首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genetics in medicine》2019,21(1):213-223
PurposeGermline variants in double-strand DNA damage repair (dsDDR) genes (e.g., BRCA1/2) predispose to pancreatic adenocarcinoma (PDAC) and may predict sensitivity to platinum-based chemotherapy and poly(ADP) ribose polymerase (PARP) inhibitors. We sought to determine the prevalence and significance of germline cancer susceptibility gene variants in PDAC with paired somatic and survival analyses.MethodsUsing a customized next-generation sequencing panel, germline/somatic DNA was analyzed from 289 patients with resected PDAC ascertained without preselection for high-risk features (e.g., young age, personal/family history). All identified variants were assessed for pathogenicity. Outcomes were analyzed using multivariable-adjusted Cox proportional hazards regression.ResultsWe found that 28/289 (9.7%; 95% confidence interval [CI] 6.5–13.7%) patients carried pathogenic/likely pathogenic germline variants, including 21 (7.3%) dsDDR gene variants (3 BRCA1, 4 BRCA2, 14 other dsDDR genes [ATM, BRIP1, CHEK2, NBN, PALB2, RAD50, RAD51C]), 3 Lynch syndrome, and 4 other genes (APC p.I1307K, CDKN2A, TP53). Somatic sequencing and immunohistochemistry identified second hits in the tumor in 12/27 (44.4%) patients with germline variants (1 failed sequencing). Compared with noncarriers, patients with germline dsDDR gene variants had superior overall survival (hazard ratio [HR] 0.54; 95% CI 0.30–0.99; P = 0.05).ConclusionNearly 10% of PDAC patients harbor germline variants, although the majority lack somatic second hits, the therapeutic significance of which warrants further study.  相似文献   

2.
《Genetics in medicine》2020,22(9):1517-1523
PurposeWe describe the pathogenic variant spectrum and identify predictors of positive results among men referred for clinical genetic testing for prostate cancer.MethodsOne thousand eight hundred twelve men with prostate cancer underwent clinical multigene panel testing between April 2012 and September 2017. Stepwise logistic regression determined the most reliable predictors of positive results among clinical variables reported on test requisition forms.ResultsA yield of 9.4–12.1% was observed among men with no prior genetic testing. In this group, the positive rate of BRCA1 and BRCA2 was 4.6%; the positive rate for the mismatch repair genes was 2.8%. Increasing Gleason score (odds ratio [OR] 1.19; 95% confidence interval [CI] 0.97–1.45); personal history of breast or pancreatic cancer (OR 3.62; 95% CI 1.37–9.46); family history of breast, ovarian, or pancreatic cancer (OR 2.32 95% CI 1.48–3.65); and family history of Lynch syndrome–associated cancers (OR 1.97; 95% CI 1.23–3.15) were predictors of positive results.ConclusionThese results support multigene panel testing as the primary genetic testing approach for hereditary prostate cancer and are supportive of recommendations for consideration of germline testing in men with prostate cancer. Expanding the criteria for genetic testing should be considered as many pathogenic variants are actionable for treatment of advanced prostate cancer.  相似文献   

3.
《Genetics in medicine》2021,23(11):2087-2095
PurposeAtaxia–Telangiectasia Mutated (ATM) has been implicated in the risk of several cancers, but establishing a causal relationship is often challenging. Although ATM single-nucleotide polymorphisms have been linked to melanoma, few functional alleles have been identified. Therefore, ATM impact on melanoma predisposition is unclear.MethodsFrom 22 American, Australian, and European sites, we collected 2,104 familial, multiple primary (MPM), and sporadic melanoma cases who underwent ATM genotyping via panel, exome, or genome sequencing, and compared the allele frequency (AF) of selected ATM variants classified as loss-of-function (LOF) and variants of uncertain significance (VUS) between this cohort and the gnomAD non-Finnish European (NFE) data set.ResultsLOF variants were more represented in our study cohort than in gnomAD NFE, both in all (AF = 0.005 and 0.002, OR = 2.6, 95% CI = 1.56–4.11, p < 0.01), and familial + MPM cases (AF = 0.0054 and 0.002, OR = 2.97, p < 0.01). Similarly, VUS were enriched in all (AF = 0.046 and 0.033, OR = 1.41, 95% CI = 1.6–5.09, p < 0.01) and familial + MPM cases (AF = 0.053 and 0.033, OR = 1.63, p < 0.01). In a case–control comparison of two centers that provided 1,446 controls, LOF and VUS were enriched in familial + MPM cases (p = 0.027, p = 0.018).ConclusionThis study, describing the largest multicenter melanoma cohort investigated for ATM germline variants, supports the role of ATM as a melanoma predisposition gene, with LOF variants suggesting a moderate-risk.  相似文献   

