首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: Discrete morphologic, enzymatic and functional changes in skeletal muscle mitochondria have been demonstrated in patients with peripheral arterial disease (PAD). We examined mitochondrial respiration in the gastrocnemius muscle of nine patients (10 legs) with advanced PAD and in nine control patients (nine legs) without evidence of PAD. METHODS: Mitochondrial respiratory rates were determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Muscle samples were obtained from the anteromedial aspect of the gastrocnemius muscle, at a level 10 cm distal to the tibial tuberosity. Mitochondria respiratory rate, calculated as nanoatoms of oxygen consumed per minute per milligram of noncollagen protein, were measured at baseline (V(0)), after addition of substrates (malate and glutamate; (V(SUB)), after addition of adenosine diphosphate (ADP) (V(ADP)), and finally, after adenine nucleotide translocase inhibition with atractyloside (V(AT)). The acceptor control ratio, a sensitive indicator of overall mitochondrial function, was calculated as the ratio of the respiratory rate after the addition of ADP to the respiratory rate after adenine nucleotide translocase inhibition with atractyloside (V(ADP)/ V(AT)). RESULTS: Respiratory rate in muscle mitochondria from patients with PAD were not significantly different from control values at baseline (0.31 +/- 0.06 vs 0.55 +/- 0.12; P =.09), but V(sub) was significantly lower in patients with PAD compared with control subjects (0.43 +/- 0.07 vs 0.89 +/- 0.20; P <.05), as was V(ADP) (0.69 +/- 0.13 vs 1.24 +/- 0.20; P <.05). Respiratory rates after atractyloside inhibition in patients with PAD were no different from those in control patients (0.47 +/- 0.07 vs 0.45 +/- P =.08). Compared with control values, mitochondria from patients with PAD had a significantly lower acceptor control ratio (1.41 +/- 0.10 vs 2.90 +/- 0.20; P <.001). CONCLUSION: Mitochondrial respiratory activity is abnormal in lower extremity skeletal muscle in patients with PAD. When considered in concert with the ultrastructural and enzymatic abnormalities previously documented in mitochondria of chronically ischemic muscle, these data support the concept of defective mitochondrial function as a pathophysiologic component of PAD.  相似文献   

2.
Mitochondrial function during ischemic preconditioning   总被引:7,自引:0,他引:7  
Background. Ischemic preconditioning (IPC) protects the myocardium from ischemia reperfusion injury. The effect of IPC on the mitochondria is not well known. However, one of the mechanisms postulated in IPC (the opening of the mitochondrial K(ATP) channels) is likely to result in changes in mitochondrial function. Therefore, the purpose of this study was to determine the effect of IPC on mitochondrial function during ischemia reperfusion. Methods. Isolated rat hearts (n = 6/group) were subjected to (1) 30 minutes of equilibration, 25 minutes of ischemia, and 30 minutes of reperfusion (RP) (control group) or (2) 10 minutes of equilibration, two-5 minute episodes of IPC (each followed by 5 minutes of re-equilibration), 25 minutes of ischemia, and 30 minutes of RP (IPC group). Left ventricular rate pressure product (RPP) was measured. At end-equilibration (end-EQ) and at end-reperfusion (end-RP) mitochondria were isolated. Mitochondrial respiratory function (state 2, 3, and 4), respiratory control index (RCI), rate of oxidative phosphorylation (ADP/Delta t), and ADP:O ratio were measured by polarography with the use of NADH- or FADH-dependent substrates. Results. IPC improved recovery of RPP at end-RP (72% +/- 5% in IPC vs 30% +/- 4% in control, P <.05). Ischemia reperfusion (IR) decreased state 3, ADP/Delta t, and RCI in both groups compared with end-EQ. IPC improved state 3 (47 +/- 3 in IPC vs 37 +/- 2 ng-atoms O/min/mg protein in control), ADP/Delta t (17 +/- 1 in IPC vs 13 +/- 1 nmol/s/mg protein in control), and RCI (3.7 +/- 0.1 in IPC vs 2.1 +/- 0.2 in control) at end-RP compared with control with the use of NADH-dependent substrate (P <.05 vs control). IPC also improved state 3 (85 +/- 6 in IPC vs 71 +/- 4 ng-atoms O/min/mg protein in control), ADP/Delta t (18 +/- 2 in IPC vs 12 +/- 1 nmol/s/mg protein in control), RCI (2 +/- 0.1 in IPC vs 1.5 +/- 0.1 in control), and ADP:O ratios (1.4 +/- 0.04 in IPC vs 1.7 +/- 0.09 in control) at end-RP compared with control with the use of FADH-dependent substrate (P <.05 vs control). Conclusions. The cardioprotective effects of IPC can be attributed at least in part to the preservation of mitochondrial function during reperfusion.  相似文献   

