首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Genetics in medicine》2020,22(1):60-68
PurposePeople undergoing diagnostic genome-scale sequencing are expected to have better psychological outcomes when they can incorporate and act on accurate, relevant knowledge that supports informed decision making.MethodsThis longitudinal study used data from the North Carolina Clinical Genomic Evaluation by NextGen Exome Sequencing Study (NCGENES) of diagnostic exome sequencing to evaluate associations between factual genomic knowledge (measured with the University of North Carolina Genomic Knowledge Scale at three assessments from baseline to after return of results) and sequencing outcomes that reflected participants’ perceived understanding of the study and sequencing, regret for joining the study, and responses to learning sequencing results. It also investigated differences in genomic knowledge associated with subgroups differing in race/ethnicity, income, education, health literacy, English proficiency, and prior genetic testing.ResultsMultivariate models revealed higher genomic knowledge at baseline for non-Hispanic Whites and those with higher income, education, and health literacy (p values < 0.001). These subgroup differences persisted across study assessments despite a general increase in knowledge among all groups. Greater baseline genomic knowledge was associated with lower test-related distress (p = 0.047) and greater perceived understanding of diagnostic genomic sequencing (p values 0.04 to <0.001).ConclusionFindings extend understanding of the role of genomic knowledge in psychological outcomes of diagnostic exome sequencing, providing guidance for additional research and interventions.  相似文献   

3.
《Genetics in medicine》2021,23(7):1325-1333
PurposeNonimmune hydrops fetalis (NIHF) presents as life-threatening fluid collections in multiple fetal compartments and can be caused by both genetic and non-genetic etiologies. We explored incremental diagnostic yield of testing with prenatal exome sequencing (ES) for NIHF following a negative standard NIHF workup.MethodsParticipants enrolled into the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) study met a strict definition of NIHF and had negative standard-of-care workup. Clinical trio ES from fetal samples and parental blood was performed at a CLIA-certified reference laboratory with clinical reports returned by geneticists and genetic counselors. Negative exomes were reanalyzed with information from subsequent ultrasounds and records.ResultsTwenty-two fetal exomes reported 11 (50%) diagnostic results and five possible diagnoses (22.7%). Diagnosed cases comprised seven de novodominant disorders, three recessive disorders, and one inherited dominant disorder including four Noonan syndromes (PTPN11, RAF1, RIT1, and RRAS2), three musculoskeletal disorders (RYR1, AMER1, and BICD2), two metabolic disorders (sialidosis and multiple sulfatase deficiency), one Kabuki syndrome, and one congenital anemia (KLF1).ConclusionThe etiology of NIHF predicts postnatal prognosis and recurrence risk in future pregnancies. ES provides high incremental diagnostic yield for NIHF after standard-of-care testing and should be considered in the workup.  相似文献   

4.
《Genetics in medicine》2021,23(8):1551-1568
PurposeWithin this study, we aimed to discover novel gene–disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS).MethodsWe followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene–disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients.ResultsWe propose six novel gene–disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral–facial–digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia.ConclusionOur results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene–disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.  相似文献   

5.
《Genetics in medicine》2021,23(1):86-93
PurposeCopy-number variant (CNV) analysis is increasingly performed in genetic diagnostics. We leveraged recent gene curation efforts and technical standards for interpretation and reporting of CNVs to characterize clinically relevant CNVs in patients with inherited heart disease and sudden cardiac death.MethodsExome sequencing data were analyzed for CNVs using eXome-Hidden Markov Model tool in 48 established disease genes. CNV breakpoint junctions were characterized. CNVs were classified using the American College of Medical Genetics and Genomics technical standards.ResultsWe identified eight CNVs in 690 unrelated probands (1.2%). Characterization of breakpoint junctions revealed nonhomologous end joining was responsible for four deletions, whereas one duplication was caused by nonallelic homologous recombination between duplicated sequences in MYH6 and MYH7. Identifying the precise breakpoint junctions determined the genomic involvement and proved useful for interpreting the clinical relevance of CNVs. Three large deletions involving TTN, MYBPC3, and KCNH2 were classified as pathogenic in three patients. Haplotype analysis of a deletion in ACTN2, found in two families, suggests the deletion was caused by an ancestral event.ConclusionCNVs infrequently cause inherited heart diseases and should be investigated when standard genetic testing does not reveal a genetic diagnosis.  相似文献   