4.
《Genetics in medicine》2021,23(5):918-926
PurposeCohort-based germline variant characterization is the standard approach for pathogenic variant discovery in clinical and research samples. However, the impact of cohort size on the molecular diagnostic yield of joint genotyping is largely unknown.MethodsHead-to-head comparison of the molecular diagnostic yield of joint genotyping in two cohorts of 239 cancer patients in the absence and then in the presence of 100 additional germline exomes.ResultsIn 239 testicular cancer patients, 4 (7.4%, 95% confidence interval [CI]: 2.1–17.9) of 54 pathogenic variants in the cancer predisposition and American College of Medical Genetics and Genomics (ACMG) genes were missed by one or both computational runs of joint genotyping. Similarly, 8 (12.1%, 95% CI: 5.4–22.5) of 66 pathogenic variants in these genes were undetected by joint genotyping in another independent cohort of 239 breast cancer patients. An exome-wide analysis of putative loss-of-function (pLOF) variants in the testicular cancer cohort showed that 162 (8.2%, 95% CI: 7.1–9.6) pLOF variants were only detected in one analysis run but not the other, while 433 (22.0%, 95% CI: 20.2–23.9%) pLOF variants were filtered out by both analyses despite having sufficient sequencing coverage.ConclusionOur analysis of the standard germline variant detection method highlighted a substantial impact of concurrently analyzing additional genomic data sets on the ability to detect clinically relevant germline pathogenic variants.  相似文献   

5.
BackgroundLung cancer is one of the leading causes of cancer death worldwide, and genetic risk factors account for a large part of its carcinogenesis. The low economic requirements and high efficiency of next-generation sequencing (NGS) make it widely used in detecting genetic alterations in pathogenesis.MethodsWe performed targeted panel sequencing in 780 Han Chinese lung cancer patients using a commercial probe, and the correlations between dozens of susceptible sites were verified in 1113 healthy controls. This study used Fisher's exact test and Benjamini-Hochberg FDR correction to analyze the mutual exclusion between mutated genes, and Pearson's p was used to verify the correlations between mutations and lung cancer susceptibility.ResultsOur results determined the mutation spectrum and showed that each lung cancer patient carried at least one DNA mutation. The most frequently mutated gene was BRCA2 (mutation rate,10.6 %.). The co-occurrence and mutual exclusion analysis of DNA damage related genes showed that gene ATM was mutually exclusive from MSH6. We conducted a further case-control study in different subtypes of lung cancer and the results described 14 mutations associated with adenocarcinoma, 9 with squamous cell carcinoma, and 4 with small cell lung cancer. These variants were novel de-novo germline mutations in lung cancer. Particularly, rs3864017 in FANCD2 showed a protective effect of lung adenocarcinoma for carriers (OR = 0.146, 95 % CI = 0.052∼0.405, Padjusted = 3.37 × 10−4).Conclusions18 candidate mutations might alter the risk of lung cancer in the Han Chinese population, including polymorphisms rs3864017(FANCD2), rs55740729(MSH6) and 16 rare variants. The underlying mechanisms of candidate genes in lung cancer remain unclear and we suggest more functional studies on exploring how these genes affect the risk of lung cancer.  相似文献   

