首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15–17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis. This study is the first to use chronic low to moderate PAE, to more accurately reflect maternal alcohol consumption, and subsequent neural progenitor cell culture to demonstrate that PAE throughout gestation alters expression of genes involved in neural development and embryonic neurogenesis.  相似文献   

2.
Background: Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear.Objectives: Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology.Methods: We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs.Results: MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells.Conclusion: Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs.Citation: Strong AL, Shi Z, Strong MJ, Miller DF, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. 2015. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ Health Perspect 123:42–48; http://dx.doi.org/10.1289/ehp.1408188  相似文献   

3.
4.
During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.  相似文献   

5.
《Nutritional neuroscience》2013,16(5):226-232
Abstract

Cellular events for neural progenitor cells, such as proliferation and differentiation, are regulated by multiple intrinsic and extrinsic cell signals. Folate plays central roles in central nervous system development, so folate, as an extrinsic signal, may affect neural stem cell (NSC) proliferation and differentiation. In this study, we have investigated the effect of folate on extracellular signal-regulated kinase (ERK1/2) phosphorylation, cell proliferation and apoptosis in fetal NSCs. The results showed that treatment of neurospheres with folate increased ERK1/2 phosphorylation and cell proliferation in a concentration-dependent manner. Folate also decreased the percentage of apoptotic cells. All of these effects of folate were prevented by a selective inhibitor (U0126) of mitogen-activated/ERK kinase 1/2. In conclusion, fetal NSCs respond to folate with ERKl/2 phosphorylation, cell proliferation and decreased apoptosis. This mechanism may mediate the regulation by folate of neurogenesis in the central nervous system.  相似文献   

6.
Maternal obesity or exposure to a high-fat diet (HFD) has an irreversible impact on the structural and functional development of offspring brains. This study aimed to investigate whether maternal HFD during pregnancy and lactation impairs dentate gyrus (DG) neurogenesis in offspring by altering neural stem cells (NSCs) behaviors. Pregnant Sprague-Dawley rats were fed a chow diet (CHD) or HFD (60% fat) during gestation and lactation. Pups were collected on postnatal day 1 (PND 1), PND 10 and PND 21. Changes in offspring body weight, brain structure and granular cell layer (GCL) thickness in the hippocampus were analyzed. Hippocampal NSCs behaviors, in terms of proliferation and differentiation, were investigated after immunohistochemical staining with Nestin, Ki67, SOX2, Doublecortin (DCX) and NeuN. Maternal HFD accelerated body weight gain and brain structural development in offspring after birth. It also reduced the number of NSCs and their proliferation, leading to a decrease in NSCs pool size. Furthermore, maternal HFD intensified NSCs depletion and promoted neuronal differentiation in the early postnatal development period. These findings suggest that maternal HFD intake significantly reduced the amount and capability of NSCs via reducing type–2 NSCs and promoting premature neuronal differentiation during postnatal hippocampal development.  相似文献   

7.

Background

Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available.

Methods

We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype.

Results

WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired.

Conclusions

Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population.  相似文献   

8.
To clarify the nature of the genes that contribute to the radiosensitivity of human hematopoietic stem/progenitor cells (HSPCs), we analyzed the gene expression profiles detected in HSPCs irradiated with 2 Gy X-rays after culture with or without an optimal combination of hematopoietic cytokines. Highly purified CD34+ cells from human placental/umbilical cord blood were used as HSPCs. The cells were exposed to 2 Gy X-irradiation and treated in serum-free medium under five different sets of conditions for 6 h. The gene expression levels were analyzed by cDNA microarray, and then the network of responsive genes was investigated. A comprehensive genetic analysis to search for genes associated with cellular radiosensitivity was undertaken, and we found that expression of the genes downstream of MYC oncogene increased after X-irradiation. In fact, the activation of MYC was observed immediately after X-irradiation, and MYC was the only gene still showing activation at 6 h after irradiation. Furthermore, MYC had a significant impact on the biological response, particularly on the tumorigenesis of cells and the cell cycle control. The activated gene regulator function of MYC resulting from irradiation was suppressed by culturing the HSPCs with combinations of cytokines (recombinant human thrombopoietin + interleukin 3 + stem cell factor), which exerted radioprotective effects. MYC was strongly associated with the radiosensitivity of HSPCs, and further study and clarification of the genetic mechanisms that control the cell cycle following X-irradiation are required.  相似文献   

