首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using purified photolyases for pyrimidine (6-4) pyrimidone photoproducts [(6-4)PP] and cyclobutane pyrimidine dimers (CPD), the effects of photoreactivation on mutagenesis were examined in the supF gene on a plasmid transfected into repair-deficient SOS-induced Escherichia coli host cells. More than 95% of CPD and (6-4)PP were removed from plasmid DNA by treatment with CPD photolyase and (6-4)photolyase, respectively. In each photolyase treatment, base substitutions at dipyrimidine sequences were predominantly observed. Of the single base substitutions observed after CPD photoreactivation, 83% were A:T-->G:C transitions at 5'-TT-3' sites. After (6-4)photolyase treatment, 81% were G:C-->A:T transitions at 5'-CC-3' and 5'-TC-3' sequences. Thus, the major mutagenic photoproducts of single-base substitutions were CPD at 5'-CC-3' or 5'-TC-3' sites and (6-4)PP at 5'-TT-3' sites. Tandem double mutations occurred mainly at 5'-CC-3' sites and were CPD-photoreactivated, suggesting that CPD at 5'-CC-3' was responsible for tandem double mutations. After photoreactivation of both CPD and (6-4)PP, single-base substitutions were primarily G:C-->A:T transitions at 5'-CC-3' or 5'-TC-3' sites and A:T-->G:C transitions at 5'-TT-3' sites, and secondarily G:C-->T:A transversions at 5'-CC-3' sites, G:C-->C:G transversions at 5'-CC-3' sites and A:T-->T:A transversions at 5'-TT-3' sites, which were essentially the same as those observed after photoreactivation of CPD alone, (6-4)PP alone and without photoreactivation. Thus, these transversions were not derived from unknown UV adducts but from incompletely repaired CPD and (6-4)PP.  相似文献   

3.
Xeroderma pigmentosum (XP) variant patients are genetically predisposed to sunlight-induced skin cancer. Fibroblasts from such patients are extremely sensitive to mutations induced by UV radiation, and the spectrum of mutations induced in their hypoxanthine phosphoribosyltransferase (HPRT) gene differs significantly from that seen in normal cells. To determine if this UV hypermutability reflects abnormally slow excision repair of cyclobutane pyrimidine dimers (CPD) or 6-4 pyrimidine-pyrimidones (6-4s) in that gene, we synchronized XP variant and normal fibroblasts, irradiated them in early G1-phase, 12 or more hours prior to the scheduled onset of S phase, harvested them immediately or after allowing various times for repair, and analyzed the DNA for photoproducts in the HPRTgene, using quantitative Southern blotting. To incise the DNA at CPD, we used T4 endonuclease V; to incise at 6-4s, we first used photolyase and UV365nm to reverse CPD and then UvrABC excinuclease. Excision of CPD was rapid, preferential, and strand-specific, but there was no significant difference in rate between the two kinds of cells. The half life was 4 h in the transcribed strand of the gene and 6.5 h in the nontranscribed strand. For excision of CPD in the genome overall, this value is 12 h. Excision of 6-4s from either strand of the HPRT gene was extremely rapid and preferential in both kinds of cells, with a half life of ≈ 30 min. The results indicate that the UV hypermutability of the XP variant cells cannot be caused by slower rates of repair of CPD and/or 6-4s in the target gene for mutagenesis.  相似文献   

4.
During the immune response, B cells undergo a programed mutagenic cascade to promote increased affinity and expanded antibody function. The two processes, somatic hypermutation (SHM) and class switch recombination (CSR), are initiated by the protein activation‐induced deaminase (AID), which converts cytosine to uracil in the immunoglobulin loci. The presence of uracil in DNA promotes DNA mutagenesis though a subset of DNA repair proteins. Two distinct mechanisms have been proposed to control uracil processing. The first is through base removal by uracil DNA glycosylase (UNG), and the second is through detection by the mismatch repair (MMR) complex MSH2/6. In a study published in this issue of European Journal of Immunology, Dingler et al. [Eur. J. Immunol. 2014. 44: 1925‐1935] examine uracil processing in B cells in the absence of UNG and SMUG1 glycosylases. Similar to UNG, SMUG1 is an uracil glycosylase which can remove the uracil base. While Smug1?/? mice show no clear deficiency in SHM or CSR, Ung?/?Smug1?/? mice display exacerbated phenotypes, suggesting a back‐up role for SMUG1 in antibody diversity. This new information expands the model of uracil processing in B cells and raises several interesting questions about the dynamic relationship between base excision repair and MMR.  相似文献   

