首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Objective

To examine the pathogenetic mechanisms of osteoarthritis (OA)–like changes in Col9a1−/− mice, which are deficient in type IX collagen.

Methods

Knee joints and temporomandibular joints (TMJs) from Col9a1−/− mice and their wild‐type (Col9a1+/+) littermates were examined by light microscopy. Immunohistochemical staining was performed to examine the expression of matrix metalloproteinase 3 (MMP‐3) and MMP‐13, degraded type II collagen, and the discoidin domain receptor 2 (DDR‐2) in knee joints. Cartilage mechanics were also evaluated for compressive properties by microindentation testing of the tibial plateau and for tensile properties by osmotic loading of the femoral condyle.

Results

Histologic analysis showed age‐dependent OA‐like changes in the knee and TMJs of Col9a1−/− mice starting at the age of 3 months. At the age of 6 months, enhanced proteoglycan degradation was observed in the articular cartilage of the knee and TMJs of the mutant mice. The expression of MMP‐13 and DDR‐2 protein and the amount of degraded type II collagen were higher in the knee joints of Col9a1−/− mice than in their wild‐type littermates at the age of 6 months. Changes in cartilage mechanics were observed in the femoral and tibial plateaus of Col9a1−/− mice at 6 months, including a decrease in the compressive modulus and uniaxial modulus. At 3 and 6 months of age, tibial cartilage in Col9a1−/− mice was found to be more permeable to fluid flow, with an associated compromise in the fluid pressurization mechanism of load support. All of these changes occurred only at medial sites.

Conclusion

Lack of type IX collagen in Col9a1−/− mice results in age‐dependent OA‐like changes in the knee joints and TMJs.
  相似文献   

2.
OBJECTIVE: To investigate whether heterozygosity for a loss-of-function mutation in the gene encoding the alpha1 chain of type XI collagen (Col11a1) in mice (chondrodysplasia, cho) causes osteoarthritis (OA), and to understand the biochemical and biomechanical effects of this mutation on articular cartilage in knee and temporomandibular (TM) joints. METHODS: Articular cartilage from the knee and TM joints of mice heterozygous for cho (cho/+) and their wild-type littermates (+/+) was examined. The morphologic properties of cartilage were evaluated, and collagen fibrils were examined by transmission electron microscopy. Immunohistochemical staining was performed to examine the protein expression levels of matrix metalloproteinase 3 (MMP-3) and MMP-13 in knee joints. In 6-month-old animals, fixed-charge density was determined using a semiquantitative histochemical method, and tensile stiffness was determined using an osmotic loading technique. RESULTS: The diameter of collagen fibrils in articular cartilage of knee joints from heterozygous cho/+ mice was increased relative to that in control cartilage, and histologic analysis showed OA-like degenerative changes in knee and TM joints, starting at age 3 months. The changes became more severe with aging. At 3 months, protein expression for MMP-3 was increased in knee joints from cho/+ mice. At 6 months, protein expression for MMP-13 was higher in knee joints from cho/+ mice than in joints from their wild-type littermates, and negative fixed-charge density was significantly decreased. Moreover, tensile stiffness in articular cartilage of knee joints from cho/+ mice was moderately reduced and was inversely correlated with the increase in articular cartilage degeneration. CONCLUSION: Heterozygosity for a loss-of-function mutation in Col11a1 results in the development of OA in the knee and TM joints of cho/+ mice. Morphologic and biochemical evidence of OA appears to precede significant mechanical changes, suggesting that the cho mutation leads to OA through a mechanism that does not initially involve mechanical factors.  相似文献   

3.
4.

Objective

To investigate whether heterozygosity for a loss‐of‐function mutation in the gene encoding the α1 chain of type XI collagen (Col11a1) in mice (chondrodysplasia, cho) causes osteoarthritis (OA), and to understand the biochemical and biomechanical effects of this mutation on articular cartilage in knee and temporomandibular (TM) joints.

Methods

Articular cartilage from the knee and TM joints of mice heterozygous for cho (cho/+) and their wild‐type littermates (+/+) was examined. The morphologic properties of cartilage were evaluated, and collagen fibrils were examined by transmission electron microscopy. Immunohistochemical staining was performed to examine the protein expression levels of matrix metalloproteinase 3 (MMP‐3) and MMP‐13 in knee joints. In 6‐month‐old animals, fixed‐charge density was determined using a semiquantitative histochemical method, and tensile stiffness was determined using an osmotic loading technique.