6.
《Genetics in medicine》2020,22(5):825-830
PurposeGuidelines for variant interpretation incorporate variant hotspots in critical functional domains as evidence for pathogenicity (e.g., PM1 and PP2), but do not use “coldspots,” that is, regions without essential functions that tolerate variation, as evidence a variant is benign. To improve variant classification we evaluated BRCA1 and BRCA2 missense variants reported in ClinVar to identify regions where pathogenic missenses are extremely infrequent, defined as coldspots.MethodsWe used Bayesian approaches to model variant classification in these regions.ResultsBRCA1 exon 11 (~60% of the coding sequence), and BRCA2 exons 10 and 11 (~65% of the coding sequence), are coldspots. Of 89 pathogenic (P) or likely pathogenic (LP) missense variants in BRCA1, none are in exon 11 (odds <0.01, 95% confidence interval [CI] 0.0–0.01). Of 34 P or LP missense variants in BRCA2, none are in exons 10–11 (odds <0.01, 95% CI 0.0–0.01). More than half of reported missense variants of uncertain significance (VUS) in BRCA1 and BRCA2 are in coldspots (3115/5301 = 58.8%). Reclassifying these 3115 VUS as likely benign would substantially improve variant classification.ConclusionIn BRCA1 and BRCA2 coldspots, missense variants are very unlikely to be pathogenic. Classification schemes that incorporate coldspots can reduce the number of VUS and mitigate risks from reporting benign variation as VUS.  相似文献   

7.
《Genetics in medicine》2018,20(10):1167-1174
PurposeAn association of Lynch syndrome (LS) with breast cancer has been long suspected; however, there have been insufficient data to address this question for each of the LS genes individually.MethodsWe conducted a retrospective review of personal and family history in 423 women with pathogenic or likely pathogenic germ-line variants in MLH1 (N = 65), MSH2 (N = 94), MSH6 (N = 140), or PMS2 (N = 124) identified via clinical multigene hereditary cancer testing. Standard incidence ratios (SIRs) of breast cancer were calculated by comparing breast cancer frequencies in our study population with those in the general population (Surveillance, Epidemiology, and End Results 18 data).ResultsWhen evaluating by gene, the age-standardized breast cancer risks for MSH6 (SIR = 2.11; 95% confidence interval (CI), 1.56–2.86) and PMS2 (SIR = 2.92; 95% CI, 2.17–3.92) were associated with a statistically significant risk for breast cancer whereas no association was observed for MLH1 (SIR = 0.87; 95% CI, 0.42–1.83) or MSH2 (SIR = 1.22; 95% CI, 0.72–2.06).ConclusionOur data demonstrate that two LS genes, MSH6 and PMS2, are associated with an increased risk for breast cancer and should be considered when ordering genetic testing for individuals who have a personal and/or family history of breast cancer.  相似文献   

8.
PurposeStudies conducted primarily among European ancestry women reported 12 breast cancer predisposition genes. However, etiologic roles of these genes in breast cancer among African ancestry women have been less well-investigated.MethodsWe conducted a case-control study in African American women, which included 1117 breast cancer cases and 2169 cancer-free controls, and a pooled analysis, which included 7096 cases and 8040 controls of African descent. Odds ratios of associations with breast cancer risk were estimated.ResultsUsing sequence data, we identified 61 pathogenic variants in 12 breast cancer predisposition genes, including 11 pathogenic variants not yet reported in previous studies. Pooled analysis showed statistically significant associations of breast cancer risk with pathogenic variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, TP53, NF1, RAD51C, and RAD51D (all P < .05). The associations with BRCA1, PALB2, and RAD51D were stronger for estrogen receptor (ER)-negative than for ER-positive breast cancer (P heterogeneity < .05), whereas the association with CHEK2 was stronger for ER-positive than for ER-negative breast cancer.ConclusionOur study confirmed previously identified associations of breast cancer risk with BRCA1, BRCA2, PALB2, ATM, TP53, NF1, and CHEK2 and provided new evidence to extend the associations of breast cancer risk with RAD51C and RAD51D, which was identified previously in European ancestry populations, to African ancestry women.  相似文献   

9.
IntroductionBRCA1 and BRCA2 are the two main genes causing hereditary breast and ovarian cancer (HBOC). However, thanks to the development of Next Generation Sequencing (NGS), other genes linked to this syndrome (CHEK2, BRIP1, ATM and PALB2 among others) can be analysed.Material and methodsan analysis by multigene panel testing was performed in 138 index cases (ICs) from HBOC Spanish families with a previous non-informative result for BRCA1/2. The BRCA Hereditary Cancer Master? Plus kit, including 26 actionable and candidate genes related to HBOC was employed. Once classified, an algorithm was employed to prioritized those variants of unknown significance with a higher risk of having a deleterious effect. Moreover, a mRNA splicing assay was performed for the prioritized VUS c.3402+3A > C in ATM, located at intron 23.ResultsA total of 82 variants were found: 70 VUS and 12 pathogenic or probably pathogenic variants. The diagnostic yield in actionable genes non-BRCA was 7.97% of the total tested ICs. Overall, 19 VUS were prioritized, which meant 27% of the 70 total VUS. RNA analysis of the variant 3402+3A > C confirmed a deleterious impact on splicing.DiscussionThe implementation of a multigene panel in HBOC studied families improved the diagnostic yield, concordant with results obtained in previous publications. Due to the important number of VUS obtained in NGS, the application of a prioritization algorithm is needed in order to select those variants in which it is necessary to conduct further studies.  相似文献   

