首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20 nm and 200 nm) and titanium dioxide (21 nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact.  相似文献   

2.
Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by‐products contained within the effluent of domestic and industrial run‐off. The partial recycling of water laden with ENPs, albeit at ultra‐low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water‐relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico‐predicted water‐relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 1459–1469, 2015.  相似文献   

3.
《Nanotoxicology》2013,7(5):568-578
Abstract

There is a great interest in a better knowledge of the health effects caused by nanomaterials exposures and, in particular to those induced by titanium dioxide nanoparticles (nano-TiO2) due to its high use and increasing presence in the environment. To add new information on its potential genotoxic/carcinogenic risk, we have carried out experiments using chronic exposures (up to 4 weeks), low doses, and the BEAS-2B cell line that, as a human bronchial epithelium cells, can be considered a good cell target. Cell uptake has been assessed by transmission electron microscopy (TEM) and flow cytometry (FC); genotoxicity was evaluated using the comet and the micronucleus (MN) assays; and cell-transforming ability was evaluated using the soft-agar assay to detect anchorage-independent cell growth. Results show an important cell uptake at all the tested doses and sampling times used (except for 1?µg/mL and 24-h exposure). Nevertheless, no genotoxic effects were observed in the comet and in the MN assays. This lack of genotoxic effect agrees with the FC results showing no induction of intracellular reactive oxygen species (ROS), the data from the comet assay with formamidopyrimidine DNA glycosylase (FPG) enzyme showing no induction of oxidized bases, and the lack of induction of expression of heme-oxygenase (HO-1) gene both at the RNA and protein level. On the contrary, significant increases in the number of clones growing in an anchorage-independent way were observed. This study would indicate a potential carcinogenic risk associated to nano-TiO2 exposure, not mediated by a genotoxic mechanism.  相似文献   

4.
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l–1 for Au NPs, 32.3 mg l–1 for Ag NPs and 100 mg l–1 for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non‐genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The objective of the present study was to investigate the toxicity of silver nanoparticles (Ag NPs) in vitro. Silver ions (Ag+) have been used in medical treatments for decades whereas Ag NPs have been used in a variety of consumer products within recent years. This study was undertaken to compare the effect of well characterized, PVP-coated Ag NPs (69 nm ± 3 nm) and Ag+ in a human monocytic cell line (THP-1). Characterization of the Ag NPs was conducted in both stock suspension and cell media with or without serum and antibiotics. By using the flowcytometric annexin V/propidium iodide (PI) assay, both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+.  相似文献   

6.
7.
8.
Few studies have characterized the immunotoxic potential of complex mixtures of organochlorines (OCs) that bear environmental relevance. We monitored immune parameters in male piglets exposed in utero and through lactation to an OC mixture which was designed to approximate that found in the traditional diet of Arctic aboriginal populations. Prepubertal sows were administered orally either corn oil (control group) or the OC mixture in increasing doses (low, medium, and high). The sows were inseminated with the semen from an untreated boar and OC treatment was continued throughout gestation and lactation (21 days). Blood was collected from the sows at delivery and monthly from piglets until 8 months of age for the determination of plasma OC concentrations and parameters of innate, cellular, and humoral immunity. Treatment with the OC mixture had no dose-dependent effect on the proportion of CD4+ and CD8+ T-cell subsets, and did not modulate the functional activity of the complement component C2. The proportion of CD4+CD8+ cells, CD8+DR+ cells, and the mitogenic lymphoproliferative response increased in OC-treated, 4-month-old piglets. At 6 months, the lymphoproliferative response to mitogen and the proportion CD4+CD8+ cells were still elevated in the OC-treated piglets, but the proportion of CD8+DR+ cells was decreased as compared to the controls. Animals in the high-dose group also exhibited a slight increase in polymorphonuclear leukocyte phagocytic activity at 8 months of age. Furthermore, the high dose decreased the antibody response to Mycoplasma hyopneumoniae. Our results indicate that developmental exposure to an environmentally relevant OC mixture alters the immune function in swine.  相似文献   

