首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activated clotting time (ACT) is used frequently for monitoring blood anticoagulant response with heparin before, during, and after cardiopulmonary bypass (CPB). Many cardiac procedures involving CPB require reduction of the patient's blood temperature and use of the serine protease inhibitor, aprotinin. Three different methods of ACT measurement were compared to show the effects of different CPB temperatures and the presence of aprotinin. A total of 42 patients were included in the study: 14 received CPB at 28 degrees C, 14 received CPB at 32 degrees C, and 14 normothermic (37 degrees C) CPB. Within each temperature group, seven received aprotinin. The ACT in each group of patients was measured by a celite activator (C-ACT), a kaolin activator (K-ACT), and a celite, kaolin and glass activator (MAX-ACT). All three methods of ACT measurement showed significant increases (p < .05) in clotting times at hypothermic CPB compared with normothermic groups. During heparinization the C-ACT was significantly increased (p < .05) in the presence of aprotinin. Comparability between the 3 ACT measurement methods showed a very high correlation between C-ACT and K-ACT clotting times (R2 = .8962), and slightly lower correlation between MAX-ACT and C-ACT (R2 = .7780), and MAX-ACT and K-ACT (R2 = .7827). All ACT measurements are affected by changes in blood temperature. The C-ACT measurement is prolonged with aprotinin, whereas the MAX-ACT and K-ACT method of measurement in the presence of aprotinin are not significantly altered. It appears that the MAX-ACT produces lower values and may necessitate additional heparin therapy for ACT target values considered safe during CPB. Further study is required from these additional findings.  相似文献   

2.
BACKGROUND: During cardiopulmonary bypass, the activated clotting time is frequently used for determination of anticoagulation, and either Celite or kaolin are used as activators. If aprotinin is administered concomitantly, the Celite activated clotting time (C-ACT) becomes significantly higher than the kaolin activated clotting time (K-ACT). Therefore, insufficient anticoagulation using C-ACT in the presence of aprotinin is a major concern. Whether the application of tranexamic acid (TA), a pharmacologic alternative to aprotinin, has similar effects has not been studied before. METHODS: An in vitro study using the blood of healthy volunteers was performed. Both C-ACT and K-ACT were measured at baseline, after adding TA, and after adding TA and heparin. In addition, 30 patients undergoing primary cardiac operations had simultaneous measurements of C-ACT and K-ACT after skin-incision, 5 minutes after the application of heparin and TA, every 30 minutes during cardiopulmonary bypass, and 10 minutes after the application of protamine. RESULTS: In vitro, C-ACT and K-ACT correlated significantly at each measurement. Tranexamic acid had no influence on the activated clotting time. In vivo, C-ACT and K-ACT did not differ significantly, but at each time C-ACT tended to be greater than K-ACT (p = 0.086). The average difference between K-ACT and C-ACT was stable before and after the application of TA (p = 0.85) but the variability of the differences significantly increased during cardiopulmonary bypass (p < 0.001). CONCLUSIONS: Application of TA does not seem to differentially affect the mean C-ACT and K-ACT. No recommendation seems warranted to prefer one activator over the other in patients receiving TA.  相似文献   

3.
Koster A  Despotis G  Gruendel M  Fischer T  Praus M  Kuppe H  Levy JH 《Anesthesia and analgesia》2002,95(1):26-30, table of contents
The standard celite or kaolin activated clotting time (ACT) correlates poorly with heparin levels during cardiopulmonary bypass (CPB). We compared a modified kaolin ACT, in which plasma was supplemented, to a standard undiluted kaolin ACT for monitoring heparin levels during CPB. Fifteen patients undergoing normothermic CPB were enrolled in this prospective study. Heparin management was performed according to the Hepcon HMS results (Medtronic, Minneapolis, MN). The ACTs were performed with the ACT II device (Medtronic). Hepcon HMS calculations, standard kaolin ACTs, and plasma supplemented modified ACTs (mACTs), prepared by diluting blood samples 1:1 with human plasma (Behring, Marburg, Germany), were measured every 30 min during CPB. The data obtained were correlated to the plasma chromogenic anti-Xa activity as a reference assay for heparin levels. A total of 64 samples were evaluated. The chromogenic anti-Xa activity ranged from 0.2 to 5.5 IU/mL. The Hepcon HMS calculations ranged from 2.7-8.2 IU/mL of heparin, the standard ACT ranged from 424 to >999 s, and the mACT ranged from 210 to 801 s. The correlation to the chromogenic anti-Xa method was r = 0.43 for the standard kaolin ACT and r = 0.69 for the plasma mACT. The plasma mACT provided an improved correlation to chromogenically measured levels of anti-Xa activity during CPB. The improved correlation most likely results from a correction of the effects of the impairment of the coagulation system caused by hemodilution and consumption of procoagulants on extracorporeal surfaces. IMPLICATIONS: During cardiopulmonary bypass, the plasma modified kaolin activated clotting time (ACT) provides a better correlation with heparin levels than the standard kaolin ACT.  相似文献   