5.
The human skin cancer-prone disease xeroderma pigmentosum variant (XPV) results from a mutation in the human RAD30 gene, which encodes the lesion bypass DNA polymerase eta. XPV cells are characterized by delayed completion of DNA replication and increased mutagenesis following UV-irradiation. Using extracts of an XPV lymphoblast cell line (GM2449C) that has a truncating mutation in the RAD30 gene, we investigated the effect of a (6-4) photoproduct and a cyclobutane pyrimidine dimer (CPD), at a unique -TT- site on either the leading or lagging strand, on plasmid DNA replication. Compared to normal cell extracts, XPV cell extracts have a reduced capacity to carry out complete replication of DNA containing either a (6-4) photoproduct or a CPD on the leading strand, whereas there is little difference between the two cell extracts in replication of DNA containing a lesion on the lagging strand. Inhibition of replication in the presence of a (6-4) photoproduct is attributed to arrest of nascent DNA strand synthesis at the lesion site; in XPV cell extracts, the proportion of arrested products is increased compared to that of normal cell extracts. These results are consistent with a requirement for functional DNA polymerase eta in the replication of a double-stranded plasmid containing either a (6-4) photoproduct or a CPD, on the leading but not the lagging strand.  相似文献   

6.
Colorectal cancers with DNA mismatch repair (MMR) gene mutations characteristically display a high rate of replication errors in simple repetitive sequences detectable as microsatellite instability (MSI). Most are the result of somatic MMR dysfunction; however, a subset are caused by germline mutations. The availability of commercial antibodies for MSH2 and MLH1 [corrected] offers an alternative strategy to molecular methods for identifying MMR deficient cancers. To evaluate immunohistochemistry, MLH1 and MSH2 expression was studied using monoclonal antibodies in formalin fixed, paraffin wax embedded cancers. The immunohistochemical staining patterns of 23 cancers displaying MSI, including four cases with germline mutations, were compared with 23 microsatellite stable (MSS) cancers. All MSS cancers exhibited staining with both antibodies. Twenty two of the MSI cases showed absent MMR expression with either anti-MSH2 or anti-MLH1 [corrected]. The high sensitivity and predictive value of immunohistochemistry in detecting MMR deficiency offers a method of discriminating between MSI and MSS cancers caused by MSH2 and MLH1 [corrected] dysfunction. The application and suitability of immunohistochemistry for the detection of MSI and as a strategy for prioritising the mutational analysis of MMR genes in routine clinical practice is discussed.  相似文献   

7.
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated protein. These DNA variations are thought to be pathogenic mutations. However, some patients carry other DNA mutations, referred to as unclassified variants (UVs), which do not lead to such a premature termination of translation; it is not known whether these contribute to the disease phenotype or merely represent rare polymorphisms. This is a major problem which has direct clinical consequences. Several criteria can be used to classify these UVs, such as: whether they segregate with the disease within pedigrees, are absent in control individuals, show a change of amino acid polarity or size, provoke an amino acid change in a domain that is evolutionary conserved and/or shared between proteins belonging to the same protein family, or show altered function in an in vitro assay. In this review we discuss the various functional assays reported for the HNPCC-associated MMR proteins and the outcomes of these tests on UVs identified in patients diagnosed with or suspected of having HNPCC. We conclude that a large proportion of MMR UVs are likely to be pathogenic, suggesting that missense variants of MMR proteins do indeed play a role in HNPCC.  相似文献   