9.
Nanoparticles (NPs) have been reported to penetrate into human skin through lesional skin or follicular structures. Therefore, their ability to interact with dendritic cell (DC) was investigated using DCs generated from monocytes (mono-DCs). Hybrid titanium dioxide/para-amino benzoic acid (TiO2/PABA) NPs did not induce any cell toxicity. NPs were internalised into DCs through macropinocytosis and not by a receptor-mediated mechanism. Confocal microscopy showed that NPs were not detected in the nucleus. These data are confirmed by electronic microscopy which demonstrated that hybrid NPs were rapidly in contact with cellular membrane and localised into cytoplasmic vesicles without colocalisation with clathrin-coated vesicles. Hybrid NPs did not induce CD86 or HLA-DR overexpression or cytokine secretion (IL-8 and TNF-α) indicating no DC activation. Internalisation of hybrid NPs did not modify DC response towards sensitisers such as nickel and thimerosal or LPS used as positive controls. Moreover, hybrid NPs did not induce any oxidative stress implicated in DC activation process. After mono-DC irradiation by ultraviolet A (UVA), hybrid NP-treated cells did not produce UVA-induced reactive oxygen species (ROS) and exhibited a better cell viability compared with UVA-irradiated control cells, suggesting a protecting effect of hybrid TiO2/PABA NPs against UVA-induced ROS.  相似文献   

10.
The toxicity of titanium dioxide nanoparticles (TiO2‐NP) in the blood, liver, muscle, and brain of a Neotropical detritivorous fish, Prochilodus lineatus, was tested. Juvenile fish were exposed to 0, 1, 5, 10, and 50 mg L?1 of TiO2‐NP for 48 hours (acute exposure) or 14 days (subchronic exposure) to evaluate changes in hematology, red blood cell (RBC) genotoxicity/mutagenicity, liver function (reactive oxygen species (ROS) production, antioxidant responses, detoxification, and histopathology), acetylcholinesterase (AChE) activity in muscles and brain, and Ti bioaccumulation. TiO2‐NP did not cause genetic damage to RBC, but acutely decreased white blood cells (WBC) and increased monocytes. Subchronically, RBC decreased, mean cell volume and hemoglobin increased, and WBC and lymphocytes decreased. Therefore, NP has the potential to affect immune system and increase energy expenditure, reducing the fish's ability to avoid predator and to resist pathogens. In the liver, acute exposure decreased ROS and increased glutathione (GSH) content, while subchronic exposure decreased superoxide dismutase activity and increased glutathione‐S‐transferase (GST) activity and GSH content. GSH and GST seem to play an essential role in metabolizing NP and ROS, likely increasing hepatocytes' metabolic rate, which may be the cause of observed cell hypertrophy, disarrangement of hepatic cords and degenerative morphological alterations. Although most studies indicate that the kidney is responsible for metabolizing and/or eliminating TiO2‐NP, this study shows that the liver also has a main role in these processes. Nevertheless, Ti still accumulated in the liver, muscle, and brain and decreased muscular AChE activity after acute exposure, showing neurotoxic potential. More studies are needed to better understand the biochemical pathways TiO2‐NP are metabolized and how its bioaccumulation may affect fish homeostasis and survival in the environment.  相似文献   

11.
Historically, it has been shown that the beta-lactam antibiotics play an essential role in treating bacterial infections while demonstrating selectivity for prokaryotic cells. We recently reported that certain N-methylthio-substituted beta-lactam antibiotics had DNA-damaging and apoptosis-inducing activities in various tumor cells. However, whether these compounds affect human normal or nontransformed cells was unknown. In the current study, we first show that a lead compound (lactam 1) selectively induces apoptosis in human leukemic Jurkat T, but not in the nontransformed, immortalized human natural killer (NK) cells. Additionally, we screened a library of other N-methylthiolated beta-lactams to determine their structure-activity relationships (SARs), and found lactam 12 to have the highest apoptosis-inducing activity against human leukemic Jurkat T cells, associated with increased DNA-damaging potency. Furthermore, we demonstrate that lactam 12, as well as lactam 1, potently inhibits colony formation of human prostate cancer cells. We also show that lactam 12 induces apoptosis in human breast, prostate, and head-and-neck cancer cells. Finally, lactam 12 induces apoptosis selectively in Jurkat T and simian virus 40-transformed, but not in nontransformed NK and parental normal fibroblast, cells. Our results suggest that there is potential for developing this class of beta-lactams into novel anticancer agents.  相似文献   