6.
PurposeThis study aimed to provide comprehensive diagnostic and candidate analyses in a pediatric rare disease cohort through the Genomic Answers for Kids program.MethodsExtensive analyses of 960 families with suspected genetic disorders included short-read exome sequencing and short-read genome sequencing (srGS); PacBio HiFi long-read genome sequencing (HiFi-GS); variant calling for single nucleotide variants (SNV), structural variant (SV), and repeat variants; and machine-learning variant prioritization. Structured phenotypes, prioritized variants, and pedigrees were stored in PhenoTips database, with data sharing through controlled access the database of Genotypes and Phenotypes.ResultsDiagnostic rates ranged from 11% in patients with prior negative genetic testing to 34.5% in naive patients. Incorporating SVs from genome sequencing added up to 13% of new diagnoses in previously unsolved cases. HiFi-GS yielded increased discovery rate with >4-fold more rare coding SVs compared with srGS. Variants and genes of unknown significance remain the most common finding (58% of nondiagnostic cases).ConclusionComputational prioritization is efficient for diagnostic SNVs. Thorough identification of non-SNVs remains challenging and is partly mitigated using HiFi-GS sequencing. Importantly, community research is supported by sharing real-time data to accelerate gene validation and by providing HiFi variant (SNV/SV) resources from >1000 human alleles to facilitate implementation of new sequencing platforms for rare disease diagnoses.  相似文献   

7.
Congenital heart defects affect 60-85% of patients with RASopathies. We analysed the clinical and molecular characteristics of atrioventricular canal defect in patients with mutations affecting genes coding for proteins with role in the RAS/MAPK pathway. Between 2002 and 2011, 101 patients with cardiac defect and a molecularly confirmed RASopathy were collected. Congenital heart defects within the spectrum of complete or partial (including cleft mitral valve) atrioventricular canal defect were diagnosed in 8/101 (8%) patients, including seven with a PTPN11 gene mutation, and one single subject with a RAF1 gene mutation. The only recurrent mutation was the missense PTPN11 c.124 A>G change (T42A) in PTPN11. Partial atrioventricular canal defect was found in six cases, complete in one, cleft mitral valve in one. In four subjects the defect was associated with other cardiac defects, including subvalvular aortic stenosis, mitral valve anomaly, pulmonary valve stenosis and hypertrophic cardiomyopathy. Maternal segregation of PTPN11 and RAF1 gene mutations occurred in two and one patients, respectively. Congenital heart defects in the affected relatives were discordant in the families with PTPN11 mutations, and concordant in that with RAF1 mutation. In conclusion, our data confirm previous reports indicating that atrioventricular canal defect represents a relatively common feature in Noonan syndrome. Among RASopathies, atrioventricular canal defect was observed to occur with higher prevalence among subjects with PTPN11 mutations, even though this association was not significant possibly because of low statistical power. Familial segregation of atrioventricular canal defect should be considered in the genetic counselling of families with RASopathies.  相似文献   