3.
This study evaluated the respiratory indexes (respiratory control ratio [RCR] and ADP/O ratio), mitochondrial transmembrane potential (DeltaPsim), repolarization lag phase, repolarization level, ATP/ADP ratio, and induction of the permeability transition pore of brain mitochondria isolated from normal Wistar and GK diabetic rats of different ages (1.5, 12, and 24 months of age). The effect of amyloid beta-peptides, 50 micromol/l Abeta(25-35) or 2 micromol/l Abeta(1-40), on mitochondrial function was also analyzed. Aging of diabetic mice induced a decrease in brain mitochondrial RCR, ADP/O, and ATP/ADP ratios but induced an increase in the repolarization lag phase. Brain mitochondria from older diabetic rats were more prone to the induction of the permeability transition pore, i.e., mitochondria from 24-month-old diabetic rats accumulated much less Ca(2+) (20 micromol/l) than those isolated from 12-month-old rats (50 micromol/l) or 1.5-month-old rats (100 micromol/l). In the presence of 50 micromol/l Abeta(25-35) or 2 micromol/l Abeta(1-40), age-related mitochondrial effects were potentiated. These results indicate that diabetes-related mitochondrial dysfunction is exacerbated by aging and/or by the presence of neurotoxic agents such as amyloid beta-peptides, supporting the idea that diabetes and aging are risk factors for the neurodegeneration induced by these peptides.  相似文献   

4.
Objective:To study the effects of magnesium sulfate on brain mitochondrial respiratory function in rats after experimental traumatic brain injury and the possible mechanism.Methods:The middle degree brain injury in rats was made by BIM-III multi-function impacting machine.The brain mitochondrial respiratory function was measured with oxygen electrode and the ultra-structural changes were observed with transmission electron microscope(TEM).Results:1.The brain mitochondrial respiratory stage III and respiration control rate reduced significantly in the untreated groups within 24 and 72 hours.But treated Group A showed certain degree of recovery of respiratiory function;treated Group B showed further improvement.2. Untreated Group,treated Groups A and B had different degrees of mitochondrial ultra-structural damage respectively, which could be attenuated after the treatment with magnesium sulfate.Conclusions:The mitochondrial respiratory function decreases significantly after traumatic brain injury.But it can be apparently improved after magnesium sulfate management along with the attenuated damage of mitochondria discovered by TEM.The longer course of treatment can obtain a better improvement of mitochondrial respiratory function.  相似文献   

5.
Ketogenic capacity of mitochondria from the remnant liver of 70% hepatectomized rats was studied in relation to mitochondrial phosphorylative activity. Ketogenic capacity increased to a maximum of 6.04 +/- 0.39 from 3.84 +/- 0.13 of control, with an enhancement of mitochondrial phosphorylative activity 6 hr after hepatectomy, and then decreased to normal levels within 24 hr. Adenylate energy charge, (ATP + 1/2ADP)/(ATP + ADP + AMP), of the remnant liver decreased to 0.825 +/- 0.006 as compared to 0.849 +/- 0.002 of control 6 hr after operation. At 12 hr, total ketone body concentrations of the arterial blood increased concomitant with a fall in ketone body ratio (acetoacetate/3-hydroxybutyrate) which reflects the decreased liver mitochondrial redox (NAD+/NADH) state. These findings suggest that an enhancement of mitochondrial fatty acid oxidation and ketogenesis occurs concomitant with an enhancement of mitochondrial phosphorylative activity in the remnant liver in response to a decreased energy charge after 70% hepatectomy.  相似文献   

