首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Cardiovascular disease is the leading cause of morbidity and mortality in hemodialysis patients. Therefore, evaluation and prevention of cardiovascular diseases in end-stage renal disease (ESRD) patients are very important. The plasma level of omentin was found to be associated with different conditions such as insulin resistance. It is one of the novel adipokines synthesized mainly in the visceral adipose tissue. In this study, we aimed to investigate the level of omentin in patients with ESRD receiving hemodialysis. Methods: The study population consisted of 59 adult chronic hemodialysis patients (30 women and 29 men) and age-matched control subjects were selected from apparently healthy subjects (28 participants; 14 women and 14 men). Blood samples were obtained before the dialysis session. Omentin concentrations were determined by using enzyme-linked immunosorbent assay. Results: Plasma levels of omentin were found to be markedly higher in ESRD patients (606.6 ± 313.0 ng/ml) than in the control group (357.5 ± 147.4 ng/ml; p < 0.0001). Also, serum omentin levels were found to be correlated with creatinine (r = 0.333, p = 0.002). Conclusions: Omentin levels were found to be elevated in patients with ESRD receiving hemodialysis. To the best of our knowledge, this is the first clinical study that demonstrated the association between omentin and ESRD.  相似文献   

2.
3.
Ghrelin is a novel growth hormone-releasing peptide isolated from human and rat stomach that induces weight gain by increasing food intake and reducing fat utilization. Although recent data indicate that ghrelin is downregulated in human adult obesity, the characteristics of human obesity are heterogeneous, especially in children and adolescents, and depend on the distribution of subcutaneous and visceral fat tissue. We measured fasting plasma ghrelin concentrations by radioimmunoassay in 49 obese Japanese children and adolescents (38 boys and 11 girls; mean age 10.2 +/- 2.8 years; BMI 28.0 +/- 4.5 kg/m(2), percent overweight 56.0 +/- 20.7%), and analyzed associations of their ghrelin concentrations with their body composition, insulin resistance, and adipocytokine concentrations. Fasting plasma ghrelin levels were negatively correlated with BMI and waist circumference, but not with percent overweight or percent body fat, whereas fasting leptin levels were positively correlated with all of the following parameters: BMI, waist circumference, percent overweight, and percent body fat. Plasma ghrelin levels were negatively correlated with fasting immunoreactive insulin, homeostasis model assessment insulin resistance index, and quantitative insulin sensitivity check index values. There was no correlation between plasma ghrelin and leptin, but ghrelin was negatively correlated with the PAI-1 concentrations. The results suggest that the downregulation of ghrelin secretion may be a consequence of higher insulin resistance associated with visceral fat accumulation and elevated PAI-1 concentrations, and not a consequence of total body fat accumulation associated with elevated leptin concentrations.  相似文献   

4.
Adiponectin is an adipose-specific plasma protein whose plasma concentrations are decreased in obese subjects and type 2 diabetic patients. This protein possesses putative antiatherogenic and anti-inflammatory properties. In the current study, we have analyzed the relationship between adiponectin and insulin resistance in rhesus monkeys (Macaca mulatta), which spontaneously develop obesity and which subsequently frequently progress to overt type 2 diabetes. The plasma levels of adiponectin were decreased in obese and diabetic monkeys as in humans. Prospective longitudinal studies revealed that the plasma levels of adiponectin declined at an early phase of obesity and remained decreased after the development of type 2 diabetes. Hyperinsulinemic-euglycemic clamp studies revealed that the obese monkeys with lower plasma adiponectin showed significantly lower insulin-stimulated peripheral glucose uptake (M rate). The plasma levels of adiponectin were significantly correlated to M rate (r = 0.66, P < 0.001). Longitudinally, the plasma adiponectin decreased in parallel to the progression of insulin resistance. No clear association was found between the plasma levels of adiponectin and its mRNA levels in adipose tissue. These results suggest that reduction in circulating adiponectin may be related to the development of insulin resistance.  相似文献   