8.
《Genetics in medicine》2019,21(2):417-425
PurposeTo compare the pattern of gene-specific involvement and the spectrum of variants observed in prenatal and postnatal (mean ± SD, 8.9 ± 9.4 years) cohorts tested for Noonan syndrome and related conditions.MethodsOutcomes of sequencing panel testing were compared between prenatal (n = 845) and postnatal (n = 409) cohorts.ResultsPTPN11 and SOS1 harbored the majority of observed variants in both prenatal and postnatal cohorts, and BRAF, HRAS, KRAS, MAP2K1, MAP2K2, RAF1, and SHOC2 had similarities in their pattern of involvement in both cohorts. PTPN11 was the largest contributor of pathogenic variants and had the lowest frequency of variants of uncertain significance (VUS). SOS1 had the highest VUS frequency in both cohorts. The overall VUS frequency was twice as high in prenatal specimens (58.1 vs. 29.3%). PTPN11 and SOS1 had a 1.5-fold higher VUS frequency in the prenatal cohort (10.7 vs. 7.4% and 95 vs. 61.1%, respectively). The diagnostic yield was 3.7% for prenatal samples, with a higher yield of 12.3% in fetuses with cystic hygroma as a sole finding, and 21.3% for postnatal.ConclusionComparison of prenatal versus postnatal specimens demonstrates that the pattern of specific gene involvement is similar, whereas the classification spectrum of observed variants differs considerably.  相似文献   

9.
《Genetics in medicine》2019,21(7):1611-1620
PurposeTo maximize the discovery of potentially pathogenic variants to better understand the diagnostic utility of genome sequencing (GS) and to assess how the presence of multiple risk events might affect the phenotypic severity in autism spectrum disorders (ASD).MethodsGS was applied to 180 simplex and multiplex ASD families (578 individuals, 213 patients) with exome sequencing and array comparative genomic hybridization further applied to a subset for validation and cross-platform comparisons.ResultsWe found that 40.8% of patients carried variants with evidence of disease risk, including a de novo frameshift variant in NR4A2 and two de novo missense variants in SYNCRIP, while 21.1% carried clinically relevant pathogenic or likely pathogenic variants. Patients with more than one risk variant (9.9%) were more severely affected with respect to cognitive ability compared with patients with a single or no-risk variant. We observed no instance among the 27 multiplex families where a pathogenic or likely pathogenic variant was transmitted to all affected members in the family.ConclusionThe study demonstrates the diagnostic utility of GS, especially for multiple risk variants that contribute to the phenotypic severity, shows the genetic heterogeneity in multiplex families, and provides evidence for new genes for follow up.  相似文献   

10.
BackgroundBlacks have both a higher hypertension prevalence and accelerated cardiac end organ damage. Because blacks also have a higher prevalence of valvular heart disease, which occurs at a younger age than for whites, we further examined the contribution of valvular regurgitation to the severity of hypertensive heart disease in Nigerians.MethodsWe evaluated and compared echocardiograph-ic indexes in 75 essential hypertensive Nigerians with (n = 48) and without (n = 27) valvular regurgitations. Demographic and echocardiographic indices, as well as the types and severity of valvular lesions were compared between the groups using bivariate logistic regression and analysis of variance.ResultsThe 2 groups were of similar demographics, but those with regurgitations had larger cardiac size (p < .05), greater mass (147 ± 31 vs 122 ± 32 g/m2, p = .01) higher volume (p < .01), and left atrial size (35.6 ± 4.6 vs 33.3 ± 4.6 mm, p < .05). Atrial size, cardiac volume, and dimension were independent correlates/predictors of regurgitation occurrence. Relative wall thickness of at least 0.6 was more common in regurgitation patients. Cardiac mass was correlated to increasing age (r = 0.23, p = .043). The valvular lesions frequencies were aortic regurgitation, 8; mitral regurgita-tion, 22; and mixed, 18. The aortic orifice dimension was significantly different among the regurgitant cases, highest in aortic regurgitation (p = .001). Aortic orifice dimension increased with hypertension duration (p = .028).ConclusionsRegurgitant lesions are common and occur early in hypertensive Africans. Apparently mild valvular regurgitation may accentuate preclinical concentric hypertrophy in hypertensive blacks.  相似文献   

11.
《Genetics in medicine》2018,20(4):435-443
PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.  相似文献   