6.
BACKGROUND: Coenzyme Q10 (CoQ10) protects myocardium from ischemia-reperfusion (IR) injury as evidenced by improved recovery of mechanical function, ATP, and phosphocreatine during reperfusion. This protection may result from CoQ10's bioenergetic effects on the mitochondria, from its antioxidant properties, or both. The purpose of this study was to elucidate the effects of CoQ10 supplementation on mitochondrial function during myocardial ischemia-reperfusion using an isolated mitochondrial preparation. METHODS: Isolated hearts (n = 6/group) from rats pretreated with liposomal CoQ10 (10 mg/kg iv, CoQ10), vehicle (liposomal only, Vehicle), or saline (Saline) 30 min before the experiments were subjected to 15 min of equilibration (EQ), 25 min of ischemia (I), and 40 min of reperfusion (RP). Left ventricular-developed pressure (DP) was measured. Mitochondria were isolated at end-equilibration (end-EQ), at end-ischemia (end-I), and at end-reperfusion (end-RP). Mitochondrial respiratory function (State 2, 3, and 4, respiratory control index (RCI, ratio of State 3 to 4), and ADP:O ratio) was measured by polarography using NADH (alpha-ketoglutarate, alpha-KG)- or FADH (succinate, SA)-dependent substrates. RESULTS: CoQ10 improved recovery of DP at end-RP (67 +/- 11% in CoQ10 vs 47 +/- 5% in Vehicle and 50 +/- 11% in Saline, P < 0.05 vs Vehicle and Saline). CoQ10 did not change preischemic mitochondrial function. IR decreased State 3 and RCI in all groups using either substrate. CoQ10 had no effect in the mitochondrial oxidation of alpha-KG at end-I. CoQ10 improved State 3 at end-I when SA was used (167 +/- 21 in CoQ10 vs 120 +/- 10 in Saline and 111 +/- 10 ng-atoms O/min/mg protein in Vehicle, P < 0.05). Using alpha-KG as a substrate, CoQ10 improved RCI at end-RP (4.2 +/- 0.2 in CoQ10 vs 3.2 +/- 0.2 in Saline and 3.0 +/- 0.3 in Vehicle, P < 0.05). Using SA, CoQ10 improved State 3 (181 +/- 10 in CoQ10 vs 142 +/- 9 in Saline and 140 +/- 12 ng-atoms O/min/mg protein in Vehicle, P < 0.05) and RCI (2.21 +/- 0.06 in CoQ10 vs 1.85 +/- 0.11 in Saline and 1.72 +/- 0.08 in Vehicle, P < 0.05) at end-RP. CONCLUSIONS: The cardioprotective effects of CoQ10 can be attributed to the preservation of mitochondrial function during reperfusion as evidenced by improved FADH-dependent oxidation.  相似文献   

7.
OBJECT: Oxygen supply to the brain is often insufficient after traumatic brain injury (TBI), and this results in decreased energy production (adenosine triphosphate [ATP]) with consequent neuronal cell death. It is obviously important to restore oxygen delivery after TBI; however, increasing oxygen delivery alone may not improve ATP production if the patient's mitochondria (the source of ATP) are impaired. Traumatic brain injury has been shown to impair mitochondrial function in animals; however, no human studies have been previously reported. METHODS: Using tissue fractionation procedures, living mitochondria derived from therapeutically removed brain tissue were analyzed in 16 patients with head injury (Glasgow Coma Scale Scores 3-14) and two patients without head injury. Results revealed that in head-injured patients mitochondrial function was impaired, with subsequent decreased ATP production. CONCLUSIONS: Decreased oxygen metabolism due to mitochondrial dysfunction must be taken into account when clinically defining ischemia and interpreting oxygen measurements such as jugular venous oxygen saturation, arteriovenous difference in oxygen content, direct tissue oxygen tension, and cerebral blood oxygen content determined using near-infrared spectroscopy. Restoring mitochondrial function might be as important as maintaining oxygen delivery.  相似文献   