5.
The endocannabinoid system has been suspected to contribute to the association of visceral fat accumulation with metabolic diseases. We determined whether circulating endocannabinoids are related to visceral adipose tissue mass in lean, subcutaneous obese, and visceral obese subjects (10 men and 10 women in each group). We further measured expression of the cannabinoid type 1 (CB(1)) receptor and fatty acid amide hydrolase (FAAH) genes in paired samples of subcutaneous and visceral adipose tissue in all 60 subjects. Circulating 2-arachidonoyl glycerol (2-AG) was significantly correlated with body fat (r = 0.45, P = 0.03), visceral fat mass (r = 0.44, P = 0.003), and fasting plasma insulin concentrations (r = 0.41, P = 0.001) but negatively correlated to glucose infusion rate during clamp (r = 0.39, P = 0.009). In visceral adipose tissue, CB(1) mRNA expression was negatively correlated with visceral fat mass (r = 0.32, P = 0.01), fasting insulin (r = 0.48, P < 0.001), and circulating 2-AG (r = 0.5, P < 0.001), whereas FAAH gene expression was negatively correlated with visceral fat mass (r = 0.39, P = 0.01) and circulating 2-AG (r = 0.77, P < 0.001). Our findings suggest that abdominal fat accumulation is a critical correlate of the dysregulation of the peripheral endocannabinoid system in human obesity. Thus, the endocannabinoid system may represent a primary target for the treatment of abdominal obesity and associated metabolic changes.  相似文献   

6.
BACKGROUND: Obesity has emerged as one of the most serious public health concerns in the twenty-first century. the fat mass and obesity associated gene (FTO) has been found to contribute to the risk of obesity in humans. Our aims in this study were to investigate the association of rs9939609 single nucleotide polymorphism (SNP) of the FTO gene with different obesity-related parameters, to assess the FTO gene expression in subcutaneous and visceral adipose tissues from morbidly obese and its correlations with other adipocytokine gene expressions. METHODS: The association between the rs9939609 FTO gene variant and obesity related parameters in 75 obese/morbidly obese adult patients and 180 subjects with body mass index (BMI) < 30 kg/m(2) (control group) was examined. Gene expression analyses: subcutaneous adipose tissue samples were obtained from 52 morbidly obese and five subjects with BMI < 30 kg/m(2). Visceral adipose tissue was also obtained from 35 morbidly obese patients. Weight, height, BMI, SBP, DBP, fasting glucose, lipid profile, proinsulin, insulin, leptin, and adiponectin (RIA) of patients were also obtained. Insulin resistance by HOMA(IR). rs9939609 of FTO genotyping using allele discrimination in real-time PCR. Genomic study of RNA extraction of adipose tissue and real-time PCR (RT-PCR) of adipocytokines and a housekeeping gene were quantified using TaqMan probes. Relative quantification was calculated using the DeltaDelta Ct formula. RESULTS: The minor-(A) allele frequency of rs9939609 FTO gene in the whole population was 0.39. A strong association between this A allele and obesity was found, even after age-sex adjustment (p = 0.013). We found higher levels of FTO mRNA in subcutaneous adipose tissue from morbidly obese than in the control group (p = 0.021). FTO gene expression was lower in visceral than in subcutaneous adipose depot. However, this finding did not reach the level of statistical significance. A negative correlation between subcutaneous FTO gene expression and serum triglyceride levels and a positive correlation with leptin, perilipin, and visfatin gene expressions was found. In the visceral adipose tissue, these positive correlations were statistically significant only for perilipin. CONCLUSIONS: Our results show: (1) A strong association between rs9939609 SNP of the FTO gene variant and obesity in Spanish morbidly obese adult patients; (2) positive correlations between FTO mRNA and leptin, perilipin, and visfatin gene expressions in subcutaneous adipose tissue; (3) FTO and perilipin gene expressions were positively correlated in visceral fat depot. Overall these results may suggest a role of FTO in the regulation of lipolysis as well as in total body fat rather in fat distribution patterns.  相似文献   

7.
Impaired oxidative phosphorylation is suggested as a factor behind insulin resistance of skeletal muscle in type 2 diabetes. The role of oxidative phosphorylation in adipose tissue was elucidated from results of Affymetrix gene profiling in subcutaneous and visceral adipose tissue of eight nonobese healthy, eight obese healthy, and eight obese type 2 diabetic women. Downregulation of several genes in the electron transport chain was the most prominent finding in visceral fat of type 2 diabetic women independent of obesity, but the gene pattern was distinct from that previously reported in skeletal muscle in type 2 diabetes. A similar but much weaker effect was observed in subcutaneous fat. Tumor necrosis factor-alpha (TNF-alpha) is a major factor behind inflammation and insulin resistance in adipose tissue. TNF-alpha treatment decreased mRNA expression of electron transport chain genes and also inhibited fatty acid oxidation when differentiated human preadipocytes were treated with the cytokine for 48 h. Thus, type 2 diabetes is associated with a tissue- and region-specific downregulation of oxidative phosphorylation genes that is independent of obesity and at least in part mediated by TNF-alpha, suggesting that impaired oxidative phosphorylation of visceral adipose tissue has pathogenic importance for development of type 2 diabetes.  相似文献   