10.
《Genetics in medicine》2019,21(12):2706-2712
PurposeBiallelic pathogenic variants in the mismatch repair (MMR) genes cause a recessive childhood cancer predisposition syndrome known as constitutional mismatch repair deficiency (CMMRD). Family members with a heterozygous MMR variant have Lynch syndrome. We aimed at estimating cancer risk in these heterozygous carriers as a novel approach to avoid complicated statistical methods to correct for ascertainment bias.MethodsCumulative colorectal cancer incidence was estimated in a cohort of PMS2- and MSH6-associated families, ascertained by the CMMRD phenotype of the index, by using mutation probabilities based on kinship coefficients as analytical weights in a proportional hazard regression on the cause-specific hazards. Confidence intervals (CIs) were obtained by bootstrapping at the family level.ResultsThe estimated cumulative colorectal cancer risk at age 70 years for heterozygous PMS2 variant carriers was 8.7% (95% CI 4.3–12.7%) for both sexes combined, and 9.9% (95% CI 4.9–15.3%) for men and 5.9% (95% CI 1.6–11.1%) for women separately. For heterozygous MSH6 variant carriers these estimates are 11.8% (95% CI 4.5–22.7%) for both sexes combined, 10.0% (95% CI 1.83–24.5%) for men and 11.7% (95% CI 2.10–26.5%) for women.ConclusionOur findings are consistent with previous reports that used more complex statistical methods to correct for ascertainment bias. These results underline the need for MMR gene–specific surveillance protocols for Lynch syndrome.  相似文献   

11.
Objective: Multiple environmental and genetic factors contribute to the risks of ulcerative colitis (UC) and Crohn’s disease (CD). Several allelic variants have been identified in natural resistance associated macrophage protein 1 (NRAMP1) gene; however, their association with UC/CD remains conflicting. The purpose of this study was to evaluate whether NRAMP1 polymorphisms are associated with the susceptibility to UC/CD.

Methods: A meta-analysis on the association between the NRAMP1 polymorphisms and susceptibility to UC/CD was performed. Relevant studies were retrieved from the databases. After eligible data were extracted, Mantel–Haenszel statistics and random/fixed effects model were applied to calculate the pooled odds radio (OR) and 95% confidence interval (95% CI).

Results: Seven articles containing 536 UC cases, 997 CD cases, and 1361 controls were collected. No significant association between allele 2 frequency of NRAMP1 and susceptibility to UC/CD was detected in overall population (all p > 0.05). However, increased UC/CD risk for allele 3 was observed in Caucasian population (OR = 1.27, 95% CI = 1.08~1.50, p = 0.04), whereas decreased UC/CD risk was detected in non-Caucasian population (OR = 0.72, 95% CI = 0.60~0.87, p < 0.001), under “allele 3 vs. other alleles” model. Moreover, a significant increase in CD risk for T carrier frequency of ?237 C/T (OR = 0.44, 95% CI, 0.26~0.75, p = 0.003) was detected, but not 274 C/T and 1729+55del4 (TGTG) +/del.

