首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We recently reported the protective effect of 2-hydroxy- cis-terpenone (HCT) against aflatoxin B 1 (AFB1)-induced cytotoxicity in human HepG2 liver cells ( Zhou et al. Chem. Res. Toxicol. 2006, 19, 1415-1419 ); however, the mechanism was not clear. In this paper, the chemoprotective mechanism was investigated with liver microsomes and purified P450 3A4 enzyme. HCT showed effective inhibition of the metabolic conversion of AFB1 in liver microsomes at 40 microM, and more importantly, the inhibition of the carcinogenic exo-AFB1-epoxide formation from AFB1. Further study indicated the direct inhibition of purified P450 3A4 enzyme activity by HCT with an IC 50 value of 20 microM. Under aqueous conditions, HCT was slowly converted to an oxidized product OHCT, which exhibits similar inhibitory effects on both P450 3A4 and the metabolic conversion and carcinogenic activation of AFB1 with liver microsomes as those of HCT. Enzyme mechanism studies revealed that OHCT acted as a mixed inhibitor of P450 3A4 with K i and K i' at 17.6 +/- 5.6 and 7.6 +/- 1.5 microM, respectively. Finally, OHCT showed no cytotoxicity at 60 microM in HepG2 liver cells and effective chemoprotection at 40 and 60 microM against AFB1 (2 microM) induced cytotoxicity. In contrast, ketoconazole alone exhibited 20% cell mortality at 20 microM, while chemoprotection with ketoconazole against 2 microM AFB1 in HepG2 was observed at 10 and 20 microM, which was much higher than the 1 microM concentration used in the inhibitory assays of P450 3A4 activity and AFB1 metabolism with liver microsomes.  相似文献   

2.
Based on our previous observations (H. S. Ramsdell and D. L. Eaton, 1990, Cancer Res. 50, 615-620) that the proportion of aflatoxin B1 (AFB1) converted to the highly reactive AFB1-8,9-epoxide in microsomal incubations varies with substrate concentration, we have examined the hypothesis of T. Shimada and F. P. Guengerich (1989, Proc. Natl. Acad. Sci. USA 86, 462-465) that cytochrome P450 IIIA4 is principally responsible for the activation (epoxidation) of AFB1 by human liver microsomes. The initial rates of formation of AFB1-8,9-epoxide and hydroxylated AFB1 metabolites were determined in microsomes prepared from livers of organ donors (n = 14) at AFB1 concentrations of 124 and 16 microM. Microsomal oxidation of nifedipine, catalyzed primarily by P450 IIIA enzymes, was also determined by HPLC. Rates of formation of AFB1 metabolites and nifedipine oxidation were poorly correlated at either AFB1 concentration (r2 = 0.13-0.41). A somewhat better correlation between AFB1 epoxidation and nifedipine oxidation was observed at 124 microM AFB1 (r2 = 0.41) than at 16 microM AFB1 (r2 = 0.26). Treatment of pooled microsomes with troleandomycin, an apparently specific inhibitor of P450 IIIA enzymes, resulted in 35% inhibition of AFB1-8,9-epoxide formation at the high AFB1 level but had little effect at 16 microM AFB1. An antibody against rat cytochrome P450 IIIA1 significantly inhibited AFB1 epoxidation at high, but not low, AFB1 concentrations, whereas AFQ1 formation was strongly inhibited at all substrate levels examined. These results are consistent with the hypothesis that cytochrome P450 IIIA enzyme(s) can form AFB1-8,9-epoxide, but are effective at only relatively high substrate concentrations. Another P450 enzyme(s) appears to be principally responsible for AFB1-8,9-epoxide formation at the low AFB1 levels that would be typical for dietary exposures.  相似文献   

3.
A O Uwaifo 《Toxicology》1984,31(1):33-39
Oxygen uptake in liver slices of rats, rabbits and guinea pigs were determined manometrically in the presence of different concentrations of aflatoxin B1 (AFB1). AFB1 inhibited oxygen uptake at all concentrations of AFB1 tested (3.2 microM, 16.0 microM, 48.1 microM, 64.1 microM, 80.0 microM, 112.2 microM). Inhibition was directly proportional to the concentration of AFB1 inducing the inhibition. The degree of inhibition of oxygen uptake in the 3 mammalian species seems to correlate with their respective susceptibilities to AFB1 toxicity. The highest inhibition was in guinea pig and the least in rat; that in the rabbit was intermediate between rat and guinea pig.  相似文献   

