首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+-induced Ca2+ release (CICR) occurs via activation of ryanodine receptors (RyRs) in frog motor nerve terminals after RyRs are primed for activation by repetitive Ca2+ entries, thereby contributing to synaptic plasticity. To clarify how the mechanism of CICR becomes activable by repetitive Ca2+ entries, we studied effects of a RyR modulator, cyclic ADP-ribose (cADPr), on CICR by Ca2+ imaging techniques. Use-dependent binding of fluorescent ryanodine and its blockade by ryanodine revealed the existence of RyRs in the terminals. Repetition of tetani applied to the nerve produced repetitive rises in intracellular Ca2+ ([Ca2+]i) in the terminals. The amplitude of each rise slowly waxed and waned during the course of the stimulation. These slow rises and decays were blocked by ryanodine, indicating the priming, activation and inactivation of CICR. Uncaging of caged-cADPr loaded in the terminals increased the amplitude of short tetanus-induced rises in [Ca2+]i and the amplitude, time to peak and half decay time of the slow waxing and waning rises in [Ca2+]i evoked by repetitive tetani. A cADPr blocker, 8-amino-cADPr, loaded in the terminals decreased the slow waxing and waning component of rises and blocked all the actions of exogenous cADPr. It is concluded that cADPr enhances the priming and activation of CICR. The four-state model for RyRs suggests that cADPr inhibits the inactivation of CICR and increases the activation efficacy of RyR.  相似文献   

2.
Epilepsy affects approximately 1% of the population worldwide, and there is a pressing need to develop new anti-epileptic drugs (AEDs) and understand their mechanisms of action. Levetiracetam (LEV) is a novel AED and despite its increasingly widespread clinical use, its mechanism of action is as yet undetermined. Intracellular calcium ([Ca2+]i) regulation by both inositol 1,4,5-triphosphate receptors (IP3R) and ryanodine receptors (RyR) has been implicated in epileptogenesis and the maintenance of epilepsy. To this end, we investigated the effect of LEV on RyR and IP3R activated calcium-induced calcium release (CICR) in hippocampal neuronal cultures. RyR-mediated CICR was stimulated using the well-characterized RyR activator, caffeine. Caffeine (10mM) caused a significant increase in [Ca2+]i in hippocampal neurons. Treatment with LEV (33 microM) prior to stimulation of RyR-mediated CICR by caffeine led to a 61% decrease in the caffeine induced peak height of [Ca2+]i when compared to the control. Bradykinin stimulates IP3R-activated CICR-to test the effect of LEV on IP3R-mediated CICR, bradykinin (1 microM) was used to stimulate cells pre-treated with LEV (100 microM). The data showed that LEV caused a 74% decrease in IP3R-mediated CICR compared to the control. In previous studies we have shown that altered Ca2+ homeostatic mechanisms play a role in seizure activity and the development of spontaneous recurrent epileptiform discharges (SREDs). Elevations in [Ca2+]i mediated by CICR systems have been associated with neurotoxicity, changes in neuronal plasticity, and the development of AE. Thus, the ability of LEV to modulate the two major CICR systems demonstrates an important molecular effect of this agent on a major second messenger system in neurons.  相似文献   

3.
Injections of inositol trisphosphate (IP3) or nicotinamide adenine dinucleotide phosphate (NAADP) into the presynaptic neurone of an identified cholinergic synapse in the buccal ganglion of Aplysia californica increased the amplitude of the inhibitory postsynaptic current evoked by a presynaptic action potential. This suggests that Ca2+ release from various Ca2+ stores can modulate acetylcholine (ACh) release. Specific blockade of the calcium-induced calcium release (CICR) mechanism with ryanodine, or of IP3-induced calcium release with heparin, abolished the effects of IP3, but not the effects of NAADP, suggesting the presence of an intracellular Ca2+ pool independent of those containing ryanodine receptors (RyR) or IP3 receptors. To reinforce electrophysiological observations, intracellular [Ca2+]i changes were measured using the fluorescent dye rhod-2. Injections of cyclic ADP-ribose (an activator of RyR), IP3 or NAADP into the presynaptic neurone induced transient increases in the free intracellular Ca2+ concentration. RyR- and IP3-induced increases were prevented by application of respective selective antagonists but not NAADP-induced increases. Our results show that RyR-dependent, IP3-dependent, and NAADP-dependent Ca2+ stores are present in the same presynaptic terminal but are differently involved in the regulation of the presynaptic Ca2+ concentration that triggers transmitter release.  相似文献   