Conclusions: The polymorphism of ?237 C/T is related to the risk of CD; and the association of allele 3 with UC/CD risk differs in Caucasian and non-Caucasian population, which might be the potential biomarkers for clinical diagnosis of UC/CD.  相似文献   

12.
PurposePancreatic cancer (PC) risk is increased in families, but PC risk and risk perception have been understudied when both parents have cancer.MethodsAn unbiased method defining cancer triads (proband with PC and both parents with cancer) in a prospective registry estimated risk of PC to probands’ siblings in triad group 1 (no parent with PC), group 2 (1 parent with PC), and group 3 (both parents with PC). We estimated standardized incidence ratios (SIRs) using a Surveillance, Epidemiology, and End Results (SEER) reference. We also estimated the risk when triad probands carried germline pathogenic/likely pathogenic variants in any of the 6 PC-associated genes (ATM, BRCA1, BRCA2, CDKN2A, MLH1, and TP53). PC risk perception/concern was surveyed in siblings and controls.ResultsRisk of PC was higher (SIR = 3.5; 95% CI = 2.2-5.2) in 933 at-risk siblings from 297 triads. Risk increased by triad group: 2.8 (95% CI = 1.5-4.5); 4.5 (95% CI = 1.6-9.7); and 21.2 (95% CI = 4.3-62.0). SIR in variant-negative triads was 3.0 (95% CI = 1.6-5.0), whereas SIR in variant-positive triads was 10.0 (95% CI = 3.2-23.4). Siblings’ perceived risk/concern of developing PC increased by triad group.ConclusionSibling risks were 2.8- to 21.2-fold higher than that of the general population. Positive variant status increased the risk in triads. Increasing number of PC cases in a triad was associated with increased concern and perceived PC risk.  相似文献   

13.
《Genetics in medicine》2019,21(1):71-80
PurposeTo improve methods for predicting the impact of missense variants of uncertain significance (VUS) in BRCA1 and BRCA2 on protein function.MethodsFunctional data for 248 BRCA1 and 207 BRCA2 variants from assays with established high sensitivity and specificity for damaging variants were used to recalibrate 40 in silico algorithms predicting the impact of variants on protein activity. Additional random forest (RF) and naïve voting method (NVM) metapredictors for both BRCA1 and BRCA2 were developed to increase predictive accuracy.ResultsOptimized thresholds for in silico prediction models significantly improved the accuracy of predicted functional effects for BRCA1 and BRCA2 variants. In addition, new BRCA1-RF and BRCA2-RF metapredictors showed area under the curve (AUC) values of 0.92 (95% confidence interval [CI]: 0.88–0.96) and 0.90 (95% CI: 0.84–0.95), respectively. Similarly, the BRCA1-NVM and BRCA2-NVM models had AUCs of 0.93 and 0.90. The RF and NVM models were used to predict the pathogenicity of all possible missense variants in BRCA1 and BRCA2.ConclusionThe recalibrated algorithms and new metapredictors significantly improved upon current models for predicting the impact of variants in cancer risk–associated domains of BRCA1 and BRCA2. Prediction of the functional impact of all possible variants in BRCA1 and BRCA2 provides important information about the clinical relevance of variants in these genes.  相似文献   

14.
《Genetics in medicine》2018,20(12):1677-1686
PurposeIntegration of gene panels in the diagnosis of hereditary breast and ovarian cancer (HBOC) requires a careful evaluation of the risk associated with pathogenic or likely pathogenic variants (PVs) detected in each gene. Here we analyzed 34 genes in 5131 suspected HBOC index cases by next-generation sequencing.MethodsUsing the Exome Aggregation Consortium data sets plus 571 individuals from the French Exome Project, we simulated the probability that an individual from the Exome Aggregation Consortium carries a PV and compared it to the estimated frequency within the HBOC population.ResultsOdds ratio conferred by PVs within BRCA1, BRCA2, PALB2, RAD51C, RAD51D, ATM, BRIP1, CHEK2, and MSH6 were estimated at 13.22 [10.0117.22], 8.61 [6.7810.82], 8.22 [4.9113.05], 4.54 [2.557.48], 5.23 [1.4613.17], 3.20 [2.144.53], 2.49 [1.423.97], 1.67 [1.182.27], and 2.50 [1.124.67], respectively. PVs within RAD51C, RAD51D, and BRIP1 were associated with ovarian cancer family history (OR = 11.36 [5.7819.59], 12.44 [2.9433.30] and 3.82 [1.667.11]). PALB2 PVs were associated with bilateral breast cancer (OR = 16.17 [5.4834.10]) and BARD1 PVs with triple-negative breast cancer (OR = 11.27 [3.3725.01]). Burden tests performed in both patients and the French Exome Project population confirmed the association of PVs of BRCA1, BRCA2, PALB2, and RAD51C with HBOC.ConclusionOur results validate the integration of PALB2, RAD51C, and RAD51D in the diagnosis of HBOC and suggest that the other genes are involved in an oligogenic determinism.  相似文献   