8.
Chen N  Liu L  Zhang Y  Ginsberg HN  Yu YH 《Diabetes》2005,54(12):3379-3386
Insulin resistance is often associated with obesity. We tested whether augmentation of triglyceride synthesis in adipose tissue by transgenic overexpression of the diacylglycerol aclytransferase-1 (Dgat1) gene causes obesity and/or alters insulin sensitivity. Male FVB mice expressing the aP2-Dgat1 had threefold more Dgat1 mRNA and twofold greater DGAT activity levels in adipose tissue. After 30 weeks of age, these mice had hyperglycemia, hyperinsulinemia, and glucose intolerance on a high-fat diet but were not more obese than wild-type littermates. Compared with control littermates, Dgat1 transgenic mice were both insulin and leptin resistant and had markedly elevated plasma free fatty acid levels. Adipocytes from Dgat1 transgenic mice displayed increased basal and isoproterenol-stimulated lipolysis rates and decreased gene expression for fatty acid uptake. Muscle triglyceride content was unaffected, but liver mass and triglyceride content were increased by 20 and 300%, respectively. Hepatic insulin signaling was suppressed, as evidenced by decreased phosphorylation of insulin receptor-beta (Tyr(1,131)/Tyr(1,146)) and protein kinase B (Ser473). Gene expression data suggest that the gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were upregulated. Thus, adipose overexpression of Dgat1 gene in FVB mice leads to diet-inducible insulin resistance, which is secondary to redistribution of fat from adipose tissue to the liver in the absence of obesity.  相似文献   

9.
GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans.  相似文献   

10.
BACKGROUND: The cytokine response to operative trauma may be altered in obesity. Thus, we monitored changes in systemic and adipose tissue content of interleukin 6 (IL-6) and in insulin resistance in nonobese versus severely obese patients before and immediately after abdominal operations. METHODS: At the beginning and the end of operation, blood samples and biopsies consisting of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were collected from 13 nonobese and 33 severely obese patients. Systemic concentrations of glucose, insulin, and IL-6, as well as adipose tissue content of IL-6, were determined. RESULTS: Plasma IL-6 concentration and adipose tissue content of IL-6 increased, compared with baseline in patients after operation (plasma, 13- and 5.7-fold; VAT, 270- and 210-fold; SAT, 79- and 8.2-fold in severely obese vs nonobese patients, respectively). The increase in IL-6 in plasma and in both VAT and SAT was exaggerated in severely obese patients, compared with nonobese patients. Increases after operation in plasma IL-6 concentrations were correlated positively to the corresponding increases in both SAT and VAT IL-6 content (r = 0.57 and 0.66, respectively). Also, we found a positive correlation between the worsening of insulin resistance and increases in both plasma and SAT IL-6 concentrations (r = 0.40 and 0.51, respectively). CONCLUSIONS: Circulating IL-6 concentrations both at baseline and after operation are related strongly to abdominal adipose tissue content of content of IL-6 and are exaggerated in severely obese persons. After operation, worsening of insulin resistance is associated with increasing plasma and adipose tissue content of IL-6.  相似文献   

11.
T-cell regulation in adipose tissue provides a link between inflammation and insulin resistance. Because of alterations in adipose tissue T-cell composition in obesity, we aimed to identify the antigen-presenting cells in adipose tissue of obese mice and patients with insulin resistance. Dendritic cells (DCs) and T cells were studied in mice and in two cohorts of obese patients. In lean mice, only CD11c(+) DCs were detected in adipose tissue. Adoptive transfer of naive CD4(+) T cells in Rag1(-/-) mice led to a predominant Th1 response in adipose tissue. In contrast, during obesity DCs (human CD11c(+)CD1c(+) and mouse CD11c(high)F4/80(low)) accumulated in adipose tissue. CD11c(high)F4/80(low) DCs from obese mice induced Th17 differentiation. In patients, the presence of CD11c(+)CD1c(+) DCs correlated with the BMI and with an elevation in Th17 cells. In addition, these DCs led to ex vivo Th17 differentiation. CD1c gene expression further correlated with homeostatic model assessment-insulin resistance in the subcutaneous adipose tissue of obese patients. We show for the first time the presence and accumulation of specific DCs in adipose tissue in mouse and human obesity. These DCs were functional and could be important regulators of adipose tissue inflammation by regulating the switch toward Th17 cell responses in obesity-associated insulin resistance.  相似文献   