4.
Mycotoxins-aflatoxin B1 (AFB1) and ochratoxin A (OTA)-compounds which are strong carcinogenic, mutagenic and cytotoxic factors-are also known to evoke a decrease of food intake and body weight gains. The purpose of our study was to determine the direct influence of AFB1 and OTA incubated with isolated rat fat cells on the lipogenesis, lipolysis and leptin secretion. Adipocytes were isolated from the epididymal fat tissue by the collagenase digestion. Toxins used at concentrations 1, 10 and 100 microM were incubated for 90 min with adipocytes. Basal and insulin-stimulated lipogenesis-determined by the measure of [U-14C]glucose conversion to total lipids-was abated by AFB1 only at the highest concentration. At two lower ones, AFB1 did not affect the process. OTA at all used concentrations decreased insulin-stimulated lipogenesis but the effect was not dose-dependent. The lipolysis was determined by the measure of glycerol release from adipocytes. The basal lipolysis was unchanged by both toxins. The epinephrine-stimulated lipolysis was intensified by AFB1 only at the highest concentration, however, the process was not altered by OTA. The antilipolytic action of insulin was unaffected by both compounds (10 microM). To determine the influence of the tested toxins on leptin secretion, adipocytes were incubated for 120 min in the presence of glucose and insulin as stimulators of hormone secretion. AFB1 and OTA added to the incubation medium (1, 10 and 100 microM) had no significant influence on the leptin release. The results obtained in this experiment demonstrate that adipocytes are susceptible to the direct action of AFB1 and OTA. This susceptibility is, however, rather weak and is exhibited by a slight restriction of the lipogenesis (in the case of both toxins) and by a slight increase of the lipolysis (in the case of AFB1).  相似文献   

5.
Copper, though essential, is highly toxic when present in excess, as in Wilson disease, a genetic disorder of hepatic copper metabolism. We hypothesized that mitochondria are a major target of copper-induced cytotoxicity in Wilson disease. We used the human hepatoma line Hep G2 to examine copper-mediated cytotoxicity and three different methods to assess organelle damage: MTT assay (mitochondria), neutral red (NR; lysosomes) and Trypan blue exclusion assay (TB; plasma membrane). For all assays, cells at approximately 60% confluence in microtitre plates were incubated with CuCl(2) (concentration range: 50-100-150-200 microM) for 24 or 48 h. Results were expressed as percent of untreated control. At 24 h, cytotoxicity as detected by NR assay was significantly higher at all concentrations of copper than for MTT or TB ( p<0.005 at all concentrations). Cytotoxicity as detected by MTT was higher than that detected by TB at all concentrations except at 200 microM (p<0.05 for 50 microM, p<0.005 for 100 microM, p = 0.001 for 150 microM). Results at 48 h were similar (NR versus others: p <0.001 MTT versus TB: NS except at 150 microM where p<0.01). We investigated reactive oxygen species (ROS) production in copper-associated hepatocytoxicity by incubating sub-confluent cells with 2('),7(')-dichlorodihydrofluorescein diacetate dye plus copper (concentration range: 0-200 microM) for 1-1.5 h. Copper, but not zinc, produced significant increases in ROS (p<0.001). In summary, Hep G2 lysosomes appeared more susceptible to Cu-mediated damage than mitochondria; the cell membrane was highly resistant to damage.  相似文献   

6.
Acute effects of aflatoxins on guinea pig isolated ileum.   总被引:1,自引:0,他引:1  
Previous studies on the aflatoxins have focused mainly on their chronic toxic effects. In this study we investigated the acute gastrointestinal effects of four common aflatoxins on isolated guinea pig ileum. AFB(1) (EC(50) 4.6+/-0.4 microM) and AFB(2) (EC(50)17+/-4.4 microM) contracted isolated guinea pig ileum in a dose-dependent manner, whereas AFG(1) and AFG(2) evoked no contractions. Atropine (5.9 nM 11.8 and 23.6 nM) antagonized AFB(1)-induced contractions in a dose-dependent manner. Pretreatment with the nicotinic ganglionic blocker, hexamethonium (up to 55 microM), left AFB(1)-induced contractions unchanged. In contrast, tetrodotoxin (0.3 microM), blocked AFB(1) contractile activity. The two inhibitors of ACh release, morphine (0.3 microM) and clonidine (0.4 microM), antagonized EC(50) AFB(1)-induced contractions, and apamin, a drug that increases neuronal excitability, facilitated the EC(50) AFB(1)-induced contractile effect. The choline uptake blocker, hemicholinium (17.4 microM) markedly reduced AFB(1)-induced contractions. These results suggest that aflatoxins induce their contractile effect indirectly through the cholinergic system by stimulating acetylcholine release from the postganglionic parasympathetic nerve endings. The acute actions of aflatoxins on isolated guinea pig ileum could explain their acute gastrointestinal effects in humans and animals.  相似文献   

