首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of smooth muscle are thought to be partially determined by the level of the expression of the 7 amino acid insert, SMB, in the myosin heavy chain, as SMB is generally expressed at higher levels in faster smooth muscle. In this study, we determined the role of this insert on shortening velocity and force regeneration following rapid reduction in muscle length (k(step)) in bladder tissue from a transgenic mouse line expressing the insert at three different levels: wild type (WT, +/+, SMB/SMB), an SMA homozygous type (SMB KO, -/-), and a heterozygous type (+/-, SMB/SMA). Smooth muscle from +/+ bladder shorten faster than both the +/- and -/- bladder smooth muscle when activated with Ca2+, consistent with SMB determining the shortening velocity of smooth muscle. The addition of Pi to the fully activated skinned bladder strips did not affect the rate of shortening for either the +/+ or -/- bladder types but did significantly decrease the rate of shortening for the +/- type. In contrast, the addition of ADP to fully Ca2+ activated bladder strips increased the rate of shortening for all three bladder types. However after thiophosphorylation, ADP slowed the shortening velocity. These data are consistent with shortening velocity being determined by the level of activation (or crossbridge attachment) in smooth muscle. The rates of force regeneration according to the k(step) protocol showed no differences between bladder types and also proved insensitive to either Pi or ADP. These data suggest that the rates of force regeneration were determined not only by the kinetics of the crossbridge cycle, but also by factors outside the contractile apparatus.  相似文献   

2.
The inhibitory effects of inorganic phosphate (Pi) on isometric force in striated muscle suggest that in the ATPase reaction Pi release is coupled to force generation. Whether Pi release and the power stroke are synchronous events or force is generated by an isomerization of the quaternary complex of actomyosin and ATPase products (AM.ADP.Pi) prior to the following release of Pi is still controversial. Examination of the dependence of isometric force on [Pi] in rabbit fast (psoas; 5-15 °C) and slow (soleus; 15-20 °C) myofibrils was used to test the two-step hypothesis of force generation and Pi release. Hyperbolic fits of force-[Pi] relations obtained in fast and slow myofibrils at 15 °C produced an apparent asymptote as [Pi]∞ of 0.07 and 0.44 maximal isometric force (i.e. force in the absence of Pi) in psoas and soleus myofibrils, respectively, with an apparent K d of 4.3 m m in both. In each muscle type, the force-[Pi] relation was independent of temperature. However, 2,3-butanedione 2-monoxime (BDM) decreased the apparent asymptote of force in both muscle types, as expected from its inhibition of the force-generating isomerization. These data lend strong support to models of cross-bridge action in which force is produced by an isomerization of the AM.ADP.Pi complex immediately preceding the Pi release step.  相似文献   

3.
We measured the effects of ionic strength (IS), 200 (standard) and 400 mmol l−1 (high), on force and ATP hydrolysis during isometric contractions of permeabilized white fibres from dogfish myotomal muscle at their physiological temperature, 12°C. One goal was to test the validity of our kinetic scheme that accounts for energy release, work production and ATP hydrolysis. Fibres were activated by flash photolysis of the P 3-1-(2 nitrophenyl) ethyl ester of ATP (NPE-caged ATP), and time-resolved phosphate (Pi) release was detected with the fluorescent protein MDCC-PBP, N -(2[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3-carboxamide phosphate binding protein. High IS slowed the transition from rest to contraction, but as the fibres approached the isometric force plateau they showed little IS sensitivity. By 0.5 s of contraction, the force and the rate of Pi release at standard and high IS values were not significantly different. A five-step reaction mechanism was used to account for the observed time courses of force and Pi release in all conditions explored here. Only the rate constants for reactions of ATP, ADP and Pi with the contractile proteins varied with IS, thus suggesting that the actin–myosin interactions are largely non-ionic. Our reaction scheme also fits previous results for intact fibres.  相似文献   