9.
The aim of this work was to determine the effect of a fructose rich diet (FRD) consumed by the pregnant mother on the endocrine-metabolic and in vivo and in vitro adipose tissue (AT) functions of the male offspring in adulthood. At 60 days of age, rats born to FRD-fed mothers (F) showed impaired glucose tolerance after glucose overload and high circulating levels of leptin (LEP). Despite the diminished mass of retroperitoneal AT, this tissue was characterized by enhanced LEP gene expression, and hypertrophic adipocytes secreting in vitro larger amounts of LEP. Analyses of stromal vascular fraction composition by flow cytometry revealed a reduced number of adipocyte precursor cells. Additionally, 60 day-old control (C) and F male rats were subjected to control diet (CC and FC animals) or FRD (CF and FF rats) for three weeks. FF animals were heavier and consumed more calories. Their metabolic-endocrine parameters were aggravated; they developed severe hyperglycemia, hypertriglyceridemia, hyperleptinemia and augmented AT mass with hypertrophic adipocytes. Our study highlights that manipulation of maternal diet induced an offspring phenotype mainly imprinted with a severely unhealthy adipogenic process with undesirable endocrine-metabolic consequences, putting them at high risk for developing a diabetic state.  相似文献   

10.

Purpose

The time from puberty to the first pregnancy is known to be important for a woman’s life-time breast cancer risk. Recent studies suggest that epigenetic mechanisms may involve pubertal maturation processes, which can affect the risk of breast cancer in later life. Epigenetic alterations are related to lipotropes (methionine, choline, folate, and vitamin B12), which are methyl donors and cofactors. However, the effects of pubertal supplementation of lipotropes in breast cancer remain largely unknown.

Methods

Twenty female Sprague–Dawley rats, aged 6 weeks, were divided into two groups and fed a normal control diet or a lipotrope-fortified diet formulated to provide five times basal levels of lipotropes during puberty. All rats were injected intraperitoneally with N-nitroso-N-methylurea at 50 days of age to induce mammary tumors.

Results

Tumor multiplicity and tumor volume decreased significantly as a result of lipotrope supplementation. Interestingly, quantitative RT-PCR revealed significantly decreased expression of histone deacetylase 1 (Hdac1) and DNA methyltransferase 1 (Dnmt1) genes in tumor tissues of the rats supplemented with lipotrope-fortified diet, suggesting that reduced risk of breast cancer can be attributed, at least in part, to decreased expression of these two genes.

Conclusions

This study demonstrates that supplementation of lipotrope-fortified diet during puberty suppresses tumor growth, potentially through down-regulating Hdac1 and Dnmt1 gene expression. Our findings suggest that pubertal methyl diet plays an important role in the etiology of breast cancer, and further studies are warranted to develop preventative strategies against breast cancer.  相似文献   

11.
骨髓间充质干细胞由于其来源广泛,取材简单,便于外源基因导入,且具有高度扩增、多向分化及低免疫原性的特性,是近年来组织工程、基因治疗和细胞治疗研究中最具吸引力的种子细胞。但目前对其增殖及神经分化的分子机制及信号通路调控知之甚少,寻找调节BMSCs增殖和神经分化的分子信号途径成为新的研究热点。本文概述了BMSCs的生物学特性及Wnt信号通路的组成,探讨Wnt信号通路所形成的网络系统如何调控BMSCs的增殖和神经分化。这将有助于了解BMSCs的增殖和分化机制,从而拓宽BMSCs的应用领域。  相似文献   