7.
Aflatoxin B1 (AFB1) is a potent carcinogen, which can significantly increase the risk of hepatocellular carcinoma development through food contamination. In past decades, chemopreventive agents, such as oltipraz and chlorophyllins, have demonstrated that chemo-intervention is an effective approach to reduce hepatotoxicity by AFB1. However, because of the potential adverse effects of these agents, alternative novel mechanism-based chemopreventive agents are needed. We report here that novel cis-terpenones 1-3, which were synthesized as the precursors of natural product analogues in our laboratory, showed promising protective effects against AFB1-induced cytotoxicity in HepG2 cells. Chemo-protection was observed with increasing concentrations of cis-terpenones in the co-treatment of AFB1, and no cytotoxicity was observed with cis-terpenones alone. In addition, cis-terpenones 1-3 at 10 and microM effectively inhibited induced cytochrome P450 1A/1B activity by 50% in HepG2 cells, as indicated by an EROD assay. P450 1A/B is involved in the activation of many pre-carcinogens and is highly inducible in liver cells. These results suggested that novel terpenones 1-3 are candidates for the development of novel mechanism-based chemopreventive agents against AFB1 and other carcinogenic stimuli.  相似文献   

8.
Aflatoxin B1 (AFB1) action on cyclic nucleotide phosphodiesterase (PDE) activity has been tested on tissue extracts of various organs. In the presence of 100 microM AFB1 a significant inhibition of cAMP and cGMP hydrolytic activity is observed in all tested tissue extracts. However, cGMP hydrolytic activity appears more sensitive to AFB1 inhibition than cAMP hydrolytic activity and a considerably higher inhibition is observed in lung and spleen, than in liver, brain, kidney, and heart. When cGMP is used as substrate, the inhibitory response reaches 72% in lung and spleen extracts. We have also tested AFB1 effects on lung and liver PDE activity peaks separated by DEAE-cellulose chromatography. These data confirm the poor sensitivity to the toxin of all PDE activities present in liver, while the lung peak (where PDE V in present) shows a higher sensitivity to AFB1. In order to establish whether PDE V is in fact more sensitive to AFB1, we have used mouse neuroblastoma cells, in which cGMP hydrolytic activity has been shown to be due to PDE V only. In this case, the calculated IC50 is 24 microM and Dixon plot analysis shows a competitive inhibitory effect with a Ki of 16.7 microM. We have also used aflatoxin B2 and M2, and they proved to be much less effective than AFB1: AFB2 inhibits PDE V with an IC50 of 117 microM, while AFM2 does not show any effect. These results provide the first evidence of a competitive inhibition of AFB1 on an enzymatic activity and suggest that an alteration of cellular cyclic nucleotide levels may play a role in the mechanism of aflatoxin action.  相似文献   