4.
In layer 2/3 of neocortex, brief trains of action potentials in pyramidal neurons (PNs) induce the mobilization of endogenous cannabinoids (eCBs), resulting in a depression of GABA release from the terminals of inhibitory interneurons (INs). This depolarization-induced suppression of inhibition (DSI) is mediated by activation of the type 1 cannabinoid receptor (CB1) on presynaptic terminals of a subset of INs. However, it is not clear whether CB1 receptors are also expressed at synapses between INs, and whether INs can release eCBs in response to depolarization. In the present studies, brain slices containing somatosensory cortex were prepared from 14- to 21-day-old CD-1 mice. Whole cell recordings were obtained from layer 2/3 PNs and from INs classified as regular spiking nonpyramidal, irregular spiking, or fast spiking. For all three classes of INs, the cannabinoid agonist WIN55,212-2 suppressed inhibitory synaptic activity, similar to the effect seen in PNs. In addition, trains of action potentials in PNs resulted in significant DSI. In INs, however, DSI was not seen in any cell type, even with prolonged high-frequency spike trains that produced calcium increases comparable to that seen with DSI induction in PNs. In addition, blocking eCB reuptake with AM404, which enhanced DSI in PNs, failed to unmask any DSI in INs. Thus the lack of DSI in INs does not appear to be due to an insufficient increase in intracellular calcium or enhanced reuptake. These results suggest that layer 2/3 INs receive CB1-expressing inhibitory inputs, but that eCBs are not released by these INs.  相似文献   

5.
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.  相似文献   

6.
While the stimulating effect of concentrated salts on ryanodine receptor (RyR) is widely accepted in Ca2+-induced Ca2+ release (CICR) and [3H]ryanodine binding, the effect of non-ionic solutes on RyR is controversial. We investigated the effects of polyols on [3H]ryanodine binding to α- and β-RyR purified from bullfrog skeletal muscle, and on CICR from sarcoplasmic reticulum (SR) in a skinned frog skeletal muscle fibre. Addition of polyols (glucose, sucrose, sorbitol, glycerol and ethylene glycol) in submolar to molar concentrations to an isotonic salt medium increased dose-dependently Ca2+-activated [3H]ryanodine binding to α- and β-RyR of a similar magnitude. The increase is due to the rise in both apparent affinity (1/KD) and maximal numbers of binding sites (Bmax) for ryanodine. In addition to this stimulating effect, glucose sensitized both isoforms to Ca2+ in the Ca2+-activated reaction, which is distinct in mechanism(s) from caffeine. These stimulating effects of polyols were not observed unless some NaCl was present, which might explain the discrepancy among reported results. Consistent with these findings, polyols reversibly enhanced the rate of CICR from SR in skinned fibres with an increase in the Ca2+ sensitivity. The enhanced CICR was still sensitive to well-known modulators for CICR (Ca2+, Mg2+, adenine nucleotides and procaine), as with [3H]ryanodine binding. The results of this study reveal that polyols stimulate α- and β-RyR in frog skeletal muscle, bringing about increased CICR activity. The finding that the specific activity of polyols in stimulation of [3H]ryanodine binding was approximately proportional to their molecular weights leads us to discuss the possible modification of protein surface--water molecule interaction as an underlying mechanismThis revised version was published online in July 2005 with corrections to the Cover Date.  相似文献   

7.
Selective activation of neuronal functions by Ca(2+) is determined by the kinetic profile of the intracellular calcium ([Ca(2+)](i)) signal in addition to its amplitude. Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca(2+) current and the resulting rise and decay of [Ca(2+)](i) in differentiated pheochromocytoma (PC12) cells. We show that equal amounts of Ca(2+) entering through N-type and L-type voltage-gated Ca(2+) channels result in significantly different [Ca(2+)](i) temporal profiles. When the contribution of N-type channels was reduced by omega-conotoxin MVIIA treatment, a faster [Ca(2+)](i) decay was observed. Conversely, when the contribution of L-type channels was reduced by nifedipine treatment, [Ca(2+)](i) decay was slower. Potentiating L-type current with BayK8644, or inactivating N-type channels by shifting the holding potential to -40 mV, both resulted in a more rapid decay of [Ca(2+)](i). Channel-specific differences in [Ca(2+)](i) decay rates were abolished by depleting intracellular Ca(2+) stores with thapsigargin or by blocking ryanodine receptors with ryanodine, suggesting the involvement of Ca(2+)-induced Ca(2+) release (CICR). Further support for involvement of CICR is provided by the demonstration that caffeine slowed [Ca(2+)](i) decay while ryanodine at high concentrations increased the rate of [Ca(2+)](i) decay. We conclude that Ca(2+) entering through N-type channels is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR provides a mechanism whereby the kinetics of intracellular Ca(2+) leaves a fingerprint of the route of entry, potentially encoding the selective activation of a subset of Ca(2+)-sensitive processes within the neuron.  相似文献   