Results

The diameter of collagen fibrils in articular cartilage of knee joints from heterozygous cho/+ mice was increased relative to that in control cartilage, and histologic analysis showed OA‐like degenerative changes in knee and TM joints, starting at age 3 months. The changes became more severe with aging. At 3 months, protein expression for MMP‐3 was increased in knee joints from cho/+ mice. At 6 months, protein expression for MMP‐13 was higher in knee joints from cho/+ mice than in joints from their wild‐type littermates, and negative fixed‐charge density was significantly decreased. Moreover, tensile stiffness in articular cartilage of knee joints from cho/+ mice was moderately reduced and was inversely correlated with the increase in articular cartilage degeneration.

Conclusion

Heterozygosity for a loss‐of‐function mutation in Col11a1 results in the development of OA in the knee and TM joints of cho/+ mice. Morphologic and biochemical evidence of OA appears to precede significant mechanical changes, suggesting that the cho mutation leads to OA through a mechanism that does not initially involve mechanical factors.
  相似文献   

5.
OBJECTIVE: To investigate the role of the collagen receptor discoidin domain receptor 2 (DDR-2) in the pathogenesis of osteoarthritis (OA). METHODS: Histologic and immunohistochemical analyses were performed to characterize femoral head cartilage from 7 patients with OA and 4 patients with fracture, as well as articular cartilage from the knee joints of mice with surgically induced OA. Gene constructs encoding human Raf kinase inhibitor protein (RKIP), DDR-2 lacking the discoidin (DS) domain (DeltaDS-DDR-2) or the protein tyrosine kinase (PTK) core (DeltaPTK-DDR-2), DDR-2 containing a substitution of tyrosine for alanine at position 740 (Y740A), and luciferase driven by the matrix metalloproteinase 13 (MMP-13) promoter were transfected into human chondrocyte cell lines. Activated and neutralized alpha2beta1 integrin polyclonal antibodies, interleukin-1 receptor antagonist, and the chemical inhibitors SB203580, for p38, and SP600125, for JNKs, were used in cell cultures. Real-time polymerase chain reaction was performed to examine MMP-13 and DDR-2 messenger RNA (mRNA). RESULTS: Increased immunostaining for DDR-2, MMP-13, and MMP-derived type II collagen fragments was detected in cartilage from patients with OA and from mice with surgically induced OA. The discoidin domain and PTK core of DDR-2 were essential for signal transmission and the resulting increased expression of MMP-13 in chondrocytes. Y740A mutation of DDR-2 reduced levels of mRNA for MMP-13 and endogenous DDR-2. The overexpression of RKIP or preincubation with the p38 inhibitor reduced MMP-13 mRNA levels. DDR-2 signaling was independent of the alpha2beta1 integrin and the interleukin-1-induced signaling pathways in chondrocytes. CONCLUSION: These findings suggest that increased expression of DDR-2, resulting in the elevated expression of MMP-13, may be one of the common events in OA progression.  相似文献   

6.
OBJECTIVE: To investigate the relationship between increased discoidin domain receptor 2 (DDR-2) expression and cartilage damage in osteoarthritis (OA). METHODS: Full-thickness cartilage tissue samples from 16 human knee joints were obtained and the grade of cartilage damage was evaluated according to the Mankin scale. Expression of DDR-2, matrix metalloproteinase 13 (MMP-13), and MMP-derived type II collagen fragments was visualized immunohistochemically. Moreover, upon stimulation with either type II collagen or gelatin, levels of DDR-2 and MMP-13 messenger RNA (mRNA) in primary human articular chondrocytes were assessed by real-time polymerase chain reaction. RESULTS: Immunohistochemical analysis showed an increase in DDR-2 expression in human articular cartilage, which was correlated with the degree of tissue damage. In parallel, the extent of MMP-13 and type II collagen breakdown products was elevated as a function of increased DDR-2 expression and cartilage damage. Furthermore, in vitro experiments revealed an up-regulation of both DDR-2 and MMP-13 mRNA in human articular chondrocytes after stimulation with type II collagen. CONCLUSION: Our data indicate that 3 factors, DDR-2 expression, MMP-13 expression, and the degree of cartilage damage, are linked, such that DDR-2 promotes tissue catabolism, and tissue degradation promotes DDR-2 up-regulation and activation. Thus, the perpetuation of DDR-2 expression and activation can be seen as a vicious circle that ultimately leads to cartilage destruction in OA.  相似文献   

7.
8.
Objective: To characterise the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) during degeneration of articular cartilage in a transgenic Del1 mouse model for osteoarthritis.