9.
The reduction of the aflatoxin B 1 (AFB 1) dialdehyde metabolite to its corresponding mono and dialcohols, catalyzed by aflatoxin B 1-aldehyde reductase (AFAR, rat AKR7A1, and human AKR7A3), is greatly increased in livers of rats treated with numerous chemoprotective agents. Recombinant human AKR7A3 has been shown to reduce the AFB 1-dialdehyde at rates greater than those of the rat AKR7A1. The activity of AKR7A1 or AKR7A3 may detoxify the AFB 1-dialdehyde, which reacts with proteins, and thereby inhibits AFB 1-induced toxicity; however, direct experimental evidence of this hypothesis was lacking. Two human B lymphoblastoid cell lines, designated pMF6/1A2/AKR7A1 and pMF6/1A2, were genetically engineered to stably express AKR7A1 and/or cytochrome P4501A2 (1A2). The pMF6/1A2/AKR7A1 cells were refractory to the cytotoxic effects of 3 ng/mL AFB 1, in comparison to pM6/1A2 cells, which were more sensitive. Diminished protection occurred at higher concentrations of AFB 1 in pMF6/1A2/AKR7A1 cells, suggesting that additional factors were influencing cell survival. COS-7 cells were transfected with either vector control, rat AKR7A1, or human AKR7A3, and the cells were treated with AFB 1-dialdehyde. There was a 6-fold increase in the dialdehyde LC 50, from 66 microM in vector-transfected cells to 400 microM in AKR7A1-transfected cells, and an 8.5-fold increase from 35 microM in vector-transfected cells to 300 microM in AKR7A3-transfected cells. In both cases, this protective effect of the AFAR enzyme was accompanied by a marked decrease in protein adducts. Fractionation of the cellular protein showed that the mitochondria/nuclei and microsomal fractions contained the highest concentration of protein adducts. The levels of human AKR7A3 and AKR7A2 were measured in 12 human liver samples. The expression of AKR7A3 was detectable in all livers and lower than those of AKR7A2 in 11 of the 12 samples. Overall, these results provide the first direct evidence of a role for rat AKR7A1 and human AKR7A3 in protection against AFB 1-induced cytotoxicity and protein adduct formation.  相似文献   

10.
Chlorophyllin (CHL) is a sodium copper derivative of chlorophyll that is capable of forming strong non-covalent complexes with several known carcinogens. Antimutagenic and anticarcinogenic effects, including reduced DNA adduct and tumor formation have been demonstrated for CHL against aflatoxin B(1) (AFB(1)), dibenzo(a,l)pyrene (DBP) and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP). Alterations in uptake and/or metabolism of planar molecules with at least partial ring structure have been proposed as mechanisms of action for CHL chemoprevention. The Caco-2 cell model of intestinal epithelial transport was used to evaluate the absorption of 1 microM DBP, AFB(1) and PhIP across cell monolayers in the presence of 0, 1, 10, and 100 microM CHL. No significant differences were observed in the permeability (P(e)) of DBP and AFB(1) from the basolateral-to-apical (BL --> AP) compared to apical-to-basolateral (AP --> BL) compartments for DBP and AFB(1), however, the P(e) of PhIP from BL --> AP, 1.26 x 10(5) +/- 2.10 x 10(6) cm/s, was significantly higher than AP --> BL, 5.83 x 10(6) +/- 7.56 x 10(7) cm/s, (P<0.001) suggesting an active efflux pathway. Transport of DBP from AP --> BL compartments was significantly reduced at all CHL concentrations (P<0.05). AP --> BL transport of AFB(1) was significantly reduced by the addition of 100 microM CHL (P<0.05) while 1 microM or 10 microM CHL had no effect. Complexation studies revealed a higher binding affinity (K(b)) for DBP to CHL compared to AFB(1) to CHL in transport buffer. AP --> BL transport of PhIP, which has a lower binding affinity for CHL than AFB(1) or DBP, was not significantly altered by the addition of CHL. These data suggest that the transport of AFB(1) and DBP can be inhibited by CHL, which supports a model of direct binding in the intestinal tract of CHL to these carcinogens with resultant reduction of bioavailability as one mechanism of action as a cancer chemopreventive agent.  相似文献   