8.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is caused by heterozygous germline mutations in DNA mismatch repair genes (MMR), (MSH2, MLH1, MSH6, and PMS2) and it is inherited in an autosomal dominant pattern with high penetrance. Several patients have been reported carrying bi-allelic MMR gene mutations and whose phenotype resembled a syndrome with childhood malignancies including hematological malignancies, brain, and colorectal tumors. This phenotype is similar to the tumor spectrum of MMR knockout mice. Herein we describe two brothers of healthy consanguineous parents from Pakistan, who had developed two and three colorectal cancers at the ages of 11 and 12 years, respectively, and less than 30 polyps. Tumor specimens were microsatellite instable (MSI-H), and expression of MSH2 and MSH6 was lost. Mutation analyses of DNA samples from both patients revealed a novel homozygous c.2006-5T > A mutation in intron 12 of the MSH2 gene. This phenotype of the brothers is unusual as they neither develop hematological malignancies nor brain tumors at an older age of presentation than other patients with homozygous MSH2 mutations. The milder phenotype may be due to the expression of low amounts of MSH2 protein with reduced activity.  相似文献   

9.
To date, five mismatch-repair (MMR) genes, MLH1, MSH2, MSH6, MSH3 and PMS2, are known to be involved in human MMR function. Two of those, MLH1 and MSH2, are further the most common susceptibility genes for hereditary non-polyposis colorectal cancer (HNPCC), while MSH3 and PMS2 are seldom (PMS2) or not at all (MSH3 ) reported to be involved in HNPCC. Despite the increasing number of MSH6 germline mutations, their pathogenicity remains questionable, because the mutations are mainly linked to putative HNPCC families lacking the typical clinical and molecular characteristics of the syndrome, such as early age at onset and high microsatellite instability (MSI). High MSI is a consequence of MMR defect, and the pathogenicity of germline mutations in HNPCC is thus linked to malfunction of MMR. To address the question of whether and how MSH6 mutations cause susceptibility to HNPCC, we studied heterodimerization of four MSH6 variants with MSH2, and the functionality of these MutSalpha complexes in an in vitro MMR assay. All mutations occurred in putative HNPCC patients. Irrespective of the type or the site of the amino acid substitutions, all the variants repaired G.T mismatches to A.T as wild-type MSH6 protein. However, the MSH6 protein carrying a mutation in the MSH2/MSH6 interaction region was poorly expressed, suggesting problems in its stability. Our results are clinically relevant, since they demonstrate that under the stable in vitro conditions, when the amounts of the proteins are adequate for repair, the tested MSH6 mutations do not affect repair function. Consequently, while the typical HNPCC syndrome is associated with problems in repair reaction, the pathogenicity of mutations in putative HNPCC families may be linked to other biochemical events.  相似文献   

10.
DNA mismatch repair (MMR) is essential for genome stability and inheritance of a mutated MMR gene, most frequently MSH2 or MLH1, results in cancer predisposition known as Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC). Tumors that arise through MMR deficiency show instability at simple tandem repeat loci (STRs) throughout the genome, known as microsatellite instability (MSI). The STR instability is dominated by errors that accumulate during replication in the absence of effective MMR. In this study we show that there is a high level of instability within telomeric DNA with a tendency toward deletions in tumor-derived MMR defective cell lines. We downregulated MSH2 expression in a normal fibroblast cell line and isolated four clones, with differing levels of MSH2 depletion. The telomere-shortening rate was measured at the Xp/Yp, 12q, and 17p telomeres in the MSH2 depleted and three control clones. Interestingly the mean telomere-shortening rate in the clones with MSH2 depletion was significantly greater than in the control clones. This is the first demonstration that MSH2 deficiency alone can lead to accelerated telomere shortening in normal human cells.  相似文献   