Methods: Northern analysis was used to measure mRNA levels of MMP-2, -3, -8, -9, -13, and -14, and TIMP-1, -2, and -3 in total RNA extracted from knee joints of transgenic Del1 mice, harbouring a 15 amino acid deletion in the triple helical domain of the α1(II) collagen chain, using their non-transgenic littermates as controls. Immunohistochemistry was used to study the presence of cleavage products (neoepitopes) of type II collagen, and the distribution of MMP-13 and TIMP-1 in degenerating cartilage.

Results: Each of the MMP and TIMP mRNAs analysed exhibited distinct expression patterns during development and osteoarthritic degeneration of the knee joint. The most striking change was up regulation of MMP-13 mRNA expression in the knee joints of Del1 mice at the onset of cartilage degeneration. However, the strongest immunostaining for MMP-13 and its inhibitor TIMP-1 was not seen in the degenerating articular cartilage but in synovial tissue, deep calcified cartilage, and subchondral bone. The localisation of type II collagen neoepitopes in chondrocytes and their pericellular matrix followed a similar pattern; they were not seen in cartilage fibrillations, but in adjacent unaffected cartilage.

Conclusion: The primary localisation of MMP-13 and TIMP-1 in hyperplastic synovial tissue, subchondral bone, and calcified cartilage suggests that up regulation of MMP-13 expression during early degeneration of articular cartilage is a secondary response to cartilage erosion. This interpretation is supported by the distribution of type II collagen neoepitopes. Synovial production of MMP-13 may be related to removal of tissue debris released from articular cartilage. In the deep calcified cartilage and adjacent subchondral bone, MMP-13 probably participates in tissue remodelling.

  相似文献   

9.

Objective

To investigate whether the reduction of discoidin domain receptor 2 (DDR‐2), a cell membrane tyrosine kinase receptor for native type II collagen, attenuates the progression of articular cartilage degeneration in mouse models of osteoarthritis (OA).

Methods

Double‐heterozygous (type XI collagen–deficient [Col11a1+/−] and Ddr2‐deficient [Ddr2+/−]) mutant mice were generated. Knee joints of Ddr2+/− mice were subjected to microsurgical destabilization of the medial meniscus. Conditions of the articular cartilage from the knee joints of the double‐heterozygous mutant and surgically treated mice were examined by histology, evaluated using a modified Mankin scoring system, and characterized by immunohistochemistry.

Results

The rate of progressive degeneration in knee joints was dramatically reduced in the double‐heterozygous mutant mice compared with that in the type XI collagen–deficient mice. The progression in the double‐heterozygous mutant mice was delayed by ∼6 months. Following surgical destabilization of the medial meniscus, the progressive degeneration toward OA was dramatically delayed in the Ddr2+/− mice compared with that in their wild‐type littermates. The articular cartilage damage present in the knee joints of the mice was directly correlated with the expression profiles of DDR‐2 and matrix metalloproteinase 13.

Conclusion

Reduction of DDR‐2 expression attenuates the articular cartilage degeneration of knee joints induced either by type XI collagen deficiency or by surgical destabilization of the medial meniscus.
  相似文献   