11.
Aflatoxin B, (AFB1) is a potent hepatocarcinogen in animal models and a suspected carcinogen in humans. High concentrations of AFB, have been found in respirable grain dusts, and may therefore be a risk factor for human lung cancer in certain occupations. To study the potential for AFB, activation in human lung, cytochrome P-450 (CYP)-mediated activation and glutathione S-transferase (GST)-mediated detoxification of AFB1 were examined in cultured normal human bronchial epithelial (NHBE) cells. Cells were exposed to 0. 15 microM or 1.5 microM AFB, for 48 h and media was collected for metabolite analysis by high-performance liquid chromatography (HPLC). At 0. 15 microM, AFB1 was metabolized only to the detoxified metabolite aflatoxin Q1 (AFQ1). At 1.5 microM AFB1, both aflatoxin M1 (AFM1), and AFQ1 were produced. Cells pretreated with 50 degrees M 3-methylcholanthrene (3MC), a CYP 1A inducer, for 72 h prior to 0.15 microM AFB1, produced the activated AFB1 8,9-epoxide (AFBO). Similarly, microsomes prepared from 3MC-pretreated cells formed AFBO, but microsomes from noninduced cells did not. While AFB1-DNA adducts were not detected at low AFB1 concentrations in untreated NHBE, 3MC induction caused the production of AFB1-DNA adducts at 0.015 and 0.15 microM AFB1. Western immunoblots showed that the primary CYP isoforms responsible for AFB1 activation in the liver, 1A and 3A4, to be constitutively expressed in NHBE cells. Expression of CYP 1A was significantly increased in 3MC-pretreated cells, while CYP 3A4 expression increased slightly, but not to the extent of the 1A isoforms. The principal AFBO detoxifying enzyme, glutathione S-transferase (GST), was constitutively expressed in NHBE cells, and was increased approximately twofold by 3MC pretreatment. Cytosolic fractions from neither control nor 3MC-induced NHBE had measurable AFBO conjugating activity, indicating that these cells may lack AFB1-relevant GST activity. From these data, it appears that NHBE cells activate AFB1 inefficiently, but possess CYPs reportedly responsible for metabolism of AFB1. These data support earlier findings showing modest CYP-mediated AFB1 activation in human airways, but indicate that exposure to polycyclic aromatic hydrocarbons (PAHs), such as 3MC, which induce CYP(s) that specifically activate AFB1 may increase the harmful effects of AFB1 exposures in human airways.  相似文献   

12.
7H-Dibenzo[c,g]carbazole (DBC), an N-heterocyclic aromatic hydrocarbon, is cytotoxic and carcinogenic in rodent liver. While DBC leads to necrotic lesions in the liver, the induction of apoptosis by DBC has not been investigated. The focus of this study was to determine the degree to which apoptosis and necrosis contributed to DBC cytotoxicity in a human hepatoma cell line (HepG2). To determine if these effects were unique to DBC, the results were compared to another hepatotoxin, aflatoxin B(1) (AFB(1)). DBC produced a distinct biphasic LDH release curve within 24 h of exposure. During the same time period lower concentrations of DBC (<10 microM) induced the formation of DBC-DNA adducts and increased p53 protein levels followed by apoptotic cell death. However, increasing the concentration of DBC to 80 microM led to lower DNA adduct and p53 protein levels. At this concentration, intracellular ATP levels were rapidly depleted followed by cell swelling and loss of membrane integrity consistent with necrotic cell death. In contrast to DBC, a biphasic LDH release curve was not observed for AFB(1). Instead, AFB(1) induced a concentration-dependent increase in apoptosis that reached two- to threefold higher levels than DBC. These results suggest that differences exist in the extent and type of cell death induced by DBC and AFB(1) at equimolar concentrations. Apoptosis and necrosis result from low and high concentrations of DBC, respectively, and may be dependent upon intracellular ATP levels.  相似文献   

13.
Aflatoxins are natural contaminants frequently found both in food and feed. Many of them exert immunomodulatory properties in mammals; therefore, the aim of the current study was to investigate immune-effects of AFB1, AFB2, AFM1 and AFM2, alone and differently combined, in J774A.1 murine macrophages. MTT assay showed that AFB1, alone and combined with AFB2, possess antiproliferative activity only at the highest concentration; such effect was not shown by their hydroxylated metabolites, AFM1 and AFM2, respectively. However, the immunotoxic effects of the aflatoxins evaluated in the current study may be due to the inhibition of production of active oxygen metabolites such as NO. Cytofluorimetric assay in macrophages exposed to aflatoxins (10-100 μM) revealed that their cytoxicity is not related to apoptotic pathways. Nevertheless, a significant increase of the S phase cell population accompanied by a decrease in G0/G1 phase cell population was observed after AFB1 treatment. In conclusion, the results of the current study suggest that aflatoxins could compromise the macrophages functions; in particular, co-exposure to AFB1, AFB2, AFM1 and AFM2 may exert interactions which can significantly affect immunoreactivity.  相似文献   