8.
Phosphorus 31 magnetic resonance spectroscopy (31P MRS) was used to study noninvasively the intracellular free Mg2+ concentration and cellular bioenergetic state of rat brain in vivo before and after fluid percussion-induced traumatic brain injury of graded severity. Brain injury was induced at four levels: low (1.0 +/- 0.5 atm); moderate (2.1 +/- 0.4 atm); high (3.9 +/- 0.9 atm); and severe (5.9 +/- 0.7 atm). Prior to injury, mean intracellular values for all groups (n = 24; mean +/- SE) were as follows: pH = 7.11 +/- 0.03; free [Mg2+] = 0.99 +/- 0.07 mM; cytosolic [ADP] = 25.2 +/- 0.8 nmol/g wet weight; cytosolic [AMP] = 0.29 +/- 0.02 nmol/g wet weight; cytosolic phosphorylation potential = 118.5 +/- 3.1 X 10(3) M-1; free energy of ATP hydrolysis = 62.11 +/- 0.04 kJ/mole; and energy charge = 0.99 +/- 0.01. Following every level of injury, there were decreases in intracellular free Mg2+ concentration, and alterations in the intracellular pH. These posttraumatic changes in Mg2+ and pH induced shifts in the equilibrium constants of the creatine kinase, adenylate kinase, and ATPase reactions, resulting in alterations in [ADP], [AMP], cytosolic phosphorylation potential, and free energy of hydrolysis, but not in the energy charge. The alterations in cytosolic phosphorylation potential following trauma were linearly correlated with the changes in intracellular free Mg2+ concentration. None of the individual bioenergetic parameters could be correlated with the severity of injury over the entire injury range; however, an association between cytosolic phosphorylation potential and reversibility of injury was apparent. These results suggest that reductions in cellular bioenergetic state following traumatic brain injury occur through a posttraumatic decrease in the cells' capacity for oxidative phosphorylation, which itself may be directly related to the intracellular free Mg2+ concentration.  相似文献   

9.
Experimental studies have reported early reductions in pH, phosphocreatine, and free intracellular magnesium following traumatic brain injury using phosphorus magnetic resonance spectroscopy. Paradoxically, in clinical studies there is some evidence for an increase in the pH in the subacute stage following traumatic brain injury. We therefore performed phosphorus magnetic resonance spectroscopy on seven patients in the subacute stage (mean 9 days postinjury) following traumatic brain injury to assess cellular metabolism. In areas of normal-appearing white matter, the pH was significantly alkaline (patients 7.09 +/- 0.04 [mean +/- SD], controls 7.01 +/- 0.04, p = 0.008), the phosphocreatine to inorganic phosphate ratio (PCr/Pi) was significantly increased (patients 4.03 +/- 1.18, controls 2.64 +/- 0.71, p = 0.03), the inorganic phosphate to adenosine triphosphate ratio (Pi/ATP) was significantly reduced (patients 0.37 +/- 0.10, controls 0.56 +/- 0.19, p = 0.04), and the PCr/ATP ratio was nonsignificantly increased (patients 1.53 +/- 0.29, controls 1.34 +/- 0.19, p = 0.14) in patients compared to controls. Furthermore, the calculated free intracellular magnesium was significantly increased in the patients compared to the controls (patients 0.33 +/- 0.09 mM, controls 0.22 +/- 0.09 mM, p = 0.03)). Proton spectra, acquired from similar regions showed a significant reduction in N-acetylaspartate (patients 9.64 +/- 2.49 units, controls 12.84 +/- 2.35 units, p = 0.03) and a significant increase in choline compounds (patients 7.96 +/- 1.02, controls 6.67 +/- 1.01 units, p = 0.03). No lactate was visible in any patient or control spectrum. The alterations in metabolism observed in these patients could not be explained by ongoing ischemia but might be secondary to a loss of normal cellular homeostasis or a relative alteration in the cellular population, in particular an increase in the glial cell density, in these regions.  相似文献   

10.
BACKGROUND: Mitochondrial proteins and genes are damaged after burn injury in animals and are assessed in human burn patients in this study. METHODS: The rates of maximal muscle mitochondrial oxidative capacity (adenosine triphosphate production) and uncoupled oxidation (heat production) for both palmitate and pyruvate were measured in muscle biopsies from 40 children sustaining burns on more than 40% of their body surface area and from 13 healthy children controls. RESULTS: Maximal mitochondrial oxidation of pyruvate and palmitate were reduced in burn patients compared with controls (4.0 +/- .2:1.9 +/- .1 micromol O2/citrate synthase activity/mg protein/min pyruvate; control:burn; P < .001 and 3.0 +/- .1: .9 +/- .03 micromol O2/citrate synthase activity/mg protein/min palmityl CoA; control:burn; P = .003). Uncoupled oxidation was the same between groups. CONCLUSIONS: The maximal coupled mitochondrial oxidative capacity is severely impaired after burn injury, although there are no alterations in the rate of uncoupled oxidative capacity. It may be that the ratio of these indicates that a larger portion of energy production in trauma patients is wasted through uncoupling, rather than used for healing.  相似文献   