12.
《Genetics in medicine》2023,25(8):100884
PurposeNeurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze “poison exons” (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease.MethodsWe curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts.ResultsAcross 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features.ConclusionWith a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.  相似文献   

13.
《Genetics in medicine》2019,21(5):1164-1172
PurposeGenetic testing in pediatric cholestasis can be very informative but genetic causes have not been fully characterized.MethodsExome sequencing and positional mapping in seven families with cholestatic liver disease and negative clinical testing for known disease genes.ResultsKIF12, which encodes a microtubule motor protein with a tentative role in cell polarity, was found to harbor three homozygous likely deleterious variants in three families with sclerosing cholangitis. KIF12 expression is dependent on HNF-1β, deficiency which is known to cause bile duct dysmorphogenesis associated with loss of KIF12 expression. In another extended family, we mapped an apparently novel syndrome of sclerosing cholangitis, short stature, hypothyroidism, and abnormal tongue pigmentation in two cousins to a homozygous variant in PPM1F (POPX2), a regulator of kinesin-mediated ciliary transport. In the fifth family, a syndrome of normal gamma glutamyltransferase (GGT) cholestasis and hearing loss was found to segregate with a homozygous truncating variant in USP53, which encodes an interactor with TJP2. In the sixth family, we mapped a novel syndrome of transient neonatal cholestasis, intellectual disability, and short stature to a homozygous variant in LSR, an important regulator of liver development. In the last family of three affected siblings, a novel syndrome of intractable itching, hypercholanemia, short stature, and intellectual disability was mapped to a single locus that contains a homozygous truncating variant in WDR83OS (C19orf56), known to interact with ATP13A2 and BSEP.ConclusionOur results expand the genetic heterogeneity of pediatric cholestatic liver disease and highlight the vulnerability of bile homeostasis to a wide range of molecular perturbations.  相似文献   

14.
《Genetics in medicine》2019,21(5):1111-1120
PurposeCongenital heart disease (CHD) affects up to 1% of live births. However, a genetic diagnosis is not made in most cases. The purpose of this study was to assess the outcomes of genome sequencing (GS) of a heterogeneous cohort of CHD patients.MethodsNinety-seven families with probands born with CHD requiring surgical correction were recruited for genome sequencing. At minimum, a proband-parents trio was sequenced per family. GS data were analyzed via a two-tiered method: application of a high-confidence gene screen (hcCHD), and comprehensive analysis. Identified variants were assessed for pathogenicity using the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines.ResultsClinically relevant genetic variants in known and emerging CHD genes were identified. The hcCHD screen identified a clinically actionable variant in 22% of families. Subsequent comprehensive analysis identified a clinically actionable variant in an additional 9% of families in genes with recent disease associations. Overall, this two-tiered approach provided a clinically relevant variant for 31% of families.ConclusionsInterrogating GS data using our two-tiered method allowed identification of variants with high clinical utility in a third of our heterogeneous cohort. However, association of emerging genes with CHD etiology, and development of novel technologies for variant assessment and interpretation, will increase diagnostic yield during future reassessment of our GS data.  相似文献   

15.
《Genetics in medicine》2021,23(2):259-271
PurposeThe NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices.MethodsWe analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods.ResultsOf 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease–gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling.ConclusionInvestigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.  相似文献   