4.
Chavez JJ  Foley DE  Snider CC  Howell JC  Cohen E  Muenchen RA  Carroll RC 《Anesthesia and analgesia》2004,99(5):1290-4; table of contents
We used a thrombelastograph (TEG) assay with tissue factor and kaolin (TEG TF/K) to measure activated clotting time (ACT) in 31 patients during cardiopulmonary bypass. For comparison, ACTs were also determined by a Hemochron Jr. Signature and a Hepcon HMS. The TEG TF/K correlated with both the Hepcon (r(2) = 0.789) and Hemochron (r(2) = 0.743) ACTs. The average ACT after heparin was 319 +/- 119 s (mean +/- sd) for the TEG TF/K compared with 624 +/- 118 s for the Hepcon instrument. To evaluate the effects of hemodilution on TEG TF/K and Hemochron assays, ACT assays were performed on blood diluted to 50% and titrated with heparin from 0 to 6 U/mL. Both instruments showed significant (P < 0.01) changes in the ACT-versus-heparin slope, but the 0 heparin intercept for the TEG TF/K ACTs was not significantly changed (P = 0.292), in contrast to that for the Hemochron device (P = 0.041). Both instruments also indicated the same 1.3:1 ratio of protamine to heparin for optimum heparin neutralization, with increasing ACTs at ratios >2.6:1. The TEG TF/K ACT assay rapidly monitors heparin anticoagulation, in addition to the capabilities of this instrument to monitor platelet function, clotting factors, and fibrinolysis.  相似文献   

5.
Aprotinin (Trasylol) is a serine protease inhibitor, isolated from bovine lung that initially was marketed for the treatment of pancreatitis. In the mid 1980s, reports of its ability to decrease hemorrhaging after cardiopulmonary bypass surgery introduced the drug to the realm of cardiac surgery. Unfortunately, its introduction into this arena was followed by the publication of multiple studies and case reports that blamed aprotinin for poor outcomes in the form of early graft closure. More than 17 years have passed since the initial article describing the use of aprotinin during cardiopulmonary bypass, and with time there has been a significant increase in scientific knowledge and clinical experience. Interestingly, modern literature does not support the dogma that aprotinin is a procoagulant. Aprotinin increases the activated partial thromboplastin time (aPTT), as well as the kaolin- and celite-activated clotting time (ACT), regardless of heparin. Aprotinin, because of its ability to inhibit kallikrein, has been found to decrease thrombin antithrombin III complexes, fibrin-split products, fibrinopeptide 1+2, prothrombin fragments, and all markers of thrombin formation. Some authors have suggested that it may have a synergistic effect with heparin to ensure graft patency. Anticoagulation monitoring during the use of aprotinin also has been developed based on early studies. Aprotinin administration does influence the results of various ACT tests, and consequently different methods of testing anticoagulation have been developed. Researchers have demonstrated that the celite ACT is not "artificially" prolonged in the presence of heparin and aprotinin, rather the kaolin ACT is "artificially" shortened. This article will review the scientific literature with regard to aprotinin's anticoagulatory effects and review the current recommendations for hemostasis monitoring during the use of aprotinin.  相似文献   