11.
Stationary-phase (also called adaptive) mutation occurs in non-dividing cells during prolonged non-lethal selective pressure, e.g. starvation for an essential amino acid. Because in such conditions no DNA replication is observed, mutations probably arise as a result of inefficient DNA repair. In order to understand the role of the yeast mismatch-repair (MMR) system in the mutagenesis of stationary-phase cells, we studied the effects of deletions in genes encoding MutS- and MutL-related proteins on the reversion frequency of the lys2 Delta Bgl frameshift mutation. We found that the level of Lys(+) reversion was increased in all MMR mutants, with the strongest effect observed in a MSH2 (MUTS homologue)-deprived strain. Disruption of the MSH3 or MSH6 genes (also MUTS homologues) resulted in elevation of the mutation frequency and rate, but to a lesser degree than that caused by the inactivation of MSH2. MutL-related proteins were also required for mutation avoidance in stationary-phase cells, but to a lesser extent than MutS homologues. Among MutL homologues, Mlh1 seems to play the major role in this process, while Pms1 and Mlh3 are partially redundant and appear to substitute for each other. These data suggest that MMR proteins, particularly MutS homologues, are involved in the control of mutability in stationary-phase yeast cells.  相似文献   

12.
Heterozygous germline mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 cause hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome, a dominantly inherited cancer susceptibility syndrome. Recent reports provide evidence for a novel recessively inherited cancer syndrome with constitutive MMR deficiency due to biallelic germline mutations in one of the MMR genes. MMR-deficiency (MMR-D) syndrome is characterized by childhood brain tumors, hematological and/or gastrointestinal malignancies, and signs of neurofibromatosis type 1 (NF1). We established an RNA-based mutation detection assay for the four MMR genes, since 1) a number of splicing defects may escape detection by the analysis of genomic DNA, and 2) DNA-based mutation detection in the PMS2 gene is severely hampered by the presence of multiple highly similar pseudogenes, including PMS2CL. Using this assay, which is based on direct cDNA sequencing of RT-PCR products, we investigated two families with children suspected to suffer from MMR-D syndrome. We identified a homozygous complex MSH6 splicing alteration in the index patients of the first family and a novel homozygous PMS2 mutation (c.182delA) in the index patient of the second family. Furthermore, we demonstrate, by the analysis of a PMS2/PMS2CL "hybrid" allele carrier, that RNA-based PMS2 testing effectively avoids the caveats of genomic DNA amplification approaches; i.e., pseudogene coamplification as well as allelic dropout, and will, thus, allow more sensitive mutation analysis in MMR deficiency and in HNPCC patients with PMS2 defects.  相似文献   

13.
The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.  相似文献   

14.
Objective: To identify patients with endometrial cancer with potential Lynch-related DNA mismatch repair (MMR) protein expression defects and to explore the role of these defects in screening for LS. Methods: Endometrial cancers from 173 patients recruited to the Nanchong Central Hospital were tested for MMR (MLH1, MSH2, PMS2, and MSH6) protein expression using immunohistochemistry (IHC). Results: In the 173 tumor tissue samples, the expression loss rates of MSH6, MSH2, PMS2 and MLH1 protein were 16.18% (28/173), 12.14% (21/173), 7.51% (13/173) and 5.78% (10/173), respectively. The total loss rate of MMR protein was 29.89% (27/87). There were 19 patients with a family history of cancer, of which 18 patients demonstrated loss of expression of MMR protein. In the 22 abnormal MMR patients without family history, five families were found to have Lynch-associated cancer (colorectal cancer, endometrial cancer, ovarian cancer, stomach cancer) after follow-up for two years. Conclusion: MMR proteins play an important role in the progress of endometrial cancer. The routine testing of MMR proteins in endometrial cancer can contribute to the screening of LS families, especially small families.  相似文献   

15.
Lynch syndrome (LS) is an autosomal dominant disorder that predisposes to colon, endometrial, and other cancers. LS is caused by a heterozygous germline mutation in one of the DNA mismatch repair (MMR) genes. A significant proportion of all mutations found in suspected LS patients comprises single amino acid alterations. The pathogenicity of these variants of uncertain significance (VUS) is difficult to assess, precluding diagnosis of carriers and their relatives. Here we present a rapid cell-free assay to investigate MMR activity of MSH2 or MSH6 VUS. We used this assay to analyze a series of MSH2 and MSH6 VUS, selected from the Leiden Open Variation Database. Whereas a significant fraction of the MSH2 VUS has lost MMR activity, suggesting pathogenicity, the large majority of the MSH6 VUS appears MMR proficient. We anticipate that this assay will be an important tool in the development of a comprehensive and widely applicable diagnostic procedure for LS-associated VUS.  相似文献   