8.
Application of the metabotropic glutamate receptor (mGluR) agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) or the selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) depolarized both CA3 and CA1 pyramidal cells in guinea pig hippocampal slices. Simultaneous recordings of voltage and intracellular Ca2+ levels revealed that the depolarization was accompanied by a biphasic elevation of intracellular Ca2+ concentration ([Ca2+]i): a transient calcium rise followed by a delayed, sustained elevation. The transient [Ca2+]i rise was independent of the membrane potential and was blocked when caffeine was added to the perfusing solution. The sustained [Ca2+]i rise appeared when membrane depolarization reached threshold for voltage-gated Ca2+ influx and was suppressed by membrane hyperpolarization. The depolarization was associated with an increased input resistance and persisted when either the transient or sustained [Ca2+]i responses was blocked. mGluR-mediated voltage and [Ca2+]i responses were blocked by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG). These data suggest that in both CA3 and CA1 hippocampal cells, activation of group I mGluRs produced a biphasic accumulation of [Ca2+]i via two paths: a transient release from intracellular stores, and subsequently, by influx through voltage-gated Ca2+ channels. The concurrent mGluR-induced membrane depolarization was not caused by the [Ca2+]i rise.  相似文献   

9.
Ryanodine receptors in human bladder smooth muscle   总被引:7,自引:0,他引:7  
The role of intracellular Ca2+ release in the activation of human bladder smooth muscle is controversial. We have measured the expression of mRNA encoding for the ryanodine receptor (RyR) isoforms (RyR1, RyR2 and RyR3) in isolated human detrusor smooth muscle. mRNA for RyR2 was detected in all samples but no mRNA for RyR1 or RyR3 could be found. Human bladder smooth muscle cells in culture are unresponsive to caffeine, suggesting the absence of a functional RyR system. However, mRNA encoding for RyR2 was detected in these cells. Using saponin-permeabilized cells, a Ruthenium Red-sensitive Ca(2+)-dependent 45Ca2+ release could be demonstrated from the sarcoplasmic reticulum (SR). These data confirm the functional presence of Ca(2+)-induced Ca2+ release (CICR) in cells and suggest that the properties of the RyR2 isoform in human detrusor may change when the cells are maintained in culture. The implications of these observations to detrusor smooth muscle function are discussed.  相似文献   

10.
Endocannabinoids (eCBs) act as retrograde messengers at inhibitory synapses of the hippocampal CA1 region. Current models place eCB synthesis in the postsynaptic pyramidal cell and the site of eCB action at cannabinoid receptors located on presynaptic interneuron terminals. Four responses at the CA1-interneuron synapse are attributed to eCBs: depolarization-induced suppression of inhibition (DSI), G-protein-coupled receptor-mediated enhancement of DSI (DeltaDSI), persistent suppression of evoked inhibitory postsynaptic currents (eIPSCs), and finally, mGluR-dependent long-term depression (iLTD). It has been proposed that all are mediated by the eCB, 2-arachidonoyl glycerol, yet there is evidence that DSI does not arise from the same underlying biochemical processes as the other responses. In view of the increasing importance of eCB effects in the brain, it will be essential to understand the mechanisms by which eCB effects are produced. Our results reveal new differences in the biochemical pathways by which the eCB-dependent responses are initiated. Both U73122, a phospholipase C antagonist, and RHC-80267, a diacylglycerol (DAG) lipase antagonist, prevented eCB-dependent iLTD induction by 3,5-dihydroxyphenylglycine (DHPG). However, mAChR activation does not cause eCB-dependent iLTD. Neither enzyme inhibitor affects DSI, and persistent eCB-dependent eIPSC suppression induced by either mGluRs or mAChRs is unaffected by U73122. On the other hand, inhibition of DAG lipase prevents persistent eCB-dependent eIPSC suppression triggered by mAChRs. The results show that the biochemical pathways for the various eCB-dependent responses differ and might therefore be independently manipulated.  相似文献   