6.
BACKGROUND: Activated clotting time (ACT) is used to monitor heparin therapy during cardiopulmonary bypass, interventional cardiology, and hemodialysis. Traditionally, ACT is performed by use of the Hemochron system. Recently, a new device, the i-STAT system, has been introduced to measure ACT. The aim of this study was to correlate the performances of these two systems and to compare ACT values with heparin levels. METHODS: One hundred sixty-five samples from 29 patients undergoing cardiopulmonary bypass or hemodialysis were assayed in duplicate with two Hemochron and two i-STAT devices. Heparin levels were determined by anti-factor Xa assay. RESULTS: The Hemochron ACT ranged from 88 to 1,028 s, and the i-STAT ACT ranged from 80 to 786 s. Heparin plasma levels ranged from 0.01 to 10.8 U/mL. Bland-Altman analysis showed a mean difference between the two methods of 24 +/- 101 s. Strong relationships between anti-factor Xa activity and Hemochron ACTs (r2 = 0.69, P < 0.001) and i-STAT ACTs (r2 = 0.79, P < 0.001) were observed. During cardiac surgery, significant correlations were found: Hemochron, r2 = 0.61, P < 0.001 and i-STAT, r2 = 0.74, P < 0.001. During hemodialysis, relationships between anti-factor Xa activity and ACTs were found: Hemochron, r2 = 0.62, P < 0.001 and i-STAT, r2 = 0.55, P < 0.001. CONCLUSIONS: During cardiopulmonary bypass procedure and hemodialysis, i-STAT provides measurements of clotting time quite similar to Hemochron ACT, which were significantly correlated with heparin levels.  相似文献   

7.
The reasons for the highly variable response of patients to heparin remain incompletely understood. Empirical maintenance of the activated clotting time (ACT) at levels of 400 to 480 seconds appears to be safe for cardiopulmonary bypass (CPB). For patients with ACT responses lower than predicted for initial heparin doses, titration with additional heparin has been customary. In 44 patients undergoing cardiopulmonary bypass, 20 patients were identified as having initial ACTs of 300 seconds or less after receiving 300 units per kilogram of heparin. In 11 of them, ACTs were titrated to 400 to 480 seconds with additional heparin. Nine were given 2 units of fresh frozen plasma shortly after institution of CPB. In this group, there was significant augmentation of the ACT immediately after infusion of plasma. No differences in total heparin dosages given during CPB were found between 24 control patients with initially acceptable ACTs and the group receiving fresh frozen plasma. In contrast, more heparin was necessary in the patients with a low ACT titrated with heparin alone. Data also indicated that protamine sulfate requirements were substantially lower after administration of plasma than were those in either the control or the heparin-titrated, low ACT group. Fresh frozen plasma appears to "normalize" the heparin-ACT dose-response curve in heparin-resistant patients and to lessen total heparin requirements during CPB.  相似文献   

8.
STUDY OBJECTIVE: To determine whether a new Sonoclot-based, aprotinin-insensitive activated clotting time (aiACT) assay yields stable results over a broad range of aprotinin concentrations. DESIGN: Prospective trial conducted on in vitro blood samples. SETTING: Tertiary-care teaching medical center. PARTICIPANTS: 19 healthy adult volunteers. INTERVENTIONS: Whole blood samples were collected from volunteers. Heparin (2 U/mL) and escalating concentrations of aprotinin of 160 to 500 kallikrein inhibitory units (KIU)/mL were added in vitro. MEASUREMENTS AND MAIN RESULTS: Celite ACT, kaolin ACT, and aiACT assays were completed. The aiACT showed stable activated clotting time (ACT) results on heparinized, noncitrated blood with added aprotinin (P = nonsignificant). In contrast, celite ACT and kaolin ACT were greatly prolonged when aprotinin was added to heparinized, noncitrated, and citrated blood (P < 0.05). The aiACT had consistent results at all aprotinin concentrations (P = nonsignificant). CONCLUSIONS: Aprotinin (160, 320, and 500 KIU/mL) significantly prolongs the ACT value with celite and kaolin activators but not with the aprotinin-insensitive activator.  相似文献   

9.
Background: Activated clotting time (ACT) is used to monitor heparin therapy during cardiopulmonary bypass, interventional cardiology, and hemodialysis. Traditionally, ACT is performed by use of the Hemochron system. Recently, a new device, the i-STAT system, has been introduced to measure ACT. The aim of this study was to correlate the performances of these two systems and to compare ACT values with heparin levels.

Methods: One hundred sixty-five samples from 29 patients undergoing cardiopulmonary bypass or hemodialysis were assayed in duplicate with two Hemochron and two i-STAT devices. Heparin levels were determined by anti-factor Xa assay.