11.
The toxic activities in burned skin, in serum or in blister fluid of burn patients were examined for their impairing activity on rat liver mitochondrial function by incubating mitochondria with saline extracts of these materials.Toxic activities on mitochondrial function such as lowering respiratory control index but not ADP/O ratio were demonstrated in extracts of burned skins and in sera of non-surviving burn patients, but were not present in sera and in blister fluids of surviving burn patients.  相似文献   

12.
Mitochondria prepared from ischemic rat livers show greatly reduced ability to form high-energy phosphate bonds when oxidizing either succinate, glutamate, or pyruvate. At the early stages of ischemia, a decrease in the rate of substrate oxidation plays a more important role than uncoupling of oxidation from phosphorylation. In the second hour of ischemia, there is no further decrease in the oxidation rate while uncoupling continues. The addition of albumin improves mitochondrial function both in the ischemic and nonischemic state. When working with mitochondria severely damaged by ischemia, the direct determination of the ADP/O ratio gives more dependable results than polarographic methods, since the former does not depend on well measurable respiratory control indices.  相似文献   

13.
Trauma to the spinal cord causes a cascade of secondary events, such as mitochondrial dysfunction, which disrupts cellular functions and ultimately leads to cell death. Cyclosporin A (CsA) is a potent immunosuppressant that promotes mitochondrial function by inhibiting mitochondrial permeability transition (mPT). Clinical trials examining CsA in traumatic brain injury are currently under-way, but CsA is potentially neurotoxic. NIM811 is a non-immunosuppressive CsA derivative that inhibits mPT at nanomolar concentrations and with significantly less cytotoxicity than CsA. In the present study, we investigated the effects of NIM811 treatment on mitochondrial bioenergetics and the production of reactive oxygen species following spinal cord injury (SCI) in rats. Rats were pretreated with NIM811 or vehicle, and after 15 min the rats received a "mild/moderate" spinal cord contusion. After 24 h, the spinal cords were rapidly removed and synaptosomal mitochondria were isolated. NIM811 pretreatment significantly improved mitochondrial respiratory control ratios, and the maximal electron transport capacity of complex I and II, as well as their ATP-producing capacity. Consistent with the improvements in mitochondrial function, NIM811 pretreatment significantly decreased free radical production in isolated mitochondria. These studies are the first to demonstrate the therapeutic potential of CsA derivatives in a model of SCI, and support the need for continued investigation of compounds like NIM811 as an acute treatment for human SCI.  相似文献   

14.
The function of renal cortical mitochondria isolated from rats with cyclosporine nephrotoxicity was studied. Renal cortical mitochondria were isolated from 5 male Fischer rats after 14 days of daily intraperitoneal administration of CsA, 25 mg/kg body wt. Compared with the mitochondrial function of 5 pair-fed control rats receiving vehicle alone, state 3 respiration (ADP-dependent) using several substrates was mildly depressed only with pyruvate-malate supported respiration (27 +/- 3 vs. 36 +/- 2 nmol O2/min/mg protein; P less than 0.05). The Ca2+ accumulation rate was slightly reduced (354 +/- 14 vs. 416 +/- 18 nmol/min/mg protein; P less than 0.025) while the cytochrome enzyme concentrations were not different from controls. Respiratory control ratios were not affected (CsA group: 9.5 +/- 2.8, control group: 8.9 +/- 2.3; glutamate-malate as substrates). These minor alterations in mitochondrial function occurred in the presence of severe depression in the glomerular filtration rate and renal morphologic changes commonly seen with CsA administration. Moreover, there was no increase in enzymuria. These results indicate that CsA has minor effects on the respiratory function of renal cortical mitochondria. The severe depression in the glomerular filtration rate is out of proportion to these minor alterations in mitochondrial function. These findings argue against a prominent role for a direct toxic action of CsA on tubular cells in the pathogenesis of acute cyclosporine-induced renal dysfunction.  相似文献   