16.
Germline mutations in mismatch repair (MMR) genes, predominantly in MLH1 and MSH2, are responsible for hereditary nonpolyposis colorectal cancer (HNPCC), a cancer-susceptibility syndrome with high penetrance. In addition, MSH6 mutations have been reported to account for about 10% of all germline mismatch repair (MMR) gene mutations in HNPCC patients, and have been associated with a later age of onset of the disease compared to MLH1 and MSH2 mutations. Here, we report eight novel germline mutations in MSH6. The patients were selected by having developed tumors with loss of MSH6 protein expression. All tumors showed high-level microsatellite instability (MSI-H). Seven mutations resulted in premature stop codons, comprised of two nonsense mutations (c.426G>A [p.W142X], c.2105C>A [p.S702X]), two insertions (c.2611_2614dupATTA [p.I872fsX10], c.3324dupT [p.I1109fsX3]) and three deletions (c.1190_1191delAT [p.Y397fsX3], c.1632_1635delAAAA [p.E544fsX26], c.3513_3514delTA [p.1171fsX5]). In addition, an amino acid substitution of an arginine residue (c.2314C>T [p.R772W]) conserved throughout a wide variety of mutS homologs has been found in a patient not fulfilling the Bethesda criteria for HNPCC. Our results emphasize the suitability of IHC as a pre-selection tool for MSH6 mutation analysis and the high frequency of germline mutation detection in patients with MSH6-deficient tumors. In addition, our findings point towards a broad variability regarding penetrance associated with MSH6 germline mutations.  相似文献   

17.
Lynch syndrome (hereditary non-polyposis colorectal cancer, HNPCC) is an autosomal dominant condition caused by heterozygous germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. Rare cases have been reported of an inherited bi-allelic deficiency of MMR genes, associated with multiple café-au-lait spots, early onset CNS tumors, hematological malignancies, and early onset gastrointestinal neoplasia. We report on a patient with vitiligo in segments of the integument who developed systemic lupus erythematosus (SLE) at the age of 16, and four synchronous colorectal cancers at age 17 years. Examination of the colorectal cancer tissue showed high microsatellite instability (MSI-H) and an exclusive loss of expression of the MSH6 protein. Immunohistochemical analysis of normal colon tissue also showed loss of MSH6, pointing to a bi-allelic MSH6 mutation. Sequencing of the MSH6 gene showed the two germline mutations; c.1806_1809delAAAG;p.Glu604LeufsX5 and c.3226C > T;p.Arg1076Cys. We confirmed that the two mutations are on two different alleles by allele-specific PCR. To our knowledge, neither parent is clinically affected. They did not wish to be tested for the mutations identified in their daughter. These data suggest that bi-allelic mutations of one of the MMR genes should be considered in patients who develop early-onset multiple HNPCC-associated tumors and autoimmune disorders, even in absence of either hematological malignancies or brain tumors.  相似文献   

18.
19.

Background

Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR). HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6.

Methods

Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out.

Results

We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6) resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702]), three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298]) and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]). All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H).

Conclusions

HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.  相似文献   

20.
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant tumour predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. In contrast to MLH1 and MSH2, germline mutations in MSH6 are associated with a milder and particularly variable phenotype. Based on the reported interaction of the MMR complex and the base excision repair protein MUTYH, it was hypothesised that MUTYH mutations serve as phenotypical modifiers in HNPCC families. Recently, a significantly higher frequency of heterozygosity for MUTYH mutations among MSH6 mutation carriers was reported. We examined 64 MSH6 mutation carriers (42 truncating mutations, 19 missense mutations and 3 silent mutations) of the German HNPCC Consortium for MUTYH mutations by sequencing the whole coding region of the gene. Monoallelic MUTYH mutations were identified in 2 of the 64 patients (3.1%), no biallelic MUTYH mutation carrier was found. The frequency of MUTYH mutations was not significantly higher than that in healthy controls, neither in the whole patient group (P=0.30) nor in different subgroups regarding mutation type. Our results do not support the association between MSH6 mutations and heterozygosity for MUTYH mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号