10.
OBJECTIVE: To investigate the development of osteoarthritis (OA) after transection of the medial collateral ligament and partial medial meniscectomy in mice in which genes encoding either interleukin-1beta (IL-1beta), IL-1beta-converting enzyme (ICE), stromelysin 1, or inducible nitric oxide synthase (iNOS) were deleted. METHODS: Sectioning of the medial collateral ligament and partial medial meniscectomy were performed on right knee joints of wild-type and knockout mice. Left joints served as unoperated controls. Serial histologic sections were obtained from throughout the whole joint of both knees 4 days or 1, 2, 3, or 4 weeks after surgery. Sections were graded for OA lesions on a scale of 0-6 and were assessed for breakdown of tibial cartilage matrix proteoglycan (aggrecan) and type II collagen by matrix metalloproteinases (MMPs) and aggrecanases with immunohistochemistry studies using anti-VDIPEN, anti-NITEGE, and Col2-3/4C(short) neoepitope antibodies. Proteoglycan depletion was assessed by Alcian blue staining and chondrocyte cell death, with the TUNEL technique. RESULTS: All knockout mice showed accelerated development of OA lesions in the medial tibial cartilage after surgery, compared with wild-type mice. ICE-, iNOS-, and particularly IL-1beta-knockout mice developed OA lesions in the lateral cartilage of unoperated limbs. Development of focal histopathologic lesions was accompanied by increased levels of MMP-, aggrecanase-, and collagenase-generated cleavage neoepitopes in areas around lesions, while nonlesional areas showed no change in immunostaining. Extensive cell death was also detected by TUNEL staining in focal areas around lesions. CONCLUSION: We postulate that deletion of each of these genes, which encode molecules capable of producing degenerative changes in cartilage, leads to changes in the homeostatic controls regulating the balance between anabolism and catabolism, favoring accelerated cartilage degeneration. These observations suggest that these genes may play important regulatory roles in maintaining normal homeostasis in articular cartilage matrix turnover.  相似文献   

11.
OBJECTIVE: Type IX collagen is an important component of the intervertebral disc extracellular matrix. Mutations in type IX collagen are associated with premature disc degeneration in mice and a predisposition to disc disorders in humans. The aim of this study was to assess the prevalence and timeline of intervertebral disc degeneration in mice homozygous for an inactivated Col9a1 gene. METHODS: Intact spine segments were harvested from wild-type (WT) and type IX collagen-knockout (Col9a1(-/-)) mice at 3, 6, and 12 months of age. Sagittal spine sections were evaluated for evidence of histologic changes, by 2 blinded graders, using a semiquantitative grading method. RESULTS: There was evidence of more degeneration of the disc and end plate in the spines of Col9a1(-/-) mice compared with those of WT controls, at most time points. These findings were significant for the disc region at 3 and 6 months (P<0.01) and at 12 months (P<0.10) and for the end plate region only at 6 months (P<0.10). Degenerative changes in the disc consisted of cellular changes and mucous degeneration. Degeneration in the end plates was associated with more cell proliferation, cartilage disorganization, and new bone formation. CONCLUSION: A deletion mutation for type IX collagen is associated with connective tissue changes characteristic of musculoskeletal degeneration in bony and cartilaginous tissue regions. Some of the observed changes were similar to cartilage changes in osteoarthritis, while others were more similar to disc degenerative changes in humans. The finding of premature onset of intervertebral disc degeneration in this mouse model may be useful in studies of the pathology and treatment of human disc degeneration.  相似文献   

12.
13.
14.
OBJECTIVE: To determine the effect of NOS2 gene deletion on articular cartilage degradation in autoantibody mediated arthritis (AMA). METHODS: Female C57BL/6Ai-[ko] NOS2 N5 (NOS2-/-) mice (7-8 weeks old) and the counterpart C57/Bl6 Crj mice (wild-type, WT) were studied. Arthritis was induced by intraperitoneal injection of 4 mg of an arthritogenic cocktail of 4 monoclonal antibodies raised against type II collagen twice on Day 0 and Day 1 followed by intraperitoneal injection of 50 micro g of lipopolysaccharide on Day 2. Individual limbs were scored for arthritis in 4 grades; the total maximum score per mouse was 16. Femoral condyles and tibial plateaus of both knee joints were collected on Day 15 for immunohistological studies on nitrotyrosine and matrix metalloproteinase (MMP)-3 and -9. DNA fragmentation in chondrocytes was detected by the nick-end labeling (TUNEL) method. Blood was also collected on Day 15 to determine serum levels of nitrite/nitrate and interleukin 1 beta (IL-1 beta). RESULTS: Both NOS2-/- and WT mice with AMA developed clinically apparent arthritis. In WT mice, the arthritis progressed rapidly and reached the peak score 11.4 +/- 2.9 on Day 12, whereas the arthritis in NOS2-/- mice was milder and the peak score was 7.7 +/- 2.8 on Day 13 (p < 0.05). The serum nitrite/nitrate levels, histological grades of articular cartilage degradation, and numbers of apoptotic chondrocytes and nitrotyrosine positive chondrocytes were significantly lower in NOS2-/- mice with AMA than in WT mice with AMA. Conversely, significant differences were not observed in MMP-3 or -9 expression in chondrocytes, or in serum IL-1 beta levels between these 2 groups of mice. CONCLUSION: NOS2 gene deletion did not affect the inflammatory responses, but reduced the cartilage degradation.  相似文献   