Results: The Hemochron ACT ranged from 88 to 1,028 s, and the i-STAT ACT ranged from 80 to 786 s. Heparin plasma levels ranged from 0.01 to 10.8 U/mL. Bland-Altman analysis showed a mean difference between the two methods of 24 +/- 101 s. Strong relationships between anti-factor Xa activity and Hemochron ACTs (r2 = 0.69, P < 0.001) and i-STAT ACTs (r2 = 0.79, P < 0.001) were observed. During cardiac surgery, significant correlations were found: Hemochron, r2 = 0.61, P < 0.001 and i-STAT, r2 = 0.74, P < 0.001. During hemodialysis, relationships between anti-factor Xa activity and ACTs were found: Hemochron, r2 = 0.62, P < 0.001 and i-STAT, r2 = 0.55, P < 0.001.  相似文献   


10.
Three available methods used to determine heparin loading dose were studied to determine the most reliable method for reaching a target pre-bypass activated clotting time (ACT) of 510 seconds. One hundred and seven patients were randomly assigned to one of three treatment methods: A) 300 units/kg; B) Hemostasis Management System (HMS); C) RX/DX. Five different lots of heparin were assigned to Groups A and B, and Group C had one heparin lot. Different lots were used to account for possible variations in heparin activity. Post-skin incision ACTs, post-heparin pre-bypass ACTs, and heparin loading doses were compared. The mean and standard deviation of the post-heparin pre-bypass ACTs were used to determine which method was most reliable to obtain a desired ACT. There was no statistical difference between different heparin lots. There was no difference in the post-heparin ACTs for the three methods (A:487 +/- 135 vs. B:474 +/- 105 vs. C:474 +/- 111 sec). There was a statistically significant difference between the standard deviation for the HMS and 300 u/kg standard deviations (p < 0.05). The HMS has the smallest deviation which makes it the most reliable predictor of heparin loading doses to reach a target ACT for cardiopulmonary bypass.  相似文献   

11.
Activated Clotting Time (ACT) has been the standard for monitoring heparin anticoagulation in cardiac surgery for three decades. Although a 10% coefficient of variation (CV) is the referenced standard for the test, no recent reports of precision are available. The precision of Hemochron FTCA510 (celite) and KACT (kaolin) ACT test tubes was evaluated using a retrospective analysis of results from both laboratory studies and routine clinical usage. Laboratory studies of reproducibility included analysis of the CV from repetitive testing using multiple lots of ACTs. Substrates used included 40 consecutive lots of control plasma and freshly heparinized donor blood. Across the lots of control plasma, the celite ACT yielded an average CV of 5.4% for the normal control level and 4.0% in the abnormal control level (range 3.6-9.7% and 2.7-6.3%, respectively). The KACT showed similar performance for the normal (mean = 4.5%, range 2.2-7.8%) and abnormal (mean = 3.8%, range 2.0-10.0%). These values, significantly less than 10%, reflect the combined variability of both the ACT tests and the lyophilized, single use vial, control material. Fresh whole blood samples exhibited improved ACT precision when compared to this artificial substrate. CVs for the celite ACT range from 0.6-6.0% at one unit heparin/ml blood to 2.4-11.6% at 5 units/ml where clotting times exceed 650 sec. The KACT showed even lower CVs at all heparin levels, with values of 2.4-7.0%. Clinical evaluations included samples (N = 56) collected from cardiac surgery patients with celite ACT values ranging to 744 sec. Duplicate values differed by an average of 7.5 sec or 1.8%. There was only one clinically significant difference in paired values; a 376 sec paired with a 406 sec, 400 sec being the clinical target time. This retrospective data analysis demonstrates that Hemochron ACT variability is significantly less than 10%.  相似文献   

12.
BACKGROUND: During cardiopulmonary bypass (CPB), measurement of kaolin-based activated clotting time (kACT) is a standard practice in monitoring heparin-induced anticoagulation. Despite the fact that the kACT test from the Sonoclot Analyzer (SkACT) has been commercially available for several years, no published data on the performance of SkACT are available. Thus, the aim of this in vitro study was to compare SkACT with an established kACT from Hemochron (HkACT). METHODS: Blood was withdrawn from 25 patients before elective cardiac surgery. SkACT and HkACT were measured in duplicate after in vitro administration of heparin (0, 1, 2 and 3 U/ml), calcium-free lactated Ringer's solution (25% and 50% haemodilution) and aprotinin (200 kIU/ml). RESULTS: A total of 600 duplicate kACT measurements were obtained from 25 cardiac surgery patients. Overall, mean bias +/- SD between SkACT and HkACT was 7 +/- 70 s (1.3% +/- 14.1%). Administration of heparin, haemodilution and aprotinin induced a comparable effect on both activated clotting time (ACT) tests. Mean bias ranged from -4 +/- 39 s (-1.7% +/- 12.9%) to 4 +/- 78 s (3.2% +/- 15.6%) for heparinzed blood samples after haemodilution or aprotinin application and increased after combined aprotinin administration and haemodilution. After haemodilution and administration of aprotinin, both ACT tests were less reliable for values >480 s in heparinized blood samples. CONCLUSION: Accuracy and performance of SkACT and HkACT were comparable after in vitro administration of heparin, aprotinin and haemodilution. Both ACT tests were considerably affected by aprotinin and haemodilution.  相似文献   