14.
To evaluate the protective effects of baicalein and wogonin against benzo[a]pyrene- and aflatoxin (AF) B(1)-induced toxicities, the effects of these flavonoids on the genotoxicities and oxidation of benzo[a]pyrene and AFB(1) were studied in C57BL/6J mice. Baicalein and wogonin reduced benzo[a]pyrene and AFB(1) genotoxicities as monitored by the umuC gene expression response in Salmonella typhimurium TA1535/pSK1002. Baicalein added in vitro decreased liver microsomal benzo[a]pyrene hydroxylation (AHH) activity with an ic(50) of 33.9 +/- 1.4 microM at 100 microM benzo[a]pyrene. Baicalein also inhibited AFQ(1) and AFB(1)-epoxide formation from AFB(1) (50 microM) oxidation (AFO) with ic(50) values of 22.8 +/- 1.4 and 5.3 +/- 0.8 microM, respectively. However, the in vitro inhibitory effects of wogonin on AHH and AFO activities in liver microsomes were less than those of baicalein as inhibition by 500 microM wogonin was only about 51-65%. Treatment of mice with liquid diets containing 5 mM baicalein and wogonin resulted in 22 and 49% decreases in hepatic AHH activities, respectively. Baicalein treatment resulted in 39 and 32% decreases in AFQ(1) and AFB(1)-epoxide formation from liver microsomal AFO, respectively. Wogonin treatment resulted in 39 and 47% decreases in AFQ(1) and AFB(1)-epoxide formation, respectively. A 1-week pretreatment with wogonin significantly decreased hepatic DNA adduct formation in mice treated with 200 mg/kg of benzo[a]pyrene via gastrogavage. These in vitro and in vivo effects suggested that baicalein and wogonin might have beneficial effects against benzo[a]pyrene- and AFB(1)-induced hepatic toxicities and that wogonin had a stronger protective effect in vivo.  相似文献   

15.
Chlorophyllin (CHL) is a potent blocking agent against aflatoxin B(1) DNA adduction and tumorigenesis in the trout model, but mechanisms responsible for this chemoprotection in vivo are not well established. This study employed aflatoxin B(2) (AFB(2)), a structural analogue of AFB(1) that cannot be metabolized directly to the 8,9-exo-epoxide electrophile, to investigate CHL effects on carcinogen uptake and distribution kinetics following oral exposure in trout. CHL was shown to form an AFB(2) complex in vitro with a dissociation constant (K(d) = 1.92 +/- 0.13 microM) comparable to that with AFB(1). Following gavage, [(3)H]AFB(2) equivalents distributed rapidly from the stomach to other organs including blood, liver, and eventually to bile as a major repository. Bile was found to contain almost entirely parent AFB(2) 1 h after gavage, with a single metabolite dominating 3-24 h and an additional metabolite prominent by 48 h after gavage. Addition of sufficient CHL (>/=13.9 mM) to assure >99% complexation of AFB(2) (0.906 microM) in the gavage mix resulted in 80-90% reduction in AFB(2) equivalents in liver and bile 3 h after gavage. In three separate kinetic studies of up to 120 h postgavage, addition of >/=13.9 mM CHL to the gavage mix reproducibly and markedly delayed the rate of AFB(2) loss from stomach, retarded its appearance in blood, liver, and bile, and reduced peak AFB(2) concentrations in those tissues by up to 60%. Introduction of a food bolus immediately after gavage prolonged AFB(2) residence in stomach and intestine but did not abrogate the inhibitory effects of CHL on AFB(2) uptake and distribution. These results demonstrate that oral co-treatment with CHL under conditions where complex formation is initially assured, substantially reduces AFB(2) systemic uptake and target organ bioavailability in the trout.  相似文献   

16.
In short-term primary monolayer cultures of rat hepatocytes, aflatoxin B1 (AFB1) causes a characteristic prelethal cytomorphological response in which peripheral attached cytoplasm contracts segmentally to form finger-like blebs. This response precedes lethal injury as detected by release of lactate dehydrogenase (LDH) into culture medium. We compared the influences of various modifiers of cellular glutathione (GSH) status on cytocidal responses of Fischer 344 rats hepatocytes exposed to AFB1 or acetaminophen (AAP), a hepatotoxin which does not produce segmental cytoplasmic contraction. N-Acetylcysteine (4 mM) reduced the degree of LDH release by AAP (4 to 16 mM) but was not protective against cell killing by AFB1, although it slightly reduced the percentage of hepatocytes with segmental cytoplasmic contraction at 6 hr. BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) at 40 microM markedly inhibited glutathione reductase and also strongly potentiated cell killing by AAP but did not significantly influence segmental cytoplasmic contraction or LDH release in response to AFB1. Diethylmaleate (40 to 160 microM), a depletor of hepatocellular GSH, and buthionine-D,L-sulfoximine (4 mM), an inhibitor of GSH synthesis, each did not alter hepatocyte killing by AFB1 but were strong potentiators of toxicity of AAP. AAP inhibited glutathione reductase but AFB1 did not. Total GSH concentrations at 6 and 18 hr were reduced by AAP and to a lesser extent by AFB1 in comparison with control cultures. These findings demonstrate that, in contrast to AAP toxicity, the characteristic mode of hepatocyte killing by AFB1 in monolayer cultures is substantially independent of induced alterations in GSH. These results indicate that GSH-dependent detoxification mechanisms do not play a major role in removing necrogenic metabolites of AFB1 in Fischer 344 rat hepatocytes. They further suggest that prelethal responses of AFB1-injured hepatocytes are not affected by GSH-dependent cytoprotective mechanisms.  相似文献   