15.
Reduced oxygen consumption and lactic acidosis were observed frequently in patients with peritonitis. This study was designed to evaluate whether reduced oxygen consumption is secondary to deficient oxygen delivery or is a function of primary injury to mitochondria. Peritonitis was produced in rats by cecal ligation and perforation. Animals were killed at 2, 4, and 6 hours and agonally. Oxygen utilization was studied polarographically in isolated hepatic mitochondria with glutamate, pyruvate, and succinate substrates. State 3, state 4, respiratory control index (RCI), and ADP:O ratios were determined. Whole tissue and isolated mitochondrial ultrastructure were examined by electron microscopy. Systemic blood pressure and oxygenation were monitored. Hepatic tissue oxygenation was examined using a surface oxygen electrode. Peritonitis resulted in acceleration of state 3 respiratory rates and increased respiratory control indices at all time intervals. Maximal respiratory control was observed at 4 hours with all substrates. Whole tissue mitochondria demonstrated mild swelling and thinning of membranes and matrix. Experimental and control isolates showed similar orthodox-to-condensed conformational changes. Hepatic tissue oxygenation declined to less than 10% of control by 6 hours, while arterial Po2 was unchanged. The conclusions of this study are that lethal peritonitis results in (1) no primary injury to the hepatic mitochondria, (2) increased efficiency of hepatic mitochondrial oxygen utilization, and (3) reduced hepatic tissue oxygenation. The exact mechanisms of defective oxygen delivery require further study.  相似文献   

16.
Ischemic preconditioning (IPC) protects myocardium from ischemia reperfusion injury by activating mitochondrial K(ATP) channels. However, the mechanism underlying the protective effect of K(ATP) channel activation has not been elucidated. It has been suggested that activation of mitochondrial K(ATP) channels may prevent mitochondrial dysfunction associated with Ca(2+) overload during reperfusion. The purpose of this experiment was to study, in an isolated mitochondrial preparation, the effects of mitochondrial K(ATP) channel opening on mitochondrial function and to determine whether it protects mitochondria form Ca(2+) overload. Mitochondria (mito) were isolated from rat hearts by differential centrifugation (n = 5/group). Mito respiratory function was measured by polarography without (CONTROL) or with a potassium channel opener (PINACIDIL, 100 microM). Different Ca(2+) concentrations (0 to 5 x 10(-7) M) were used to simulate the effect of Ca(2+) overload; state 2, mito oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI: ratio of state 3 to state 4); rate of oxidative phosphorylation (ADP/Deltat); and ADP:O ratio were measured. PINACIDIL increased state 2 respiration and decreased RCI compared to CONTROL. Low Ca(2+) concentrations stimulated state 2 and state 4 respiration and decreased RCI and ADP:O ratios. High Ca(2+) concentrations increased state 2 and state 4 respiration and further decreased RCI, state 3, and ADP/Deltat. PINACIDIL improved state 3, ADP/Deltat, and RCI at high Ca(2+) concentrations compared to CONTROL. Pinacidil depolarized inner mitochondrial membrane, as evidenced by decreased RCI and increased state 2 at baseline. Depolarization may decrease Ca(2+) influx into mito, protecting mito from Ca(2+) overload, as evidenced by improved state 3 and RCI at high Ca(2+) concentrations. The myocardial protective effects resulting from activating K(ATP) channels either pharmacologically or by IPC may be the result of protecting mito from Ca(2+) overload.  相似文献   

17.
BACKGROUND: We have previously shown that chronic metabolic acidosis, induced in rats by NH(4)Cl feeding, leads to nephron hypertrophy and to a decreased water-salt reabsorption by the kidneys. Since mitochondria are the main source of metabolic energy that drives ion transport in kidney tubules, we examined energy-linked functions (respiration, electrochemical membrane potential and coupling between respiration and ADP phosphorylation) in mitochondria isolated from rat kidney and liver at 48 h after metabolic acidosis induced by NH(4)Cl. METHODS: Mitochondria isolated from the kidneys and liver of metabolic acidotic rats, induced by NH(4)Cl, was used to study of the oxygen consumption by Clark-type electrode, mitochondrial electrical transmembrane potential estimated by the safranine O method and the variations in free medium Ca(2+) concentrations examined by absorbance spectrum of Arsenazo III set at the 675-685 nm wavelength pair. RESULTS: Whole kidney and liver mitochondria isolated from 48 h acidotic rats presented higher resting respiration, lower respiratory control and a lower ADP/O ratio than controls. These differences in mitochondrial coupling, between respiration and oxidative phosphorylation (ATP synthesis), were totally corrected when experiments were carried out in the presence of carboxyatractyloside, GDP and BSA, indicating that mitochondrial uncoupling proteins are more active in acidotic rat kidneys. Interestingly, determination of Ca(2+) transport demonstrated a faster rate of initial Ca(2+) uptake by acidotic kidney mitochondria, which resulted in a lower concentration of extra-mitochondrial Ca(2+) under steady-state conditions (Ca(2+) set point) when compared with control mitochondria. In contrast, there were no significant differences in the rates of Na(+) or ruthenium red induced Ca(2+) efflux. CONCLUSIONS: We suggest that the mild uncoupling and higher Ca(2+) accumulation represents an adaptation of the mitochondria to cope with conditions of oxidative stress and high cytosolic Ca(2+), which are associated with a decreased efficiency of oxidative phosphorylation that may explain, at least in part, the striking natriuresis observed under chronic acidosis. Finally, there were no changes in Ca(2+) transport or coupling in liver mitochondria isolated from the acidotic rats.  相似文献   