12.
Does the quality of our diet during early life impact our long-term mental health? Accumulating evidence suggests that nutrition interacts with our genes and that there is a strong association between the quality of diet and mental health throughout life. Environmental influences such as maternal diet during pregnancy or offspring diet have been shown to cause epigenetic changes during critical periods of development, such as chemical modifications of DNA or histones by methylation for the regulation of gene expression. One-carbon metabolism, which consists of the folate and methionine cycles, is influenced by the diet and generates S-Adenosylmethinoine (SAM), the main methyl donor for methylation reactions such as DNA and histone methylation. This review provides current knowledge on how the levels of one-carbon metabolism associated micronutrients such as choline, betaine, folate, methionine and B vitamins that play a role in brain function can impact our well-being and mental health across the lifespan. Micronutrients that act as methyl donors for SAM formation could affect global or gene methylation, altering gene expression and phenotype. Strategies should then be adopted to better understand how these nutrients work and their impact at different stages of development to provide individualized dietary recommendations for better mental health outcomes.  相似文献   

13.
Stem cell strategies for Alzheimer's disease therapy   总被引:8,自引:0,他引:8  
We have found much evidence that the brain is capable of regenerating neurons after maturation. In our previous study, human neural stem cells (HNSCs) transplanted into aged rat brains differentiated into neural cells and significantly improved the cognitive functions of the animals, indicating that HNSCs may be a promising candidate for cell-replacement therapies for neurodegenerative diseases including Alzheimer's disease (AD). However, ethical and practical issues associated with HNSCs compel us to explore alternative strategies. Here, we report novel technologies to differentiate adult human mesenchymal stem cells, a subset of stromal cells in the bone marrow, into neural cells by modifying DNA methylation or over expression of nanog, a homeobox gene expressed in embryonic stem cells. We also report peripheral administrations of a pyrimidine derivative that increases endogenous stem cell proliferation improves cognitive function of the aged animal. Although these results may promise a bright future for clinical applications used towards stem cell strategies in AD therapy, we must acknowledge the complexity of AD. We found that glial differentiation takes place in stem cells transplanted into amyloid-( precursor protein (APP) transgenic mice. We also found that over expression of APP gene or recombinant APP treatment causes glial differentiation of stem cells. Although further detailed mechanistic studies may be required, RNA interference of APP or reduction of APP levels in the brain can significantly reduced glial differentiation of stem cells and may be useful in promoting neurogenesis after stem cell transplantation.  相似文献   

14.
15.

BACKGROUND/OBJECTIVES

The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs.

MATERIALS/METHODS

Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and 50 µg/mL of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK.

RESULTS

The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and 50 µg/mL of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury.

CONCLUSIONS

Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.  相似文献   

16.
17.
Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.  相似文献   

18.
An amorphous formula of curcumin (CUR) has shown to enable an improved bioavailability after ingestion. The aim of this study was to investigate the hypothesis that exogenously administered CUR has an advantage in ameliorating post-traumatic stress disorder at low doses. To this end, Long-Evans rats were dietary exposed to CUR at 0.1% or 0.5% from gestational day 6 to postnatal day (PND) 74 or 77. Offspring exposed to 0.1% CUR revealed facilitation of anti-anxiety-like behavior in the open field test and fear-extinction learning tested during PND 62 to 74, increases in hippocampal granule cells expressing immediate-early gene proteins and a decrease in prelimbic cortical neurons expressing phosphorylated extracellular signal-regulated kinase 1/2 after the last trial of the fear-extinction learning test on PND 74. The constitutive gene expression levels of Gria1, Gria2, Grin2d, Slc17a6, and Slc17a7 were altered in the hippocampal dentate gyrus and amygdala on PND 77. These results suggest alterations in synaptic plasticity to strengthen neural circuits in promoting the behavioral effects by 0.1%-CUR. In contrast, 0.5% CUR revealed a lack of any of the changes in behavioral tests that were observed at 0.1%; however, this dose upregulated oxidative stress and neuroinflammation-related genes in the hippocampal dentate gyrus, and increased neural stem cells and proliferation activity of the subgranular zone in the dentate gyrus. These results suggest a possible preventive use of CUR at low doses in mitigating some stress disorders; however, excessively absorbed doses may prevent behavioral changes by inducing neuroinflammation that affects hippocampal neurogenesis involving neural stem cells.  相似文献   

19.
20.
A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α–induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α–induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α–induced proinflammatory gene expression in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号