17.
To evaluate the role of glutathione S-transferase (GST) isoenzymes in induced resistance of hepatocytes to aflatoxin B1 (AFB1), we compared DNA protective activities of different hepatic cytosol preparations and purified GSTs from normal rats, rats exposed to different polychlorinated biphenyls (PCBs), and rats with carcinogen-induced hepatocellular neoplasms, with cytosols or purified GSTs from mouse, rainbow trout, and human livers. These comparisons were performed in an in vitro assay for [3H]AFB1-DNA binding after activation by rat liver microsomes. Cytosol and S-hexylglutathione-affinity-purified GST preparations from livers of mice consistently had strong protective activity against AFB1-DNA binding. The majority of this activity was dependent on the presence of reduced glutathione (GSH) but some GSH-independent protection was observed in mouse hepatic cytosol, but not in purified GST preparations. We found that all of the GSH-dependent DNA-protective activity in mouse liver eluted as a single GST isoenzyme by hydroxyapatite chromatography. Preparations of cytosol and purified GSTs from normal rat liver, rainbow trout liver, and human liver had much less AFB1-specific DNA protective activity than GSTs found in mouse liver preparations. Cytosol from rats with carcinogen-generated liver neoplasms and livers induced with 3,3',4,4'-tetrachlorobiphenyl and 2,2',4,4',5,5'-hexachlorobiphenyl had more GST activity toward CDNB than cytosol from normal rat liver. When equivalent units of GST activity (CDNB) were compared, there was little difference observed between the DNA-protective activities of PCB-induced and normal rat liver cytosols, yet cytosol from rat liver neoplasms was more protective. Purified GST-P (7-7), the GST isoenzyme most induced in carcinogen-generated rat liver neoplasms, was not protective when added at protein concentrations found to be protective for total GSTs isolated from these neoplasms. These studies demonstrate that the resistance of mouse liver to AFB1 can be explained primarily by a single constitutive GST isoenzyme (YaYa or 4-4) with a relatively high activity toward DNA-binding metabolites of AFB1. GST isoenzymes with such high specific DNA protective activity against AFB1 metabolites were not evident in human, rat, or rainbow trout liver or in PCB-induced or neoplastic rat liver preparations.  相似文献   

18.
Phosphoramidate peptide inhibitors of human skin fibroblast collagenase   总被引:1,自引:0,他引:1  
An extensive series of N-(monoethylphosphoryl)peptides was synthesized and their inhibition of purified human skin fibroblast collagenase examined. At the cleavage site S1 all reported compounds have the (EtO)(OK)P(O) group and the peptide side chain extended toward the C-terminal end (up to P5') of the substrate sequence. These phosphoramidates with a tetrahedrally hybridized phosphorus atom are thought to be transition state analogue inhibitors. They exhibited fair inhibitory potency against this vertebrate collagenase having Ki values in the micromolar range. The most potent of these, (EtO)(OK)P(O)-Ile-TrpNHCH3 (68), inhibits with a Ki value of 1.5 microM and is nearly 100 times stronger than (EtO)(OK)P(O)-Ile-Ala-GlyOK (51) (Ki of 140 microM), which has the sequence matching that of the alpha 1 (I) chain of collagen in P1', P2', P3' after the cleavage site. Several compounds were prepared in an attempt to identify the nature of the S2', S3', and S4' binding sites. Alanine at the P2' position was replaced by leucine, phenylalanine, tryptophan, or tyrosine derivatives, resulting in Ki values in a significantly lower range, 1.0-40 microM, compared to 51. No upper size limitation or specificity has been found at this position, yet similar replacements at the P3' position, which is occupied naturally by a glycine residue, gave weaker inhibitors: (EtO)(OK)P(O)-Ile-Tyr(OBzl)-PheOK (57) had a Ki of 120 microM. Hexapeptide derivatives had weaker activities in the 270 microM-2 mM range. All inhibitors were evaluated by using the synthetic thio peptolide spectrophotometric assay.  相似文献   