13.
The activated coagulation time (ACT) is widely used to guide heparin and protamine dosing during cardiac surgery. A common protocol involves establishing a baseline ACT before administering heparin, then using this ACT as a target value for assessing the adequacy of heparin neutralization after cardiopulmonary bypass. Results vary in previous comparisons of baseline ACT to postprotamine ACT, with some showing postprotamine ACT significantly below baseline values. The present study examined ACTs at three possible baseline intervals in 68 patients at two institutions: (a) before anesthetic induction; (b) after anesthetic induction; and (c) after sternotomy. Baseline ACT decreased significantly with anesthesia and surgery. The poststernotomy baseline ACT best matched the postprotamine ACT. It appears likely that surgery induces a thromboplastic response that decreases ACT. Establishing baseline ACT before anesthetic induction would predispose to false diagnoses of adequate protamine neutralization after cardiopulmonary bypass, because ACT is relatively insensitive to low concentrations of unneutralized heparin. Baseline ACTs should therefore be measured after surgical incision.  相似文献   

14.
Ganter MT  Dalbert S  Graves K  Klaghofer R  Zollinger A  Hofer CK 《Anesthesia and analgesia》2005,101(2):308-14, table of contents
The kaolin-based activated clotting time (ACT) is commonly used for monitoring heparin-induced anticoagulation alone and combined with aprotinin during cardiopulmonary bypass. However, aprotinin prolongs ACT measurements. Recently, a new so-called 'aprotinin-insensitive' ACT test (SaiACT) has been developed for the SONOCLOT analyzer. In this study we evaluated and compared this new test for the SONOCLOT analyzer in vitro with an established kaolin-based ACT from HEMOCHRON (HkACT). Twenty-five patients undergoing elective valve surgery donated 80 mL of blood after induction of anesthesia. The blood was withdrawn in citrated tubes and processed to analyze effects of heparin (0, 1, 2, and 3 U x mL(-1)), aprotinin (0, 200 kIU x mL(-1)), and 25% hemodilution with calcium-free lactated Ringer's solution on ACT measurements. A total of 400 blood samples were analyzed and ACT was measured in a wide, clinically relevant range in duplicate with SaiACT and HkACT. Addition of aprotinin to heparinized blood samples induced no significant changes of SaiACT measurements. By contrast, HkACT readings increased significantly: aprotinin prolonged HkACT in heparinized blood samples by 20% +/- 37% (2 U x mL(-1)) and 24% +/- 18% (3 U x mL(-1)), respectively, and in vitro hemodilution increased this effect. IMPLICATIONS: Current standard techniques to measure heparin-induced anticoagulation during cardiopulmonary bypass are affected by aprotinin, a drug widely used in this setting. The aim of this study was to investigate in vitro a new, so-called 'aprotinin-insensitive' test from SONOCLOT to measure heparin-induced anticoagulation more reliably in combination with aprotinin.  相似文献   

15.
在体外及体外循环中抑肽酶对ACT的影响   总被引:2,自引:0,他引:2  
选择健康献血员及心内直视手术病,观察抑肽酶对全血活化凝血时间的影响。结果:在体外肝素剂量与ACT有显著线性相关。抑肽酶单狡应用并不使ACT延,但与肝素合用可协同性延长ACT值;在体外循环中抑肽酶延长ACT的值更为显著,一般超过800s。结论:抑肽酶可与肝素协同性延长ACT,体外循环中应用抑肽酶时应以ACT大于800s作为肝素抗凝标准。  相似文献   