15.
Cancer is a multifactorial disorder; however, 5–10% of all cancers show hereditary background. In recent years many targeted next generation sequencing panels comprising cancer predisposition genes have been developed and used for diagnostic purposes in patients with increased cancer risk. Screening multiple genes at a time allows multiple variants in different genes to be detected as well. This study aims to determine the cases with concurrent mutations in different hereditary cancer predisposition genes and how they are clinically affected. Here, we screened 1090 index cases by next generation sequencing based hereditary cancer panels and evaluated the reflection of multiple variations on the phenotype. We detected 11 (1%) cases with pathogenic variants in more than one gene. These concurrent variations occurred mostly in BRCA1/2 (7/11) accompanied with MUTYH, ATM, CHECK2, NBN, and RAD50. In addition, MUTYH&ATM, NBN&MSH6, MUTYH&CHEK2 double heterozygous cases were detected. Moreover, we identified a case with three heterozygous variations in CDH1, MUTYH, and CHEK2. These patients presented malignancies that were mostly related to pathogenic variations they carried. Although they are rare, defining double heterozygous cases is important for managing appropriate therapy and accurate genetic consulting for the patients and family members.  相似文献   

16.
《Genetics in medicine》2015,17(8):630-638
PurposeClinical testing for germ-line variation in multiple cancer susceptibility genes is available using massively parallel sequencing. Limited information is available for pretest genetic counseling regarding the spectrum of mutations and variants of uncertain significance in defined patient populations.MethodsWe performed massively parallel sequencing using targeted capture of 22 cancer susceptibility genes in 278 BRCA1/2-negative patients with early-onset breast cancer (diagnosed at younger than 40 years of age).ResultsThirty-one patients (11%) were found to have at least one deleterious or likely deleterious variant. Seven patients (2.5% overall) were found to have deleterious or likely deleterious variants in genes for which clinical guidelines exist for management, namely TP53 (4), CDKN2A (1), MSH2 (1), and MUTYH (double heterozygote). Twenty-four patients (8.6%) had deleterious or likely deleterious variants in a cancer susceptibility gene for which clinical guidelines are lacking, such as CHEK2 and ATM. Fifty-four patients (19%) had at least one variant of uncertain significance, and six patients were heterozygous for a variant in MUTYH.ConclusionThese data demonstrate that massively parallel sequencing identifies reportable variants in known cancer susceptibility genes in more than 30% of patients with early-onset breast cancer. However, only few patients (2.5%) have definitively actionable mutations given current clinical management guidelines.Genet Med17 8, 630–638.  相似文献   

17.
《Genetics in medicine》2016,18(2):189-198
PurposeThe genetic etiology of atrioventricular septal defect (AVSD) is unknown in 40% cases. Conventional sequencing and arrays have identified the etiology in only a minority of nonsyndromic individuals with AVSD.MethodsWhole-exome sequencing was performed in 81 unrelated probands with AVSD to identify potentially causal variants in a comprehensive set of 112 genes with strong biological relevance to AVSD.ResultsA significant enrichment of rare and rare damaging variants was identified in the gene set, compared with controls (odds ratio (OR): 1.52; 95% confidence interval (CI): 1.35–1.71; P = 4.8 × 10−11). The enrichment was specific to AVSD probands, compared with a cohort without AVSD with tetralogy of Fallot (OR: 2.25; 95% CI: 1.84–2.76; P = 2.2 × 10−16). Six genes (NIPBL, CHD7, CEP152, BMPR1a, ZFPM2, and MDM4) were enriched for rare variants in AVSD compared with controls, including three syndrome-associated genes (NIPBL, CHD7, and CEP152). The findings were confirmed in a replication cohort of 81 AVSD probands.ConclusionMutations in genes with strong biological relevance to AVSD, including syndrome-associated genes, can contribute to AVSD, even in those with isolated heart disease. The identification of a gene set associated with AVSD will facilitate targeted genetic screening in this cohort.  相似文献   