19.
The mycotoxin aflatoxin B(1) (AFB(1)) is a hepatocarcinogen in many animal models and probably a human carcinogen. Besides being a dietary carcinogen, AFB(1) has been detected in dusts generated in the processing and transportation of AFB(1)-contaminated products. Inhalation of grain dusts contaminated with AFB(1) may be a risk factor in human lung cancer. Aflatoxin B(1) requires cytochrome P-450 (CYP)-mediated activation to form cytotoxic and DNA-reactive intermediates, and this activation in human liver is mediated by the CYP 1A2 and 3A4 isoforms. Which isoforms are important in AFB(1) activation in human lung is not well understood. To investigate whether these CYPs can activate AFB(1) at low, environmentally relevant concentrations in human lung cells, SV40 immortalized human bronchial epithelial cells (BEAS-2B) that were transfected with cDNA for CYPs 3A4 (B3A4) or 1A2 (B-CMV1A2) were used. B-CMV1A2 cultured in 15 nM AFB(1) produced the AFB(1)-glutathione conjugate (AFB(1)-GSH) and aflatoxin M(1) (AFM(1)), while B3A4 cells produced only aflatoxin Q(1) (AFQ(1)) at 0.15 microM AFB(1). Nontransfected BEAS-2B cells produced no metabolites, even at 1.5 mM AFB(1). Microsomes prepared from B-CMV1A2 and B3A4 cells activated AFB(1) to AFB(1) 8,9-epoxide (AFBO), while those from BEAS-2B cells did not produce AFBO. Cytosol from all three cell types was ineffective at glutathione S-transferase (GST)-mediated trapping of enzymatically generated AFB(1) 8,9-epoxide. B-CMV1A2 cells were 100-fold more sensitive to AFB(1) compared to B3A4 cells, and were 6000-fold more sensitive than control BEAS-2B cells. Western immunoblots confirmed that only B-CMV1A2 cells expressed CYP 1A2 protein, while CYP 3A4 was only in B3A4 cells. B-CMV1A2 cells were the most sensitive to AFB(1), followed by B3A4 cells. CYP 3A4, which has been predicted to activate AFB(1) primarily at higher AFB(1) concentrations, was also responsible for significant AFB(1) toxicity at low concentrations. These data indicate that human lung cells expressing these CYP isoforms are capable of activating AFB(1), even at environmentally relevant concentrations.  相似文献   

20.
Aflatoxin B1 (AFB1) is a potent dietary hepatocarcinogen in animals and probably in humans. Mutations (and altered expression) of the tumor suppresser gene p53 have been observed in liver tumors from patients exposed to high dietary AFB1. Inhalation of AFB1-laden grain dusts has been associated with an increased incidence of lung cancer in humans as well. We examined the effects of low concentrations of AFB1 on the expression of p53 and MDM2 in human bronchial epithelial cells (BEAS-2B) transfected with cDNA for either cytochrome P450 (CYP) 1A2 (B-CMV1A2) or CYP 3A4 (B3A4), two isozymes that are responsible for AFB1 activation in human liver and possibly the lung. Untreated B-CMV1A2 and B3A4 cells constitutively expressed p53. Exposure to a range (0.015-15 microM for 30 min) of AFB1 concentrations caused a concentration-dependent decline in p53 expression in B-CMV1A2 cells, and to a lesser extent, in B3A4 cells. The AFB1-mediated decrease in p53 continued for at least 12 h after 30-min exposures to 1.5 muM AFB(1). Mirroring the decrease in p53 expression was a concentration-dependent increase in the expression of the 76-kDa MDM2 isoform in B-CMV1A2 and B-3A4 cells. Interestingly, AFB1 did not induce DNA laddering, an indicator of apoptotic cell death, but proteolytic activation of caspase-3 was detected in AFB1-treated B-CVM1A2 cells. In total, these data show that low, environmentally-relevant concentrations of AFB1 alter the expression of p53 and MDM2 in these human lung cells, and that cells that stably express CYP 1A2 were more susceptible to this effect than nontransfected, or 3A4-expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号