4.
Energy turnover was measured during isometric contractions of intact and Triton-permeabilized white fibres from dogfish ( Scyliorhinus canicula ) at 12°C. Heat + work from actomyosin in intact fibres was determined from the dependence of heat + work output on filament overlap. Inorganic phosphate (Pi) release by permeabilized fibres was recorded using the fluorescent protein MDCC-PBP, N-(2-[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3 carboxamide phosphate binding protein. The steady-state ADP release rate was measured using a linked enzyme assay. The rates decreased five-fold during contraction in both intact and permeabilized fibres. In intact fibres the rate of heat + work output by actomyosin decreased from 134 ± s.e.m. 28 μW mg−1 ( n = 17) at 0.055 s to 42% of this value at 0.25 s, and to 20% at 3.5 s. The force remained constant between 0.25 and 3.5 s. Similarly in permeabilized fibres the Pi release rate decreased from 5.00 ± 0.39 mmol l−1 s−1 at 0.055 s to 39% of this value at 0.25 s and to 19% at 0.5 s. The steady-state ADP release rate at 15 s was 21% of the Pi rate at 0.055 s. Using a single set of rate constants, the time courses of force, heat + work and Pi release were described by an actomyosin model that took account of the transition from the initial state (rest or rigor) to the contracting state, shortening and the consequent work against series elasticity, and reaction heats. The model suggests that increasing Pi concentration slows the cycle in intact fibres, and that changes in ATP and ADP slow the cycle in permeabilized fibres.  相似文献   

5.
Information on the effects of thyroid hormone on smooth muscle contractile protein expression and mechanical properties is sparse. We have addressed the following questions. (1) Can thyroxine hormone alter myosin isoform composition in smooth muscle? (2) Can a change in myosin isoform composition lead to altered mechanical properties in smooth muscle? (3) Are alterations, if occurring, equal in fast and slow smooth muscle types? Guinea-pigs were treated with thyroxine (T4) for 12 days. Control animals were given physiological saline solution. Maximal unloaded shortening velocity ( V max) was measured in chemically skinned, maximally activated muscle preparations from the aorta and the taenia coli. V max increased following thyroxine treatment, by approximately 20 % in the taenia coli. In the aorta, no significant increase in V max could be detected. The sensitivity of isometric force to inorganic phosphate (Pi) was increased in the taenia coli following thyroxine treatment. The expression of mRNA (determined with RT-PCR) for the myosin heavy chain with the seven amino acid insert increased by approximately 70 % in the aorta and about 25 % in the taenia coli following thyroxine treatment. Western blot analysis showed an increase in the inserted myosin heavy chain form in the taenia coli. Expression of mRNA for the myosin essential light chains and the corresponding proteins did not change significantly in either muscle type. No alterations in non-muscle myosin heavy chain isoforms could be detected after thyroxine treatment. In conclusion, thyroxine treatment alters the isoform composition of myosin in fast and slow smooth muscles in vivo . This change is sufficient to increase shortening velocity and sensitivity of isometric force to Pi in the fast, but not in the slow, smooth muscle type.  相似文献   

6.
Role of phosphate and calcium stores in muscle fatigue   总被引:27,自引:11,他引:16  
Intensive activity of muscles causes a decline in performance, known as fatigue, that is thought to be caused by the effects of metabolic changes on either the contractile machinery or the activation processes. The concentration of inorganic phosphate (Pi) in the myoplasm ([Pi]myo) increases substantially during fatigue and affects both the myofibrillar proteins and the activation processes. It is known that a failure of sarcoplasmic reticulum (SR) Ca2+ release contributes to fatigue and in this review we consider how raised [Pi]myo contributes to this process. Initial evidence came from the observation that increasing [Pi]myo causes reduced SR Ca2+ release in both skinned and intact fibres. In fatigued muscles the store of releasable Ca2+ in the SR declines mirroring the decline in SR Ca2+ release. In muscle fibres with inoperative creatine kinase the rise of [Pi]myo is absent during fatigue and the failure of SR Ca2+ release is delayed. These results can all be explained if inorganic phosphate can move from the myoplasm into the SR during fatigue and cause precipitation of CaPi within the SR. The relevance of this mechanism in different types of fatigue in humans is considered.  相似文献   

7.
A low voltage-activated potassium current, I KL, is found in auditory neuron types that have low excitability and precisely preserve the temporal pattern of activity present in their presynaptic inputs. The gene Kcna1 codes for Kv1.1 potassium channel subunits, which combine in expression systems to produce channel tetramers with properties similar to those of I KL, including sensitivity to dendrotoxin (DTX). Kv1.1 is strongly expressed in neurons with I KL, including auditory neurons of the medial nucleus of the trapezoid body (MNTB). We therefore decided to investigate how the absence of Kv1.1 affected channel properties and function in MNTB neurons from mice lacking Kcna1 . We used the whole cell version of the patch clamp technique to record from MNTB neurons in brainstem slices from Kcna1 -null (−/−) mice and their wild-type (+/+) and heterozygous (+/−) littermates. There was an I KL in voltage-clamped −/− MNTB neurons, but it was about half the amplitude of the I KL in +/+ neurons, with otherwise similar properties. Consistent with this, −/− MNTB neurons were more excitable than their +/+ counterparts; they fired more than twice as many action potentials (APs) during current steps, and the threshold current amplitude required to generate an AP was roughly halved. +/− MNTB neurons had excitability and I KL amplitudes identical to the +/+ neurons. The I KL remaining in −/− neurons was blocked by DTX, suggesting the underlying channels contained subunits Kv1.2 and/or Kv1.6 (also DTX-sensitive). DTX increased excitability further in the already hyperexcitable −/− MNTB neurons, suggesting that −/− I KL limited excitability despite its reduced amplitude in the absence of Kv1.1 subunits.  相似文献   