18.
《Genetics in medicine》2016,18(8):823-832
PurposeGerm-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g., BRCA1/2, MLH1, MSH2) as well as more recently identified cancer genes (e.g., PALB2, BRIP1), many of which have increased but less well-defined penetrance.MethodsClinical genetic testing was performed on over 10,000 consecutive cases referred for evaluation of germ-line cancer genes, and results were analyzed for frequency of pathogenic or likely pathogenic variants, and were stratified by testing panel, gene, and clinical history.ResultsOverall, a molecular diagnosis was made in 9.0% of patients tested, with the highest yield in the Lynch syndrome/colorectal cancer panel. In patients with breast, ovarian, or colon/stomach cancer, positive yields were 9.7, 13.4, and 14.8%, respectively. Approximately half of the pathogenic variants identified in patients with breast or ovarian cancer were in genes other than BRCA1/2.ConclusionThe high frequency of positive results in a wide range of cancer genes, including those of high penetrance and with clinical care guidelines, underscores both the genetic heterogeneity of hereditary cancer and the usefulness of multigene panels over genetic tests of one or two genes.  相似文献   

19.
《Genetics in medicine》2016,18(12):1250-1257
PurposeTo investigate variants of uncertain significance (VUS) in BRCA1 and BRCA2, we assessed the multifactorial posterior probability of VUS in BRCA1 and BRCA2 and compared these analyses with interpretations according to the recently released American College of Medical Genetics and Genomics (ACMG) standards and guidelines.MethodsThe analysis involved 715 Korean patients with breast cancer. The multifactorial probability of a VUS was analyzed using the prior probability and combined likelihoods of personal and family history, the pathologic profile of the breast cancer, and co-occurrence with pathogenic variants. Results were compared with those obtained according to the ACMG standards/guidelines.ResultsSixteen VUS from 51 BRCA1 VUS carriers and 28 VUS from 62 BRCA2 VUS carriers were analyzed. There was a slight agreement between the two analyses, with a kappa value of 0.14 (95% confidence interval (CI) = −0.34 to 0.62) for the BRCA1 VUS and a kappa value of 0.17 (95% CI = −0.10 to 0.49) for the BRCA2 VUS.ConclusionWe propose that genetic counseling should be based on the concordant results between these two analyses. When discrepancies are found, those variants are still considered VUS and careful counseling should be provided.Genet Med 18 12, 1250–1257.  相似文献   

20.
《Autoimmunity》2013,46(8):512-518
Abstract

Aims: Several polymorphisms have been identified in TNFSF15, while their roles in the incidence of ulcerative colitis (UC) and Crohn's disease (CD) are conflicting. This meta-analysis was aimed to clarify the impact of these polymorphisms on UC and CD risk. Method: Databases were searched until 31 January 2014 for eligible studies on TNFSF15 polymorphisms. Data were extracted, and pooled odd ratios (ORs) as well as 95% confidence intervals (95% CIs) were calculated. Results: Fifteen studies with 8903 CD patients, 4687 UC patients and 12?606 controls were included. Except for rs4263839 polymorphism, significant associations were found between the rest six TNFSF15 polymorphisms and CD risk (rs3810936: OR?=?2.10, 95% CI, 1.47–3.00; rs6478108: OR?=?2.19, 95% CI, 1.53–3.13; rs4979462: OR?=?1.89, 95% CI, 1.42–2.52; rs6478109: OR?=?2.00, 95% CI, 1.39–2.88; rs7848647: OR?=?1.54, 95% CI, 1.15–2.06; rs7869487: OR?=?1.51, 95% CI, 1.06–2.17). And we found rs3810936, rs6478108 and rs6478109 polymorphism were significantly associated with UC risk (rs3810936: OR?=?1.19, 95% CI, 1.06–1.34; rs6478108: OR?=?1.16, 95% CI, 1.06–1.26; rs6478109: OR?=?1.16, 95% CI, 1.03–1.32). According to the subgroup analysis by ethnicity, except for rs4263839 in Caucasian and rs4979462 in Asian, all the rest investigated TNFSF15 polymorphisms were associated with CD risk and rs3810936 and rs7848647 polymorphism in Asian as well as rs6478108 polymorphism in Caucasian were associated with UC risk. Conclusion: This meta-analysis indicated that most of the seven TNFSF15 polymorphisms (except for rs4263839) were risk factors contributed to CD and UC susceptibility. The differences in ethnicity did not influence the risk obviously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号