16.
BACKGROUND: The pharmacological inhibition of blood-foreign surface interactions is an attractive strategy for reducing the morbidity associated with cardiopulmonary bypass. We compared the inhibitory effects of nafamostat mesilate (a broad-spectrum synthetic protease inhibitor) and minimal-dose aprotinin on blood-surface interactions in clinical cardiopulmonary bypass. METHODS: Eighteen patients undergoing coronary surgery were divided into three groups: (1) the control group (heparin, 4 mg/kg; n = 6), (2) the nafamostat mesilate group (heparin plus nafamostat, 0.2 mg/kg bolus followed by 2.0 mg/kg/h during cardiopulmonary bypass; n = 6), and (3) the aprotinin group (heparin plus aprotinin, 2.0 x 10(4) KIU/kg; n = 6). Platelet count, platelet aggregation, beta-thromboglobulin, prothrombin fragment F1.2, thrombin-antithrombin complex, plasminogen activator inhibitor-1, alpha2-plasmin inhibitor-plasmin complex, D-dimer, neutrophil elastase, and interleukin-6 were measured before, during, and after bypass. Bleeding times and blood loss were recorded. RESULTS: There were no significant differences between groups in platelet count, beta-thromboglobulin, plasminogen activator inhibitor-1, interleukin-6, bleeding times, or blood loss. Platelet aggregation was better preserved at 12 hours after surgery in the nafamostat and aprotinin groups than in the control group. Prothrombin fragment F1.2, thrombin-antithrombin complex and neutrophil elastase levels were significantly reduced by aprotinin, but not by nafamostat as compared with the control group. The alpha2-plasmin inhibitor-plasmin complex and D-dimer were significantly lower with either of the drugs. Aprotinin showed better control of D-dimer than did nafamostat. CONCLUSIONS: Nafamostat mesilate fails to reduce thrombin formation and neutrophil elastase release, whereas minimal-dose aprotinin inhibits both. Neither nafamostat nor aprotinin inhibits platelet activation. Nafamostat reduces fibrinolysis during cardiopulmonary bypass, although its effect is not as potent as aprotinin.  相似文献   

17.
OBJECTIVE: Kaolin-based activated clotting time assessed by HEMOCHRON (HkACT) is a clinical standard for heparin monitoring alone and combined with aprotinin during cardiopulmonary bypass (CPB). However, aprotinin is known to prolong not only celite-based but also kaolin-based activated clotting time. Overestimation of activated clotting times implies a potential hazardous risk of subtherapeutic heparin anticoagulation. Recently, a novel 'aprotinin-insensitive' activated clotting time test has been developed for the SONOCLOT analyzer (SaiACT). The aim of our study was to evaluate SaiACT in patients undergoing CPB in presence of heparin and aprotinin. METHODS: Blood samples were taken from 44 elective cardiac surgery patients at the following measurement time points: baseline (T0); before CPB after heparinization (T1 and T2); on CPB, before administration of aprotinin (T3); 15, 30, and 60 min on CPB after administration of aprotinin (T4, T5, and T6); after protamine infusion (T7). On each measurement time point, activated clotting time was assessed with HkACT and SaiACT, both in duplicate. Furthermore, the rate of factor Xa inhibition and antithrombin concentration were measured. Statistical analysis was done using Bland and Altman analysis, Pearson's correlation, and ANOVA with post hoc Bonferroni-Dunn correction. RESULTS: Monitoring anticoagulation with SaiACT showed reliable readings. Compared to the established HkACT, SaiACT values were lower at all measurement time points. On CPB but before administration of aprotinin (T3), SaiACT values (mean+/-SD) were 44+/-118 s lower compared to HkACT. However, the difference between the two measurement techniques increased significantly on CPB after aprotinin administration (T4-T6; 89+/-152 s, P=0.032). Correlation of ACT measurements with anti-Xa activity was unchanged for SaiACT before and after aprotinin administration (r2=0.473 and 0.487, respectively; P=0.794), but was lower for HkACT after aprotinin administration (r2=0.481 and 0.361, respectively; P=0.041). On CPB after administration of aprotinin, 96% of all ACT values were classified as therapeutic by HkACT, but only 86% of all values were classified therapeutic if ACT was determined by SaiACT. Test variability was comparable for SaiACT and HkACT. CONCLUSIONS: The use of SaiACT may result in more consistent heparin management that is less affected by aprotinin and a corresponding increase in heparin administration for patients receiving aprotinin.  相似文献   