8.
We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 μg ml−1) caused histamine release (∼70% total tissue content), and smooth muscle contraction that was rapid in onset and short-lived ( t 1/2 < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 μ m -ketanserin (5-HT2 receptor antagonist) and strongly inhibited by atropine (1 μ m ). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient ( sash −/−) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient ( sash −/−) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT2 receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction.  相似文献   

9.
The effects of creatine (Cr) absence in skeletal muscle caused by a deletion of guanidinoacetate methyltransferase (GAMT) were studied in a knockout mouse model by in vivo 31P magnetic resonance (MR) spectroscopy. 31P MR spectra of hindleg muscle of GAMT-deficient (GAMT–/–) mice showed no phosphocreatine (PCr) signal and instead showed the signal for phosphorylated guanidinoacetate (PGua), the immediate precursor of Cr, which is not normally present. Tissue pH did not differ between wild-type (WT) and GAMT–/–  mice, while relative inorganic phosphate (Pi) levels were increased in the latter. During ischaemia, PGua was metabolically active in GAMT–/–  mice and decreased at a rate comparable to the decrease of PCr in WT mice. However, the recovery rate of PGua in GAMT–/– mice after ischaemia was reduced compared to PCr in WT mice. Saturation transfer measurements revealed no detectable flux from PGua to γ-ATP, indicating severely reduced enzyme kinetics. Supplementation of Cr resulted in a rapid increase in PCr signal intensity until only this resonance was visible, along with a reduction in relative Pi values. However, the PGua recovery rate after ischaemia did not change. Our results show that despite the absence of Cr, GAMT–/– mice can cope with mild ischaemic stress by using PGua for high energy phosphoryl transfer. The reduced affinity of creatine kinase (CK) for (P)Gua only becomes apparent during recovery from ischaemia. It is argued that absence of Cr causes the higher relative Pi concentration also observed in animals lacking muscle CK, indicating an important role of the CK system in Pi homeostasis.  相似文献   

10.
Activation of both small-conductance (SKCa) and intermediate-conductance (IKCa) Ca2+-activated K+ channels in endothelial cells leads to vascular smooth muscle hyperpolarization and relaxation in rat mesenteric arteries. The contribution that each endothelial K+ channel type makes to the smooth muscle hyperpolarization is unknown. In the presence of a nitric oxide (NO) synthase inhibitor, ACh evoked endothelium and concentration-dependent smooth muscle hyperpolarization, increasing the resting potential (approx. −53 mV) by around 20 mV at 3 μ m . Similar hyperpolarization was evoked with cyclopiazonic acid (10 μ m , an inhibitor of sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA)) while 1-EBIO (300 μ m , an IKCa activator) only increased the potential by a few millivolts. Hyperpolarization in response to either ACh or CPA was abolished with apamin (50 n m , an SKCa blocker) but was unaltered by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (1 μ m TRAM-34, an IKCa blocker). During depolarization and contraction in response to phenylephrine (PE), ACh still increased the membrane potential to around −70 mV, but with apamin present the membrane potential only increased just beyond the original resting potential ( circa −58 mV). TRAM-34 alone did not affect hyperpolarization to ACh but, in combination with apamin, ACh-evoked hyperpolarization was completely abolished. These data suggest that true endothelium-dependent hyperpolarization of smooth muscle cells in response to ACh is attributable to SKCa channels, whereas IKCa channels play an important role during the ACh-mediated repolarization phase only observed following depolarization.  相似文献   