16.
《Genetics in medicine》2016,18(6):600-607
PurposeHomozygosity mapping is an effective approach for detecting molecular defects in consanguineous families by delineating stretches of genomic DNA that are identical by descent. Constant developments in next-generation sequencing created possibilities to combine whole-exome sequencing (WES) and homozygosity mapping in a single step.MethodsBasic optimization of homozygosity mapping parameters was performed in a group of families with autosomal-recessive (AR) mutations for which both single-nucleotide polymorphism (SNP) array and WES data were available. We varied the criteria for SNP extraction and PLINK thresholds to estimate their effect on the accuracy of homozygosity mapping based on WES.ResultsOur protocol showed high specificity and sensitivity for homozygosity detection and facilitated the identification of novel mutations in GAN, GBA2, and ZFYVE26 in four families affected by hereditary spastic paraplegia or Charcot-Marie-Tooth disease. Filtering and mapping with optimized parameters was integrated into the HOMWES (homozygosity mapping based on WES analysis) tool in the GenomeComb package for genomic data analysis.ConclusionWe present recommendations for detection of homozygous regions based on WES data and a bioinformatics tool for their identification, which can be widely applied for studying AR disorders.  相似文献   

17.
《Genetics in medicine》2017,19(10):1144-1150
PurposeThe purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.MethodsExome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.ResultsWe describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.ConclusionOur results show that, in the era of genomic sequencing and “reverse phenotyping,” recessive variants in dominant genes should not be dismissed based on perceived “incompatibility” with the patient’s phenotype before careful consideration.Genet Med advance online publication 06 April 2017  相似文献   

18.
《Genetics in medicine》2020,22(3):511-523
PurposeFetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood.MethodsIn this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA).ResultsWe have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease–gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3,EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant inTNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis.ConclusionOur analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1,IQSEC3 and RYR3. Of those, IQSEC3, andRYR3 had been proposed as neuromuscular disease–associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.  相似文献   

19.
《Genetics in medicine》2018,20(4):420-427
PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%). These variants were in genes known to cause embryonic or perinatal lethality (ALPL, GUSB, SLC17A5, MRPS16, THSD1, PIEZO1, and CTSA), genes known to cause Mendelian phenotypes that do not typically include embryonic lethality (INVS, FKTN, MYBPC3, COL11A2, KRIT1, ASCC1, NEB, LZTR1, TTC21B, AGT, KLHL41, GFPT1, and WDR81) and genes with no established links to human disease that we propose as novel candidates supported by embryonic lethality of their orthologs or other lines of evidence (MS4A7, SERPINA11, FCRL4, MYBPHL, PRPF19, VPS13D, KIAA1109, MOCS3, SVOPL, FEN1, HSPB11, KIF19, and EXOC3L2).ConclusionOur results suggest that molecular autopsy in pregnancy losses is a practical and high-yield alternative to traditional autopsy, and an opportunity for bringing precision medicine to the clinical practice of perinatology.  相似文献   

20.
《Genetics in medicine》2014,16(5):395-399
PurposeExome sequencing of a single individual for a clinical indication may result in the identification of incidental deleterious variants unrelated to the indication for testing (secondary findings). Given the recent availability of clinical exome testing, there is a limited knowledge regarding the disclosure preferences and impact of secondary findings in a clinical diagnostic setting. In this article, we provide preliminary data regarding the preferences for secondary findings results disclosure based on the first 200 families referred to Ambry Genetics for diagnostic exome sequencing.MethodsSecondary findings were categorized into four groups in the diagnostic exome sequencing consent: carrier status of recessive disorders, predisposition to later-onset disease, predisposition to increased cancer risk, and early-onset disease. In this study, we performed a retrospective analysis of patient responses regarding the preferences for secondary findings disclosure.ResultsThe majority of patients (187/200; 93.5%) chose to receive secondary results for one or more available categories. Adult probands were more likely than children to opt for blinding of secondary data (16 vs. 4%, respectively). Among responses for blinding, preferences were evenly scattered among categories.ConclusionThese data represent the unprecedented results of a large reference laboratory providing clinical exome sequencing. We report, for the first time, the preferences of patients and families for the receipt of secondary findings based on clinical genome sequencing. Overwhelmingly, families undergoing exome sequencing opt for the disclosure of secondary findings. The data may have implications regarding the development of guidelines for secondary findings reporting among patients with severe and/or life-threatening disease undergoing clinical genomic sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号