12.
Adiponutrin is one of three recently identified adipocyte lipases. Surprisingly, these proteins also retain transacylase activity, a hitherto unknown pathway of triacylglycerol synthesis in the adipocytes. This may enable them to participate in both anabolic and catabolic processes. The adiponutrin gene (ADPN) is downregulated by fasting and upregulated by refeeding, suggesting a role in lipogenesis. Experiments in human adipocytes confirmed that the gene is upregulated in response to insulin in a glucose-dependent fashion. Obese subjects had increased levels of subcutaneous and visceral abdominal adipose tissue ADPN mRNA. Visceral ADPN mRNA expression was correlated to measures of insulin sensitivity (fasting insulin and homeostasis model assessment). We also studied genetic variation in ADPN and its relation to obesity, lipolysis, and mRNA expression. Two ADPN polymorphisms showed association with obesity. Carriers of the obesity-associated variants showed a lesser increase in the levels of adipose tissue ADPN mRNA and an increased basal lipolysis. Our results suggest that obese subjects that are insulin resistant and/or carriers of the obesity-associated ADPN alleles fail to upregulate the gene and that upregulation of adiponutrin may be an appropriate response to orchestrate energy excess.  相似文献   

13.
Extreme insulin resistance of the central adipose depot in vivo   总被引:5,自引:0,他引:5  
Despite the well-described association between obesity and insulin resistance, the physiologic mechanisms that link these two states are poorly understood. The present study was performed to elucidate the role of visceral adipose tissue in whole-body glucose homeostasis. Dogs made abdominally obese with a moderately elevated fat diet had catheters placed into the superior mesenteric artery so that the visceral adipose bed could be insulinized discretely. Omental insulin infusion was extracted at approximately 27%, such that systemic insulin levels were lower than in control (portal vein) insulin infusions. Omental infusion did not lower systemic free fatty acid levels further than control infusion, likely because of the resistance of the omental adipose tissue to insulin suppression and the confounding lower systemic insulin levels. The arteriovenous difference technique showed that local infusion of insulin did suppress omental lipolysis, but only at extremely high insulin concentrations. The median effective dose for suppression of lipolysis was almost fourfold higher in the visceral adipose bed than for whole-body suppression of lipolysis. Thus, the omental adipose bed represents a highly insulin-resistant depot that drains directly into the portal vein. Increased free fatty acid flux to the liver may account for hepatic insulin resistance in the moderately obese state.  相似文献   

14.
In adipose tissue from both obese mice and humans, plasminogen activator inhibitor 1 (PAI-1) expression has been reported to be upregulated to levels of increased plasma PAI-1. This elevated expression has been shown to be partly controlled by tumor necrosis factor (TNF)-alpha in mice. In humans, increased PAI-1 expression is associated with insulin resistance characterized by visceral fat accumulation. Therefore, the aim of this study was to investigate the expression pattern of PAI-1 and TNF-alpha (antigen and mRNA) in visceral human adipose fat in comparison with subcutaneous (SC) fat. Because transforming growth factor (TGF)-beta1 is a potent inducer of PAI-1 synthesis and has been shown to influence adipocyte metabolism, this work was extended to TGF-beta1 quantification. A total of 32 obese individuals (BMI 42 +/- 6.8 kg/m2) were investigated. Freshly collected visceral adipose tissue did not exhibit a higher content of PAI-1 or TGF-beta1 than did SC tissue. Although most of the TNF-alpha values were at the detection limit of the methods, TNF-alpha antigen was 3-fold higher and TNF-alpha mRNA was 1.2-fold higher in visceral fat. The levels of tissue TGF-beta1 antigen correlated well with those of PAI-1 antigen, regardless of the fat depot studied (SC tissue: n = 21, r = 0.72, P = 0.0006; visceral tissue: n = 20, r = 0.49, P < 0.03), and they were both significantly associated with BMI. Conversely, no relationship was observed between the levels of TNF-alpha and PAI-1 or TNF-alpha and BMI. Tissue PAI-1 levels were also significantly correlated with those of circulating PAI-1. These results describe, in severe obesity, a proportional increase in tissue PAI-1 and TGF-beta1 in visceral and SC tissues. This increased PAI-1 expression could be the result of tissue cytokine disturbances, such as elevated TGF-beta1 expression.  相似文献   