11.
12.
The detection of focal Ca2+ transients (called neuroeffector Ca2+ transients, or NCTs) in smooth muscle of the mouse isolated vas deferens has been used to detect the packeted release of ATP from nerve terminal varicosities acting at postjunctional P2X receptors. The present study investigates the sources and sequestration of Ca2+ in NCTs. Smooth muscle cells in whole mouse deferens were loaded with the Ca2+ indicator Oregon Green 488 BAPTA-1 AM and viewed with a confocal microscope. Ryanodine (10 µ m ) decreased the amplitude of NCTs by 45 ± 6 %. Cyclopiazonic acid slowed the recovery of NCTs (from a time course of 200 ± 10 ms to 800 ± 100 ms). Caffeine (3 m m ) induced spontaneous focal smooth muscle Ca2+ transients (sparks). Neither of the T-type Ca2+ channel blockers NiCl2 (50 µ m ) or mibefradil dihydrochloride (10 µ m ) affected the amplitude of excitatory junction potentials (2 ± 5 % and −3 ± 10 %) or NCTs (−20 ± 36 % and 3 ± 13 %). In about 20 % of cells, NCTs were associated with a local, subcellular twitch that remained in the presence of the α1-adrenoceptor antagonist prazosin (100 n m ), showing that NCTs can initiate local contractions. Slow (5.8 ± 0.4 µm s−1), spontaneous smooth muscle Ca2+ waves were occasionally observed. Thus, Ca2+ stores initially amplify and then sequester the Ca2+ that enters through P2X receptors and there is no amplification by local voltage-gated Ca2+ channels.  相似文献   

13.
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 μ m to 1.0 m m ). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (−log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 μ m , with no further alteration when the [ADP] was increased to 1.0 m m . The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 μ m , but was increased by 26% when the [ADP] was elevated to 1.0 m m . This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.  相似文献   

14.
Potassium channels play an important role in controlling the excitability of urinary bladder smooth muscle (UBSM). Here we describe the biophysical, pharmacological and molecular properties of the mouse UBSM voltage-gated K+ current ( I K ( V)). The I K ( V) activated, deactivated and inactivated slowly with time constants of 29.9 ms at +30 mV, 131 ms at −40 mV and 3.4 s at +20 mV. The midpoints of steady-state activation and inactivation curves were 1.1 mV and −61.4 mV, respectively. These properties suggest that I K ( V) plays a role in regulating the resting membrane potential and contributes to the repolarization and after-hyperpolarization phases of action potentials. The I K ( V) was blocked by tetraethylammonium ions with an IC50 of 5.2 m m and was unaffected by 1 m m 4-aminopyridine. RT-PCR for voltage-gated K+ channel (KV) subunits revealed the expression of Kv2.1, Kv5.1, Kv6.1, Kv6.2 and Kv6.3 in isolated UBSM myocytes. A comparison of the biophysical properties of UBSM I K ( V) with those reported for Kv2.1 and Kv5.1 and/or Kv6 heteromultimeric channels demonstrated a marked similarity. We propose that heteromultimeric channel complexes composed of Kv2.1 and Kv5.1 and/or Kv6 subunits form the molecular basis of the mouse UBSM I K ( V).  相似文献   

15.
Isoforms of the smooth muscle (SM) myosin motor domain differ in the presence or absence of a seven amino acid insert in a flexible surface loop spanning the nucleotide-binding pocket known as Loop 1. The presence of this insert leads to a two-fold increase in actin sliding velocity and ADP release rate between these isoforms, although the effect of Loop 1 on the kinetics of ADP release remains unclear. To further investigate the role of the Loop 1 insert in modulating ADP release in SM myosin we have inserted a single tryptophan residue into Loop 1 of both isoforms as a probe of local structural dynamics. By monitoring the dynamics of Loop 1 in relation to the release of ADP we have observed a unique movement of Loop 1 in the inserted isoform, preceding nucleotide release, which is absent in the non-inserted isoform. This movement is sequence dependent as alanine replacement of the insert residues abolishes the transition and slows ADP release. Thus movement of Loop 1 is a critical factor in increasing the ADP release rate in the inserted faster isoform of SM myosin.  相似文献   

16.
The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at ≥ 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 ± 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (−56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 ± 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80% versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force ( Q tw), in response to supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Q tw was reduced −28 ± 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (−20 ± 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue ( Q tw=−12 ± 8% IRL-CTRL versus −20 ± 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se , and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work.  相似文献   