18.
Liver and skeletal muscle mitochondrial function following burn injury.   总被引:3,自引:0,他引:3  
The possibility of altered mitochondrial function consequent to burn injury was investigated. Mitochondria isolated from liver or skeletal muscle of burn-injured rats (20% tbs) were compared at 3 days postburn to shams and normal controls. Mitochondrial yields were the same for all groups. ADP;O ratios were in the theoretical ranges expected and did not differ among burn, sham, and normal animals. Respiratory control ratios (RCR's) were decreased in liver mitochondria, averaging 71.7% of normal for burned animals compared to 95.8% for the sham group. The loss of respiratory control in liver mitochondria implies inefficient use of substrate chemical energy and could contribute to postburn hypermetabolism. The different response of muscle mitochondria as compared to liver suggests that alterations may be organ specific.  相似文献   

19.
Mitochondrial death in sepsis: a failed concept   总被引:1,自引:0,他引:1  
The concept of early selective mitochondrial injury has been proposed to explain the global metabolic dysfunction observed in the septic state. A two phase study was undertaken to test the validity of this hypothesis. In the initial phase, an endotoxin shock model was employed in the rat to delineate the function of skeletal muscle mitochondria. Mitochondrial function was determined polarimetrically, comparing state three and state four rates, respiratory control index (RCI) and ADP:O ratios. No significant alteration in these parameters was observed in the endotoxic state. Phase II of the study was designed to investigate mitochondrial function in a bacterial peritonitis rat model. Both liver and skeletal muscle mitochondrial function were determined to control for possible alterations in liver metabolism. Neither muscle nor liver mitochondria exhibited functional impairment during sepsis. We conclude from this study that neither endotoxemia nor peritonitis selectively "kills" mitochondria as previously suggested.  相似文献   

20.
OBJECT: Currently, there are no good clinical tools to identify the onset of secondary brain injury and/or hypoxia after traumatic brain injury (TBI). The aim of this study was to evaluate simultaneously early changes of cerebral metabolism, acid-base homeostasis, and oxygenation, as well as their interrelationship after TBI and arterial hypoxia. METHODS: Cerebral biochemistry and O2 supply were measured simultaneously in a feline model of fluid-percussion injury (FPI) and secondary hypoxic injury. After FPI, brain tissue PO2 decreased from 33 +/- 5 mm Hg to 10 +/- 4 mm Hg and brain tissue PCO2 increased from 55 +/- 2 mm Hg to 81 +/- 9 mm Hg, whereas cerebral pH fell from 7.1 +/- 0.06 to 6.84 +/- 0.14 (p < 0.05 for all three measures). After 40 minutes of hypoxia, brain tissue PO2 and pH decreased further to 0 mm Hg and 6.48 +/- 0.28, respectively (p < 0.05), whereas brain tissue PCO2 remained high at 83 +/- 13 mm Hg. Secondary hypoxic injury caused a drastic increase in cerebral lactate from 513 +/- 69 microM/L to 3219 +/- 490 microM/L (p < 0.05). The lactate/glucose ratio increased from 0.7 +/- 0.1 to 9.1 +/- 2 after hypoxia was introduced. The O2 consumption decreased significantly from 18.5 +/- 1.1 microl/mg/hr to 13.2 +/- 2.1 microl/mg/hr after hypoxia was induced. CONCLUSIONS: Cerebral metabolism, O2 supply, and acid-base balance were severely compromised ultra-early after TBI, and they declined further if arterial hypoxia was present. The complexity of pathophysiological changes and their interactions after TBI might explain why specific therapeutic attempts that are aimed at the normalization of only one component have failed to improve outcome in severely head injured patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号