15.
The production of inflammatory mediators by abdominal adipose tissue may link obesity and insulin resistance. We determined the influence of systemic levels of interleukin-6 and C-reactive protein on insulin sensitivity after weight loss via Roux-en-Y gastric bypass surgery. Severely obese individuals (n 5 15) were evaluated at baseline and at 6 months after surgery. Insulin sensitivity was determined by frequently sampled intravenous glucose tolerance testing at the same time points. Visceral and subcutaneous adipose tissue volumes were quantified by computed tomography. Interleukin-6 and C-reactive protein were measured by enzyme-linked immunoassay in plasma and in adipose tissue biopsies. Correlation analysis was used to determine associations between insulin sensitivity and other outcome variables. Significance was set at P < 0.05. Plasma interleukin-6 concentrations were significantly correlated to the IL-6 content of subcutaneous adipose tissue (r = 0.71). At 6 months postsurgery, subcutaneous and visceral adipose tissue volumes were significantly reduced (34.7% and 44.1%, respectively) and insulin sensitivity had improved by 160.9%. Significant longitudinal correlations were found between insulin sensitivity and plasma C-reactive protein (r = 20.61), but not plasma interleukin-6 at 6 months. These findings offer insights that link obesity and insulin resistance via the activity of inflammatory mediators. Presented at the Forty-Sixth Annual Meeting of The Society for Surgery of the Alimentary Tract, Chicago, Illinois, May 14–18, 2005 (oral presentation). Supported by National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases 1R03 DK067167-01A1 (N.G.), the Emory University Research Committee Grant (N.G.), and the National Institutes of Health/National Center for Research Resources General Clinical Research Center Grant M01 RR00039 (N.G., E.L.).  相似文献   

16.
Adiponectin is a 29-kDa adipocyte protein that has been linked to the insulin resistance of obesity and lipodystrophy. To better understand the regulation of adiponectin expression, we measured plasma adiponectin and adipose tissue adiponectin mRNA levels in nondiabetic subjects with varying degrees of obesity and insulin resistance. Plasma adiponectin and adiponectin mRNA levels were highly correlated with each other (r = 0.80, P < 0.001), and obese subjects expressed significantly lower levels of adiponectin. However, a significant sex difference in adiponectin expression was observed, especially in relatively lean subjects. When men and women with a BMI <30 kg/m(2) were compared, women had a twofold higher percent body fat, yet their plasma adiponectin levels were 65% higher (8.6 +/- 1.1 and 14.2 +/- 1.6 micro g/ml in men and women, respectively; P < 0.02). Plasma adiponectin had a strong association with insulin sensitivity index (S(I)) (r = 0.67, P < 0.0001, n = 51) that was not affected by sex, but no relation with insulin secretion. To separate the effects of obesity (BMI) from S(I), subjects who were discordant for S(I) were matched for BMI, age, and sex. Using this approach, insulin-sensitive subjects demonstrated a twofold higher plasma level of adiponectin (5.6 +/- 0.6 and 11.2 +/- 1.1 micro g/ml in insulin-resistant and insulin-sensitive subjects, respectively; P < 0.0005). Adiponectin expression was not related to plasma levels of leptin or interleukin-6. However, there was a significant inverse correlation between plasma adiponectin and tumor necrosis factor (TNF)-alpha mRNA expression (r = -0.47, P < 0.005), and subjects with the highest levels of adiponectin mRNA expression secreted the lowest levels of TNF-alpha from their adipose tissue in vitro. Thus, adiponectin expression from adipose tissue is higher in lean subjects and women, and is associated with higher degrees of insulin sensitivity and lower TNF-alpha expression.  相似文献   

17.