12.
13.
The toxicity of titanium dioxide nanoparticles (TiO2‐NPs), used in several applications, seems to be influenced by their specific physicochemical characteristics. Cyto‐genotoxic and inflammatory effects induced by a mixture of 79% anatase/21% rutile TiO2‐NPs were investigated in human alveolar (A549) and bronchial (BEAS‐2B) cells exposed to 1–40 µg ml–1 30 min, 2 and 24 h to assess potential pulmonary toxicity. The specific physicochemical properties such as crystallinity, NP size and shape, agglomerate size, surface charge and specific surface area (SSA) were analysed. Cytotoxic effects were studied by evaluating cell viability using the WST1 assay and membrane damage using LDH analysis. Direct/oxidative DNA damage was assessed by the Fpg‐comet assay and the inflammatory potential was evaluated as interleukin (IL)‐6, IL‐8 and tumour necrosis factor (TNF)‐α release by enzyme‐linked immunosorbant assay (ELISA). In A549 cells no significant viability reduction and moderate membrane damage, only at the highest concentration, were detected, whereas BEAS‐2B cells showed a significant viability reduction and early membrane damage starting from 10 µg ml–1. Direct/oxidative DNA damage at 40 µg ml–1 and increased IL‐6 release at 5 µg ml–1 were found only in A549 cells after 2 h. The secretion of pro‐inflammatory cytokine IL‐6, involved in the early acute inflammatory response, and oxidative DNA damage indicate the promotion of early and transient oxidative‐inflammatory effects of tested TiO2‐NPs on human alveolar cells. The findings show a higher susceptibility of normal bronchial cells to cytotoxic effects and higher responsiveness of transformed alveolar cells to genotoxic, oxidative and early inflammatory effects induced by tested TiO2‐NPs. This different cell behaviour after TiO2‐NPs exposure suggests the use of both cell lines and multiple end‐points to elucidate NP toxicity on the respiratory system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Despite increasing application of zinc oxide nanoparticles (ZnO-NPs) for industrial porpuses, data about potential toxic properties is contradictory. The current study focused on the cyto- and genotoxicity of ZnO-NPs in comparison to ZnO powder in primary human nasal mucosa cells cultured in the air-liquid interface. Additionally, IL-8 secretion as a marker for pro-inflammatory effects was measured. Particle morphology and intracellular distribution were evaluated by transmission electron microscopy (TEM). ZnO-NPs were transferred into the cytoplasm in 10% of the cells, whereas an intranuclear distribution could only be observed in 1.5%. While no cyto- or genotoxicity could be seen for ZnO powder in the dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) test, the trypan blue exclusion test, and the single-cell microgel electrophoresis (comet) assay, cytotoxic effects were shown at a ZnO-NP concentration of 50 μg/ml (P < 0.01). A significant enhancement in DNA damage was observed starting from ZnO-NP concentrations of 10 μg/ml (P < 0.05) in comparison to the control. IL-8 secretion into the basolateral culture medium was increased at ZnO-NP concentrations of 5 μg/ml (P < 0.05), as shown by ELISA. Our data indicates cyto- and genotoxic properties as well as a pro-inflammatory potential of ZnO-NPs in nasal mucosa cells. Thus, caution should be taken concerning their industrial and dermatological application. Additionally, further investigation on repetitive NP exposure is needed to estimate the impact of repair mechanisms.  相似文献   

15.
The neuroblastoma-spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H2O2) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC50 = 0.01 μM), followed by Thaps (TC50 = 0.9 μM) and H2O2 (TC50 = 15 μM) with HCy requiring higher concentrations to kill at the same level (TC50 = 2200 μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p ≤ 0.05), but had no effect on STS-, H2O2- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms.  相似文献   

