immunoreactive cells. Immunoreactive perikarya were slightly smaller than the non-immunoreactive ones, but no relationship was found between size and staining intensities of immunoreactive neurons. The present data indicate that immunodetectable Glu is present in a large population of vagal afferent neurons. They therefore add to a growing body of evidence suggesting that Glu may be the main neurotransmitter released by vagal afferent terminals within the nucleus tractus solitarii.  相似文献   

    15.
    16.
    The aim of the present study was to identify cellular elements bearing high-affinity neurotensin (NT) binding sites in the suprachiasmatic nucleus (SCN) of the rat hypothalamus. Because the distribution of these binding sites had previously been reported to conform to that of both vasoactive intestinal peptide (VIP)-containing nerve cell bodies and serotonin (5-HT)-containing axons, the following experimental approaches were used: (1) the overlap between autoradiographically labeled NT binding sites and immunocytochemically labeled VIP neurons was examined in adjacent 5-microns-thick sections taken across the entire rostrocaudal extent of the SCN; and (2) the density of NT binding sites was examined by quantitative autoradiography following cytotoxic lesioning of 5-HT afferents. Double-labeling studies demonstrated precise overlap between 125I-NT binding and VIP immunostaining throughout the SCN. Moreover, at high magnification intensely VIP-immunoreactive neurons were found in direct register with 125I-NT-labeled cells visualized in adjacent sections. Densitometric autoradiographic studies demonstrated a significant reduction in specific 125I-NT binding within the SCN following intracerebroventricular injection of the neurotoxin, 5,7-dihydroxytryptamine. Taken together, these results indicate that within the SCN, NT receptors are present both presynaptically on serotonin axons and postsynaptically on the perikarya and dendrites of VIP-containing neurons.  相似文献   

    17.
    The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.  相似文献   

    18.
    Galanin (GAL), a 29 amino acid peptide originally isolated from the porcine upper small intestine, is widely distributed in the rat central nervous system, including the area postrema (AP) and nucleus of the solitary tract (NTS). Although vagal sensory neurons terminate in the AP/NTS, it is not known whether these neurons contain GAL in the rat. Therefore, we examined the presence and distribution of GAL in the rat nodose ganglia which contain the cell bodies of vagal sensory neurons. We used avidin-biotin-peroxidase immunohistochemistry and in situ hybridization histochemistry with a 35S-labeled oligonucleotide probe. Results with both techniques revealed the presence of GAL-containing cell bodies and fibers in the nodose ganglion. GAL-like immunoreactive cell bodies, mostly between 25 and 40 microns in diameter, were unevenly scattered throughout the nodose ganglia. The distribution and cell diameter range of GAL mRNA-labeled neurons appeared similar to those of GAL-like immunoreactive cells. These findings suggest a role for GAL in the transmission of visceral sensory information by the vagus nerve in rats.  相似文献   

    19.
    A [125I]cholecystokinin (CCK) analog and [125I]peptide YY (PYY) were used to localize and characterize CCK and neuropeptide Y (NPY) receptor binding sites in the rabbit vagal afferent (nodose) ganglion. High concentrations of CCK and NPY binding sites were observed in 10.6% and 9.2% of the nodose ganglion neurons, respectively. Pharmacological experiments using CCK or NPY analogs suggest that both subtypes of CCK (CCK-A and CCK-B) and NPY (Y1 and Y2) receptor binding sites are expressed by discrete populations of neurons in the nodose ganglion. These results suggest sites at which CCK or NPY, released in either the nucleus of the solitary tract or a peripheral tissue, may modulate the release of neurotransmitters from a select population of visceral primary afferent neurons. Possible functions mediated by these receptors include modulation of satiety, opiate analgesia, and the development of morphine tolerance.  相似文献   

    20.
    Electrophysiological studies on preganglionic neurons (PGNs) in the dorsal motor nucleus (DMN) of the vagus nerve has been hampered by technical limitations. Conventional electrical stimulation of the vagus nerve with cathodal square-wave pulses activates both preganglionic and afferent fibers. Thus, some PGNs cannot be identified because the anticipated antidromic responses would be blocked due to collision with those orthodromic responses evoked with shorter latencies by activation of fast-conducting afferent fibers. Projections of vagus afferent fibers to PGNs are difficult to analyse with conventional methods because a preceding antidromic response may affect an orthodromic response which has a slightly longer latency. A new stimulation method was designed, consisting of anodal triangular pulse stimulation and spontaneous-spike triggered stimulation. In chlorase-urethane-anesthetized rats, unitary responses of the DMN to electrical stimulation of the ipsilateral vagus nerve were recorded. When only an orthodromic response by a DMN neuron was recorded with conventional stimulation, application of anodal triangular pulse stimulation revealed an antidromic response, so that the cell in question could be identified as a PGN. Some neurons that produced only an antidromic response to conventional stimulation, revealed an orthodromic response on spontaneous-spike triggered stimulation, which blocked the antidromic response due to collision. With these procedures, orthodromic responses due to vagus afferent projections were recorded in 35% of the identified PGNs, mostly due to C and partly, A fiber activations. All these projections were polysynaptic in nature. In conclusion, one-third of the PGNs of the DMN are involved in vagovagal reflexes, which occur through multisynaptic pathways.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号