Background

Increased visceral adipose tissue is a risk factor for the metabolic complications associated with obesity and promotes a low-grade chronic inflammatory process. Resection of the great omentum in patients submitted to a bariatric procedure has been proposed for the amelioration of metabolic alterations and the maximization of weight loss. The aim of the present study was to investigate the impact of omentectomy performed in patients with morbid obesity undergoing sleeve gastrectomy (SG) on metabolic profile, adipokine secretion, inflammatory status, and weight loss.

Methods

Thirty-one obese patients were randomized into two groups: SG alone or with omentectomy. Adiponectin, omentin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), blood lipids, fasting glucose, insulin, and insulin resistance were measured before surgery and at 7 days, and 1, 3 and 12 months after surgery.

Results

During the 1-year follow-up, body mass index (BMI) decreased markedly and comparably in both groups (p?<?0.001). Insulin, IL-6, and hs-CRP levels decreased significantly compared to baseline (p?<?0.05) in both groups with no significant difference between groups. Adiponectin and high-density lipoprotein cholesterol levels were significantly and similarly increased compared to baseline (p?<?0.001) in both groups. Omentin levels increased significantly (p?<?0.05) in the control group and decreased in the omentectomy group 1 year postoperatively. There was no significant change in TNF-α levels in either group.

Conclusions

The theoretical advantages of omentectomy in regard to weight loss and obesity-related abnormalities are not confirmed in this prospective study. Furthermore, omentectomy does not induce important changes in the inflammatory status in patients undergoing SG.  相似文献   

18.
We investigated the mechanism of peripheral insulin resistance in the adipose tissue of obese and non-insulin-dependent diabetes mellitus (NIDDM) patients at the level of the glucose-transport effector system. Freshly isolated adipocytes from obese nondiabetic and obese NIDDM subjects had decreased insulin sensitivity and responsiveness for glucose-transport stimulation compared with control subjects, with more pronounced changes associated with obese NIDDM patients. The relative abundance of muscle/fat glucose-transporter isoform in the three groups of subjects was determined by Western-blot analysis of detergent-soluble adipose tissue extracts with monoclonal antibody 1F8. Obesity per se had no effect on adipose tissue muscle/fat glucose-transporter isoform (3150 +/- 660 vs. 4495 +/- 410 counts/min [cpm]/mg protein). Furthermore, decreased levels of muscle/fat isoform in adipose tissue of NIDDM patients were also reflected in isolated adipocytes. Our results demonstrate that insulin resistance in isolated adipocytes of NIDDM patients could at least partly be due to a significant depletion of adipose tissue muscle/fat glucose-transporter isoform.  相似文献   

19.
Visceral and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral obesity with obesity-related cardiovascular and metabolic alterations. Recently, visfatin was identified as an adipokine, which is predominantly secreted from visceral adipose tissue both in humans and mice. In this study, we examined whether visfatin plasma concentrations (using enzyme immunosorbent assay) and mRNA expression (using RT-PCR) in visceral and subcutaneous fat correlates with anthropometric and metabolic parameters in 189 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Visfatin plasma concentration correlates positively with the visceral visfatin mRNA expression (r(2) = 0.17, P < 0.0001), BMI (r(2) = 0.062, P = 0.004), percent body fat (r(2) = 0.048, P = 0.01), and negatively with subcutaneous visfatin mRNA expression (r(2) = 0.18, P < 0.0001). However, in a subgroup of 73 individuals, in which visceral fat mass was calculated from computed tomography scans, there was no correlation between plasma visfatin concentrations and visceral fat mass. We found no significant correlation between visfatin plasma concentrations and parameters of insulin sensitivity, including fasting insulin, fasting plasma glucose concentrations, and the glucose infusion rate during the steady state of an euglycemic-hyperinsulinemic clamp independent of percent body fat. Visfatin gene expression was not different between visceral and subcutaneous adipose tissue in the entire study group nor in selected subgroups. We found a significant correlation between visceral visfatin gene expression and BMI (r(2) = 0.06, P = 0.001) and percent body fat (measured using dual-energy X-ray absorptiometry) (r(2) = 0.044, P = 0.004), whereas no significant association between BMI or percent body fat and subcutaneous visfatin mRNA expression existed (both P >0.5). In conclusion, visfatin plasma concentrations and visceral visfatin mRNA expression correlated with measures of obesity but not with visceral fat mass or waist-to-hip ratio. In addition, we did not find differences in visfatin mRNA expression between visceral and subcutaneous adipose tissue in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号