11.
Rises in cytosolic Ca2+ induced by a high K+ concentration (30 or 60 mM) (K+-induced Ca2+ transient) were recorded by fluorimetry of Ca2+ indicators in cultured rabbit otic ganglion cells. When external Ca2+ ([Ca2+]o) was reduced to a micromolar (10-40 microM) or nanomolar (<10 nM) level prior to high-K+ treatment, K+-induced Ca2+ transients of considerable amplitude (50% of control) were generated in most cells, although those initiated at normal [Ca2+]o were reduced markedly or abolished by reducing [Ca2+]o during exposure to a high K+ concentration. Lowering [Ca2+]o alone occasionally caused a transient rise in cytosolic Ca2+. K+-induced Ca2+ transients at micromolar [Ca2+]o were repeatedly generated and propagated inwardly at a speed slower than that at normal [Ca2+]o, while those at nanomolar [Ca2+]o occurred only once. K+-induced Ca2+ transients at micromolar [Ca2+]o were not blocked by ryanodine (10 microM), carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, 5 microM: at 20-22 degrees C but blocked at 31-34 degrees C) or thapsigargin (1-2 microM), but were blocked by Ni2+ (1 mM) or nicardipine (10 microM). Thus, there is a ryanodine-insensitive Ca2+-release mechanism in FCCP- and thapsigargin-insensitive Ca2+ stores in rabbit otic ganglion cells, which is primed by lowering [Ca2+]o and then activated by depolarization-induced Ca2+ entry. This Ca2+-induced Ca2+ release may operate when [Ca2+]o is decreased by intense neuronal activity.  相似文献   

12.
Intracellular calcium signalling was studied in the dorsal horn from neurons of rats with streptozotocin-induced diabetes versus control animals. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in Fura-2 acetoxymethyl ester-loaded dorsal horn neurons from acutely isolated spinal cord slices using a fluorescence technique. The recovery of depolarization-induced [Ca2+]i increase was delayed in diabetic neurons compared with normal animals. In normal neurons, [Ca2+]i after the end of KCl depolarization recovered to the basal level monoexponentially with a time constant of 8.0+/-0.5 s (n = 23), while diabetic neurons showed two exponentials in the [Ca2+]i recovery. The time constants of these exponentials were 7.2+/-0.5 and 23.0+/-0.6 s (n = 19), respectively. The amplitude of calcium release from caffeine-sensitive endoplasmic reticulum calcium stores became significantly smaller in diabetic neurons. The amplitudes of [Ca2+]i transients evoked by 30 mM caffeine were 268+/-29 nM (n = 13) and 31+/-9 nM (n = 17) in control and diabetic neurons, respectively. We conclude that streptozotocin-induced diabetes is associated with prominent changes in the mechanisms responsible for [Ca2+]i regulation, which presumably include a slowdown of Ca2+ elimination from the cytoplasm by the endoplasmic reticulum.  相似文献   

13.
The origin of intracellular Ca2+ concentration ([Ca2+]i) transients stimulated by nicotinic (nAChR) and muscarinic (mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+]i increases that were reduced to approximately 60% of control in the presence of either atropine (1 microM) or mecamylamine (3 microM) and to <20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+]i response was reduced to 50% by 10 microM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+]i responses. Perforated-patch whole cell recording at -60 mV shows that the rise in [Ca2+]i is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+]i and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.  相似文献   