15.
OBJECTIVE: To explore the involvement of synovial macrophages in early cartilage damage in osteoarthritis (OA), and to identify the role of matrix metalloproteinase 3 (MMP-3) in the pathology of early and late OA. METHODS: The role of synovial macrophages in MMP-mediated damage in OA was studied by depleting synovial macrophages prior to elicitation of a collagenase-induced instability model of OA. The expression of MMP in synovium and cartilage was monitored using TaqMan analysis. In spontaneous and induced OA, cartilage pathology was scored in MMP-3-knockout mice and control mice, by histologic assessment and VDIPEN staining. RESULTS: On day 14 following induction of OA, MMP-mediated neoepitopes were detected in cartilage from mice with mild experimental OA (mean +/- SD positively stained surface area 20 +/- 3.2%). Remarkably, by depleting synovial macrophages prior to induction of OA, the generation of MMP-induced neoepitopes was largely prevented (mean +/- SD positively stained surface area 5 +/- 1%; P< 0.001), indicating an important role for synovial macrophages in the occurrence of MMP-mediated cartilage damage. We observed a strong decrease in MMP-3 and MMP-9 expression in synovial but not cartilage tissue in macrophage-depleted joints. Among 2-year-old mice, spontaneous OA-like changes in the lining layer were significantly decreased in MMP-3-knockout mice compared with control mice. Even more striking was the 67% reduction in the occurrence of severe cartilage damage in MMP-3-knockout mice. In addition, MMP-mediated VDIPEN expression was significantly decreased, indicating reduced MMP-mediated cartilage breakdown. CONCLUSION: The results of this study prove that MMP-3 is involved in the generation of severe cartilage damage in murine OA. Synovial macrophages are crucial in early MMP activity and appear to mediate MMP production in synovium rather than cartilage.  相似文献   

16.
OBJECTIVE: Despite the increasing interest in knee cartilage volume as an outcome measure in studies of osteoarthritis (OA), it is unclear what components of knee cartilage will be most useful as markers of structural change in the tibiofemoral joint. This study was undertaken to longitudinally compare changes in femoral and tibial cartilage volume in patients with OA. METHODS: One hundred seventeen patients with knee OA (58.1% women; mean +/- SD age 63.7 +/- 10.2 years) were examined. Femoral and tibial cartilage volumes (medial and lateral tibiofemoral joints) were determined from T1-weighted fat-saturated magnetic resonance images of the knee from coronal views. RESULTS: The study population was followed up for a mean +/- SD of 1.9 +/- 0.2 years. In the medial tibiofemoral joint, the mean +/- SD loss of cartilage was 0.15 +/- 0.30 ml/year for femoral cartilage and 0.10 +/- 0.25 ml/year for tibial cartilage. In the lateral tibiofemoral joint, the average loss was 0.15 +/- 0.22 and 0.12 +/- 0.16 ml/year for femoral and tibial cartilage, respectively. There was a significant correlation between the degree of loss of tibial cartilage and the degree of loss of femoral cartilage, in both tibiofemoral joints (r = 0.81, P < 0.001 at the medial tibiofemoral joint; r = 0.71, P < 0.001 at the lateral tibiofemoral joint). CONCLUSION: Longitudinal changes in tibial cartilage and those in femoral cartilage are strongly related to one another. This suggests that in tibiofemoral disease, measuring tibial cartilage alone may be adequate, given the facts that measurements of the total femoral cartilage are less reproducible and there are difficulties inherent in identifying the most appropriate component of femoral cartilage to measure.  相似文献   

17.

Objective

To investigate the development of osteoarthritis (OA) after transection of the medial collateral ligament and partial medial meniscectomy in mice in which genes encoding either interleukin‐1β (IL‐1β), IL‐1β–converting enzyme (ICE), stromelysin 1, or inducible nitric oxide synthase (iNOS) were deleted.