18.
BACKGROUND: Thromboelastography is used for assessment of hemostasis. Adherence to thromboelastography-guided algorithms and aprotinin administration each decrease bleeding and blood product usage after cardiac surgery. Aprotinin, through inhibition of kallikrein, causes prolongation of the celite-activated clotting time and the activated partial thromboplastin ratio. The aim of this study was to assess the effects of aprotinin on the thromboelastography trace. METHODS: Three activators were used in the thromboelastography: celite (which is widely established), kaolin, and tissue factor. Assessment was performed on blood from volunteers and from patients before and after cardiac surgery. RESULTS: The tissue factor-activated thromboelastography trace was unaffected by the addition of aprotinin. When celite and kaolin were used as activators in the presence of aprotinin, the reaction time (time to clot formation) of the thromboelastography trace was prolonged (P < 0.0001) and the maximum amplitude (clot strength) was decreased (P < 0.05). With celite as an activator, the addition of aprotinin decreased (P < 0.05) the thromboelastography alpha angle (rate of clot extension). The reaction time of the celite-activated trace correlated with the activated partial thromboplastin ratio (P < 0.01). The reaction time of the tissue factor-activated trace correlated with the international normalized ratio (P < 0.01). CONCLUSION: The thromboelastography trace is altered in the presence of aprotinin when celite and kaolin are used as activators but not when tissue factor is the activator.  相似文献   

19.
The effects in vitro of aprotinin on the activated clotting time measured with both celite- and kaolin-activated tubes were investigated in 21 consecutive patients requiring cardiopulmonary bypass. Four whole-blood samples (2 ml per sample) from each patient were tested simultaneously with Hemochron automated timing systems (International Technidyne Corp., Edison, N.J.) before, during, and after cardiopulmonary bypass. One tenth milliliter of either aprotinin (at a final concentration of 80, 120, or 180 KIU/ml) or saline solution was mixed in vitro with blood samples before determination of the activated clotting time. Aprotinin had no inhibitory effect on the activated clotting times of unheparinized blood. After heparin administration, aprotinin in the above concentrations prolonged the activated clotting times measured with celite-activated tubes by 47% to 71%, as compared with the measurements of the activated clotting time without the addition of aprotinin. The activated clotting times in kaolin-activated tubes were not increased, however, by the in vitro addition of aprotinin. Our in vitro results indicate that aprotinin in concentrations from 80 to 180 KIU/ml does not significantly enhance the inhibitory effects of heparin on the intrinsic coagulation system as evaluated by measurement of the activated clotting times in kaolin-activated tubes. The anticoagulation effect of heparin in patients receiving aprotinin infusion should be monitored with kaolin-activated instead of celite-activated tubes because the celite makes the measured activated clotting time unreliable in patients receiving aprotinin therapy. These in vitro results require confirmation in vivo in patients receiving aprotinin therapy.  相似文献   

20.
This case study reviews cardiopulmonary bypass (CPB) management in a Protein C deficient patient undergoing reoperation for an atrioventricular (AV) valve replacement with the use of aprotinin. Protein C inhibits factors Va and VIIIa in the coagulation cascade and inactivates tissue plasminogen activator inhibitor, thus maintaining hemostasis. Protein C deficiency can cause hypercoagulability and may result in thrombotic episodes, especially in areas of low blood flow or during activation of the coagulation cascade. A 17-year-old male presented with a functional single ventricle and AV valve regurgitation. The patient had a history of three previous AV valve replacements. Protein C deficiency was first diagnosed after thrombosis of the first valve prosthesis. Other case studies in protein C deficient patients suggested the use of fresh frozen plasma (FFP) before bypass to restore protein C levels, ATIII replacement before heparin administration, and avoidance of aprotinin because of its known competitive inhibition of activated protein C. Two units of FFP were given by anesthesia before the administration of aprotinin, and two units of FFP were added to the pump prime. The full Hammersmith loading dose of aprotinin was administered just before initiation of CPB. The same dose of aprotinin was added to the pump prime just before initiation of CPB. Additional heparin (100 U/kg) was administered every hour during bypass. Activated clotting time tests (ACTs) were performed every 15 min, and thromboelastographs (TEGs) were performed every hour. The patient recovered from surgery without major complications, and there were no perioperative thrombotic events. The patient was discharged on day 41 and is doing well. Postoperative atrial arrhythmias were a contributing factor to his delayed discharge. The use of aprotinin in a protein C deficient patient undergoing open-heart surgery may be safe if protein C levels are restored before administration of aprotinin, and anticoagulation is carefully monitored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号