14.
We investigated intracellular Ca(2+) ([Ca(2+)](i)) oscillations evoked by glucagon-like peptide 1 (GLP-1) in relation to the ryanodine receptor (RyR) and Ca(2+)-induced Ca(2+)release (CICR) mechanism in pancreatic B cell HIT. GLP-1 produced [Ca(2+)](i) oscillations in the cells, both in media with and without Ca(2+), an effect inhibited by ruthenium red and mimicked by 8-Br-cAMPS. In addition, the GLP-1-evoked [Ca(2+)](i) rise was initiated at the local intercellular peripheral cytoplasm, and a resultant expansion of the intercellular space was also observed. Caffeine induced [Ca(2+)](i) elevation in the medium with or without Ca(2+), an effect inhibited by ruthenium red. GLP-1-evoked [Ca(2+)](i) oscillations were also enhanced by IBMX, and eliminated by Rp-8-Br-cAMPS or 20 microM H-89 treatments whereas they were unaffected by 2 microM H-89 treatment. Forskolin caused a transient elevation in [Ca(2+)](i) that was reduced by Rp-8-Br-cAMPS, 2 microM or 20 microM H-89. Our results indicate that GLP-1 initially generated a local [Ca(2+)](i) elevation at the peripheral cytoplasm, subsequently producing [Ca(2+)](i) oscillations that were inhibited by ruthenium red, involving ryanodine-sensitive and cAMP-activated CICR mechanisms. The cytoplasmic levels of cAMP as well as local Ca(2+) might be responsible for [Ca(2+)](i) oscillations.  相似文献   

15.
This study investigated the effects of extracellular magnesium concentration ([Mg2+]e; 0.3-3 mM) on intracellular free calcium concentration ([Ca2+]i) and prostacyclin (PGI2) production in cultured human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells from rats (VSMC) under basal and agonist-stimulated conditions. We used histamine as agonist which increases [Ca2+]i and PGI2 production in HUVEC, norepinephrine in VSMC. [Mg2+]e dose-dependently increased basal and agonist-stimulated PGI2 production in both cells. [Mg2+]e dose-dependently reduced basal [Ca2+]i in VSMC, but did not influence in HUVEC. In both cells, increasing [Mg2+]e reduced agonist-stimulated [Ca2+]i responses. Furthermore, [Mg2+]e dose-dependently reduced agonist-stimulated [Ca2+]i in Ca(2+)-free buffer, indicating intracellular Ca2+ release. In VSMC, 10(-6) M diltiazem and 10(-7) M nifedipine, Ca2+ channel blockers, reduced agonist-stimulated [Ca2+]i as well as 3 mM Mg2+, but did not affect PGI2 production. [Mg2+]e amplified dose-dependently arachidonic acid-induced PGI2 production in both cells, suggesting the activation of cyclooxygenase and/or PGI2 synthetase. Our results suggest that [Mg2+]e influences intracellular Ca2+ mobilization of not only vascular smooth muscle cells but also endothelial cells by inhibiting both Ca2+ influx and intracellular Ca2+ release. [Mg2+]e enhances PGI2 production in both types of cells, although the mechanism is likely to be independent from Ca2+ mobilization.  相似文献   

16.
We have previously found that spinal dorsal horn neurons from streptozotocin-diabetic rats, an animal model for diabetes mellitus, show the prominent changes in the mechanisms responsible for [Ca2+]i regulation. The present study aimed to further characterize the effects of streptozotocin-induced diabetes on neuronal calcium homeostasis. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in Fura-2AM-loaded dorsal horn neurons from acutely isolated spinal cord slices using fluorescence technique. We studied Ca2+ entry through plasmalemmal Ca2+ channels during potassium (50 mM KCl)-induced depolarization. The K+-induced [Ca2+]i elevation was inhibited to a different extent by nickel ions, nifedipine and omega-conotoxin suggesting the co-expression of different subtypes of plasmalemmal voltage-gated Ca2+ channels. The suppression of [Ca2+]i transients by Ni2+ (50 microM) was the same in control and diabetic neurons. On the other hand, inhibition of [Ca2+]i transients by nifedipine (50 microM) and omega-conotoxin (1 microM) was much greater in diabetic neurons compared with normal animals. These data suggest that under diabetic conditions the activity of N- and L- but not T-type voltage-gated Ca2+ channels substantially increased in dorsal horn neurons.  相似文献   

17.
Membrane depolarization evoked by 25-40 mM K+ elicited an immediate increase of somatic and neuritic [Ca2+]i in cultured dopaminergic neurons as measured by digital fluorescence microscope imaging. The rise of neuritic [Ca2+]i was inhibited by N-type but not L-type Ca2+ channel blockers, while the rise of somatic [Ca2+]i was prevented by both L- and N-type Ca2+ channel blockers. Similarly, depolarization-induced [3H]dopamine release was selectively attenuated by N-type Ca2+ channel blockers. The present results suggest that [3H]dopamine release from mesencephalic neuronal cell cultures relates to a Ca(2+)-dependent mechanism regulated by N-type channels located in the vicinity of the exocytotic sites within neuritic processes.  相似文献   