Methods

Sectioning of the medial collateral ligament and partial medial meniscectomy were performed on right knee joints of wild‐type and knockout mice. Left joints served as unoperated controls. Serial histologic sections were obtained from throughout the whole joint of both knees 4 days or 1, 2, 3, or 4 weeks after surgery. Sections were graded for OA lesions on a scale of 0–6 and were assessed for breakdown of tibial cartilage matrix proteoglycan (aggrecan) and type II collagen by matrix metalloproteinases (MMPs) and aggrecanases with immunohistochemistry studies using anti‐VDIPEN, anti‐NITEGE, and Col2‐3/4Cshort neoepitope antibodies. Proteoglycan depletion was assessed by Alcian blue staining and chondrocyte cell death, with the TUNEL technique.

Results

All knockout mice showed accelerated development of OA lesions in the medial tibial cartilage after surgery, compared with wild‐type mice. ICE‐, iNOS‐, and particularly IL‐1β–knockout mice developed OA lesions in the lateral cartilage of unoperated limbs. Development of focal histopathologic lesions was accompanied by increased levels of MMP‐, aggrecanase‐, and collagenase‐generated cleavage neoepitopes in areas around lesions, while nonlesional areas showed no change in immunostaining. Extensive cell death was also detected by TUNEL staining in focal areas around lesions.

Conclusion

We postulate that deletion of each of these genes, which encode molecules capable of producing degenerative changes in cartilage, leads to changes in the homeostatic controls regulating the balance between anabolism and catabolism, favoring accelerated cartilage degeneration. These observations suggest that these genes may play important regulatory roles in maintaining normal homeostasis in articular cartilage matrix turnover.
  相似文献   

18.
19.
Type XV collagen occurs widely in the basement membrane zones of tissues, but its function is unknown. To understand the biological role of this protein, a null mutation in the Col15a1 gene was introduced into the germ line of mice. Despite the complete lack of type XV collagen, the mutant mice developed and reproduced normally, and they were indistinguishable from their wild-type littermates. However, Col15a1-deficient mice showed progressive histological changes characteristic for muscular diseases after 3 months of age, and they were more vulnerable than controls to exercise-induced muscle injury. Despite the antiangiogenic role of type XV collagen-derived endostatin, the development of the vasculature appeared normal in the null mice. Nevertheless, ultrastructural analyses revealed collapsed capillaries and endothelial cell degeneration in the heart and skeletal muscle. Furthermore, perfused hearts showed a diminished inotropic response, and exercise resulted in cardiac injury, changes that mimic early or mild heart disease. Thus, type XV collagen appears to function as a structural component needed to stabilize skeletal muscle cells and microvessels.  相似文献   

20.
OBJECTIVE: The biologic changes associated with osteoarthritis (OA) are incompletely understood. The aim of this study was to elucidate the molecular mechanisms underlying OA progression in an STR/Ort murine model of spontaneous disease. METHODS: Global patterns of gene expression were assessed using microarray analysis of articular cartilage/subchondral bone from the tibial plateaus of STR/Ort mice at 3, 9, and 12 months of age. The age-dependent severity of osteophyte formation and extent of cartilage damage were determined in the corresponding femurs using microfocal computed tomography and the Mankin histologic scoring system. Pathway analysis was used to identify the functions of genes associated with OA progression, and changes in gene expression were confirmed using immunohistochemistry. RESULTS: Six hundred twenty-one genes were associated with both osteophyte formation and cartilage damage in the STR/Ort joints. Genes involved in the development/function of connective tissue and in lipid metabolism were most significantly enriched and regulated during disease progression. Genes directly interacting with peroxisome proliferator-activated receptor alpha (PPARalpha)/PPARgamma were down-regulated, whereas those genes involved with connective tissue remodeling were up-regulated during disease progression. Associations of down-regulation of myotubularin-related phosphatase 1 (a phosphoinositide 3-phosphatase involved in lipid signaling) and up-regulation of biglycan (a member of the small leucine-rich protein family known to modulate osteoblast differentiation and matrix mineralization) with OA progression were confirmed by immunohistochemistry. CONCLUSION: Since adipogenesis and osteogenesis are inversely related in the developing skeletal tissue, these results suggest that a shift in the differentiation of mesenchymal cells from adipogenesis toward osteogenesis is a component of the OA pathophysiologic processes occurring in the tibial plateau joints of STR/Ort mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号