17.
Insulin hypersensitivity in mice lacking the V1b vasopressin receptor   总被引:1,自引:0,他引:1  
We have reported that [Arg8]-vasopressin-stimulated insulin release is blunted in islet cells isolated from V1b receptor-deficient ( V1bR −/−) mice. In this study, we used V1bR −/− mice to examine the physiological role of the V1b receptor in regulating blood glucose levels in vivo , and we found that the fasting plasma glucose, insulin and glucagon levels were lower in V1bR −/− mice than in wild-type ( V1bR +/+) mice. Next, we evaluated glucose tolerance by performing an intraperitoneal glucose tolerance test (GTT). The plasma glucose and insulin levels during the GTT were lower in V1bR −/− mice than in V1bR +/+ mice. An insulin tolerance test (ITT) revealed that, after insulin administration, plasma glucose levels were lower in V1bR −/− mice than in V1bR +/+ mice. In addition, a hyperinsulinaemic–euglycaemic clamp study showed that the glucose infusion rate was increased in V1bR −/− mice, indicating that insulin sensitivity was enhanced at the in vivo level in V1bR −/− mice. Furthermore, we found that the V1b receptor was expressed in white adipose tissue and that insulin-stimulated phosphorylation of Akt as an important signaling molecule was increased in adipocytes isolated from V1bR −/− mice. Thus, the blockade of the V1b receptor could result, at least in part, in enhanced insulin sensitivity by altering insulin signalling in adipocytes.  相似文献   

18.
Electrical rhythmicity in smooth muscle cells is essential for the movement of the gastrointestinal tract. Interstitial cells of Cajal (ICC) lie adjacent to smooth muscle layers and are implicated as the pacemaker cells. However, the pace making mechanism remains unclear. To study the intercellular interaction during electrical rhythm generation, we visualized changes in intracellular Ca2+ concentration ([Ca2+]i) in smooth muscle cells and myenteric ICC within segments of mouse ileum loaded with a fluorescent Ca2+ indicator, fluo-3. We observed rhythmic [Ca2+]i changes in longitudinal smooth muscle cells travelling rapidly through the smooth muscle cell layer. Between the rhythmic Ca2+ transients, we found brief Ca2+ transients localized to small areas within smooth muscle cells. The amplitude but not the periodicity of rhythmic [Ca2+]i transients in both cell types was partially inhibited by nicardipine, an L-type Ca2+ channel antagonist, suggesting that the rhythmic [Ca2+]i transients reflect membrane potential depolarizations corresponding to both slow waves and triggered Ca2+ spikes. Longitudinal smooth muscle cells and myenteric ICC showed synchronous spontaneous [Ca2+]i transients in eight out of 21 ileac preparations analysed. In the remaining preparations, the synchrony between ICC and smooth muscle cells was absent, although the rhythmicity of the smooth muscle cells was not disturbed. These results suggest that myenteric ICC may play multiple roles including pace making for physiological bowel movement.  相似文献   

19.
The aims of this study were to investigate whether hypertrophy of the small intestinal smooth muscle leads to alterations of myosin isoform composition and shortening velocity and whether possible changes correlate with a change in the sensitivity to ADP of shortening velocity in this tissue. A partial occlusion was introduced in the distal part of the ileum of guinea-pigs. After 2 weeks, the part of the small intestine just proximal of the stenosis was hypertrophied (indicated by a significantly increased cross-sectional area). The most proximal part of the small intestine was used as control, thus enabling comparisons between hypertrophic and normal tissue from the same animal. The outer longitudinal layer of the intestinal wall was gently peeled off and used for biochemistry, RT-PCR and mechanical experiments. The desmin/actin ratio was significantly increased following hypertrophy, although myosin and actin expression were similar in control and hypertrophic tissue. In hypertrophic tissue, the myosin heavy chain mRNA with a 21 base pair insert decreased significantly. The composition of the mRNA encoding the myosin essential light chains changed towards more of the basic type (LC17b). No change in the expression of non-muscle myosin heavy chains A and B was detected. The maximal shortening velocity ( V max) of maximally activated skinned preparations was significantly lower in the hypertrophic tissue (≈50 % of control). The sensitivity of V max to ADP was increased in the hypertrophic smooth muscle tissue. We conclude that myosin expression is altered following intestinal hypertrophy and that these alterations affect reactions in the cross-bridge interaction, leading to a slower and more economical contractile function.  相似文献   

20.
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current ( I Na) is highly sensitive to tetrodotoxin  (TTX, K d= 2.2 n m )  . At high concentrations, mibefradil (10 μ m ) and Ni+ (1 m m ) blocked I Na. I Na was insensitive to nifedipine (10 μ m ). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of ∼1 ms. Repolarization to membrane potentials between −90 and −120 mV induced recovery from inactivation with a time constant of ∼11 ms. Half-maximal activation and inactivation occurred at −23.9 and −66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 μ m ), reduced peak inward I Na and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号