18.
The authors have studied the effect of sphingosine-1-phosphate (S1P) on Ca2+ release from intracellular stores in cultured human umbilical vein endothelial cells (HUVECs). In the presence of extracellular Ca2+, S1P increased intracellular Ca2+ concentration ([Ca2+]i) and this increase was partially inhibited by La3+ (1 microM), indicating that S1P induces Ca2+ influx from extracellular pool and Ca2+ release from intracellular stores. S1P increased [Ca2+]i concentration dependently in Ca2+-free extracellular solution. The Hill coefficient (1.7) and EC50 (420 nM) was obtained from the concentration-response relationship. When caffeine depleted Ca2+ store in the presence of ryanodine, S1P did not induce intracellular Ca2+ release. Furthermore, the Ca2+-induced Ca2+ release inhibitors ruthenium red or dantrolene completely inhibited S1P-induced intracellular Ca2+ release. S1P-induced intracellular Ca2+ release was inhibited by the phospholipase C (PLC) inhibitors neomycin and U73312, or the inositol 1,4,5-triphosphate (IP3)-gated Ca2+ channel blocker aminoethoxybiphenyl borane (2-APB). In contrast, S1P-induced intracellular Ca2+ release was not inhibited by the mitochondrial Ca2+ uptake inhibitor CCCP or the mitochondrial Ca2+ release inhibitor cyclosporin A. These results show that S1P mobilizes Ca2+ from intracellular stores primarily via Ca2+-induced and IP3-induced Ca2+ release and this Ca2+ mobilization is independent of mitochondrial Ca2+ stores.  相似文献   

19.
To further understand the function of excitation-contraction coupling in skeletal muscle cells developing in vitro, Ca2+ transients elicited by high-K+ depolarization in the presence and absence of extracellular Ca2+ were compared with Ca2+ release induced by caffeine in cultured skeletal muscle cells isolated from 9-day-old chicken embryos (E9). Almost all myoblasts and myotubes cultured for 1 (E9I1) to 8 (E9I8) days responded to 80 mM [K+]O with an elevation of [Ca2+]i. Although all myotubes cultured for more than 4 days exhibited Ca2+ release independent of extracellular Ca2+, only about 50% of E9I1 and E9I2 cells maintained their response to Ca(2+)-free high-[K+]O solution. Strikingly, a considerable proportion of cells of short-term culture were insensitive to 10 mM caffeine. Moreover, 46.8% of the caffeine-insensitive E9I1 and E9I2 cells, 29 out of 62, was still responsive to 80 mM [K+]O in the absence of extracellular Ca2+. Western blot and immunocytochemistry showed that ryanodine receptor (RyRs) expression increases with culture. The Ca2+ release from caffeine-insensitive cells induced by Ca(2+)-free high-[K+]O solution could be blocked by 100-200 microM ryanodine, which suggests the involvement of RyRs. Evidence is presented to show that a low resting [Ca2+]i may be one factor responsible for the caffeine insensitivity of RyRs in cells of short-term culture.  相似文献   

20.
The effects of Met-enkephalin on Ca2+-dependent K+ channel activity were investigated using the cell-attached patch recording technique on isolated parasympathetic neurones of rat intracardiac ganglia. Large-conductance, Ca2+-dependent K+ channels (BK(Ca)) were examined as an assay of agonist-induced changes in the intracellular free calcium ion concentration ([Ca2+]i). These BK(Ca) channels had a conductance of approximately 200 pS and were charybdotoxin- and voltage-sensitive. Caffeine (5 mM), used as a control, evoked a large increase in BK(Ca) channel activity, which was inhibited by 10 microM ryanodine. Met-enkephalin (10 microM) evoked a similar increase in BK(Ca) channel activity, which was dependent on the presence of extracellular Ca2+ and inhibited by either ryanodine (10 microM) or naloxone (1 microM). In Fura-2-loaded intracardiac neurones, Met-enkephalin evoked a transient increase in [Ca2+]i. Met-enkephalin-induced mobilization of intracellular Ca+ may play a role in neuronal excitability and firing behaviour in mammalian intracardiac ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号