16.
Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr. Poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early event required for cells committed to apoptosis, is detected within 3-6 hr in HL-60-S cells treated with AQ9. In accord with the fact that the caspases 9 and 3 cascade is responsible for PARP-1 cleavage, the activities of initiator caspase-9 and effector caspase-3 are induced by AQ9 in the same time- and concentration-dependent manners and to the same maximal degrees in both the HL-60-S and multidrug-resistant HL-60-RV cell lines. Interestingly, a 1-hr pulse treatment is sufficient for AQ8 and AQ9 to maximally induce caspase-9 and -3 activities at 6 hr. The release of mitochondrial cytochrome c (Cyt c) is also detected within 3-6hr in HL-60-S cells treated with AQ9, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Moreover, AQ analogs induce Cyt c release, caspase-9 and -3 activities and PARP-1 cleavage in relation with their abilities to decrease tumor cell growth and integrity, AQ8 and AQ9 being consistently the most effective. Since apical caspases 2 and 8 may both act upstream of mitochondria to promote Cyt c release, it is significant to show that AQ9 maximally induces caspase-2 and -8 activities at 6 and 9 hr, respectively. During AQ8 treatment, the caspase-2 inhibitor benzyloxycarbonyl (z)-Val-Asp-Val-Ala-Asp (VDVAD)-fluoromethyl ketone (fmk) totally blocks caspase-9, -3, and -8 activations, whereas the caspase-8 inhibitor z-Ile-Glu-Thr-Asp-(IETD)-fmk does not prevent caspase-2, -9, and -3 activations, suggesting that AQ-induced caspase-2 activity is an upstream event critical for the activation of the downstream caspases 9 and 3 cascade, including the mitochondrial amplification loop through caspase-8. However, these caspase-2 and -8 inhibitors fail to alter AQ8-induced Cyt c release, suggesting that AQs might also target mitochondria independently from caspase activation. Furthermore, the antagonistic anti-Fas DX2 and ZB4 monoclonal antibodies (mAbs), which block the induction of Cyt c release and caspase-2, -8, and -9 activities by the agonistic anti-Fas CH11 mAb, and the neutralizing anti-Fas ligand (FasL) NOK-1 mAb all fail to inhibit AQ9-induced Cyt c release and caspase-2, -8, and -9 activities, suggesting that the FasL/Fas signaling pathway is not involved in the mechanism by which antiproliferative AQ analogs trigger apoptosis in HL-60 cells.  相似文献   

17.
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP.  相似文献   

18.
The ability of calcineurin to regulate IRS-1 and IRS-2 levels has not been examined in any given cells, although calcineurin inhibition by therapeutic immunosuppressants produced cytoprotective and cytotoxic effects (e.g., new-onset of diabetes mellitus, seizure). Chronic (>or=3h) treatment of cultured bovine adrenal chromaffin cells with cyclosporin A or FK506 decreased IRS-2 protein level by approximately 50% (IC(50)=200 or 10nM), without changing IRS-2 mRNA level, and insulin receptor, insulin-like growth factor-I (IGF-I) receptor, IRS-1, PI3K/PDK-1/Akt/GSK-3beta and ERK1/ERK2 protein levels. When the cells were washed to remove the test drug, the decreased IRS-2 level restored to the control level. Cyclosporin A or FK506 treatment inhibited calcineurin activity (IC(50)=500 or 40 nM, in vitro assay). Rapamycin, an FK506-binding protein ligand unable to inhibit calcineurin, failed to decrease IRS-2, but reversed FK506-induced decreases of calcineurin activity and IRS-2 level. Pulse-label followed by polyacrylamide gel electrophoresis revealed that cyclosporin A or FK506 accelerated IRS-2 degradation rate (t(1/2)) from >24 to approximately 4.2h, without altering IRS-2 synthesis. IRS-2 reduction by cyclosporin A or FK506 was prevented by lactacystin (proteasome inhibitor), but not by calpeptin (calpain inhibitor) or leupeptin (lysosome inhibitor). Cyclosporin A or FK506 increased serine-phosphorylation and ubiquitination of IRS-2. Cell surface (125)I-IGF-I binding capacity was not changed in cyclosporin A- or FK506-treated cells; however, IGF-I-induced phosphorylations of GSK-3beta and ERK1/ERK2 were attenuated by approximately 50%, which were prevented by rapamycin or lactacystin. Thus, calcineurin inhibition decreased IRS-2 level via proteasomal IRS-2 degradation, attenuating IGF-I-induced GSK-3beta and ERK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号