首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Impalement studies in isolated perfused cortical collecting ducts (CCD) of rats have shown that the basolateral membrane possesses a K+ conductive pathway. In the present study this pathway was investigated at the single-channel level using the patch-clamp technique. Patch-clamp recordings were obtained from enzymatically isolated CCD segments and freshly isolated CCD cells with the conventional cell-free, cell-attached and the cell-attached nystatin method. Two K+ channels were found which were highly active on the cell with a conductance of 67±5 pS (n=18) and 148±4 pS (n=21) with 145 mmol/l K+ in the pipette. In excised patches the first channel had a conductance of 28±2 pS (n=15), whereas the second one had a conductance of 85±1 pS (n=53) at 0 mV clamp voltage with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. So far it has not been possible to characterize the smaller channel further. Excised, and with symmetrical K+ concentrations of 145 mmol/l, the intermediate channel had a linear conductance of 198±19 pS (n=5). After excision in the inside-out configuration the open probability (P o) of this channel was low (0.18±0.05, n=13) whereas in the outside-out configuration this channel had a threefold higher P o (0.57±0.04, n=12). Several inhibitors were tested in excised membranes. Ba2+ (1 mmol/l), tetraethylammonium (TEA+, 10 mmol/l) and verapamil (0.1 mmol/l) all blocked this channel reversibly. Furthermore P o was reversibly reduced by 10 nmol/l charybdotoxin (outside-out). This K+ channel of the basolateral membrane was regulated by cellular pH. P o was reduced to 26±3% at pH 6.5 (n=6) and increased to 216±18% at pH 8.5 (n=7) compared to pH 7.4. Half-maximal inhibition was reached at pH 7.0. The channel had its highest P o at a Ca2+ activity of less than 10–8 mol/l (n=13). Increasing the Ca2+ activity to 1 mmol/l on the cytosolic side of the membrane resulted in a reduction of P o to 13±3% (n=11). Half-maximal inhibition was reached at a Ca2+ activity of 10–5 mol/l. The high activity of both K+ channels of the basolateral membrane on the cell indicates that they may serve for K+ recirculation across the basolateral membrane.  相似文献   

2.
The luminal membrane of principal cells of rat cortical collecting duct (CCD) is dominated by a K+ conductance. Two different K+ channels are described for this membrane. K+ secretion probably occurs via a small-conductance Ca2+-independent channel. The function of the second, large-conductance Ca2+-dependent channel is unclear. This study examines properties of this channel to allow a comparison of this K+ channel with the macroscopic K+ conductance of the CCD and with similar K+ channels from other preparations. The channel is poorly active on the cell. It has a conductance of 263±11 pS (n=36, symmetrical K+ concentrations) and of 139±3 pS (n=91) with 145 mmol/l K+ on one side and 3.6 mmol/l K+ on the other side of the membrane. Its open probability is high after excision (0.71±0.03, n=85). The channel flickers rapidly between open and closed states. Its permeability in the cell-free configuration was 7.0±0.2×10–13 cm3/s (n=85). It is inhibited by several typical blockers of K+ channels such as Ba2+, tetraethylammonium, quinine, and quinidine and high concentrations of Mg2+. The Ca2+ antagonists verapamil and diltiazem also inhibit this K+ channel. As is typical for the maxi K+ channel, it is inhibited by charybdotoxin but not by apamin. The selectivity of this large-conductance K+ channel demonstrates significant differences between the permeability sequence (P K > P Rb > P NH4 > P Cs=P Li=P Na=P choline=0) and the conductance sequence (g K > g NH4 > g Rb > g Li=g choline > g Cs=g Na=0). The only other cations that are significantly conducted by this channel besides K+ (g K at V c = is 279±8 pS, n=88) are NH 4 + (g NH4=127±22 pS, n=10) and Rb+ (g Rb=36±5 pS, n=6). The K+ currents through this channel are reduced by high concentrations of choline+, Cs+, Rb+, and NH 4 + . These properties and the dependence of this channel on Ca2+ and voltage classify it as a maxi K+ channel. A possible physiological function of this channel is discussed in the accompanying paper.Supported by DFG Gr 480/10, by Schl 277/2-3 and by GIF 88/II  相似文献   

3.
The purpose of the present study was to determine the mechanism by which bradykinin activates the small conductance, inwardly rectifying, Ca2+-activated K+ channel (KCa) found in cultured bovine aortic endothelial cells. Channel activity was studied using the patch-clamp technique in whole-cell, cell-attached, inside-out and outside-out configurations. Channel conductance at potentials positive to 0 mV was 10±2 pS and at potentials negative to 0 mV 30±3 pS (n=7) when examined in symmetrical K+ (150 mmol/l) solutions. The channel open probability (P o) was only weakly voltage dependent changing approximately 0.2 units over 160 mV. In contrast, raising the intracellular Ca2+ concentration from 100 nmol/l to 10 mol/l at –60 mV produced a graded increase in channel P o from 0.15 to 0.96; the concentration required for half-maximum response (apparent K0.5) was 719 nmol/l. At a constant Ca2+ concentration, application of guanosine triphosphate (GTP) to the cytoplasmic surface of the patch increased channel P o. This effect was dependent upon the simultaneous presence of both GTP and Mg2+, and was reversed by the subsequent application of the guanosine diphosphate (GDP) analogue, guanosine-5-O-(2-thiodiphosphate) (GDPS). The hydrolysis-resistant GTP analogue, guanosine-5-O-(3-thiotriphosphate) (GTPS), induced a long-lasting increase in channel P o. In the presence of Mg2+-GTP, the apparent K0.5 for Ca2+ decreased from a control value of 722 nmol/l to 231 nmol/l. Addition of bradykinin to outside-out patches previously exposed to intracellular Mg2+-GTP further enhanced KCa activity, shifting the apparent K0.5 for Ca2+ from 228 nmol/l to 107 nmol/l. This activation by bradykinin was not observed in patches following prior exposure to GDPS. These results suggest that bradykinin can activate the KCa channel of vascular endothelial cells via a G-protein-mediated change in the sensitivity of the channel for Ca2+. We postulate that vasoactive agonists may use this mechanism to maintain an elevated K+ permeability as the intracellular Ca2+ concentration returns towards normal resting levels.  相似文献   

4.
The whole-cell voltage-clamp method was applied to single smooth muscle cells prepared from the longitudinal layer of the pregnant rat myometrium (17–20 days of gestation). It was found that the transient inward current mainly consists of Ca2+ current, because the removal of Ca2+ ions from the external medium and 10 M nifedipine eliminated this inward current. Its steady-state inactivation curve was obtained by the standard method, in which the membrane potential of half inactivation and the slope factor were estimated to be –58.0±4.9 mV (n=11) and 8.9±1.4 mV (n=11), respectively. In a small number of preparations (in 2 out of 30 preparations), there remained a very fast inward current in Ca2+-free medium containing Mg2+. Tetrodotoxin (TTX, 10 M) can abolish this current, suggesting that the channel for this current is equivalent to the Na+ channel in nerve cells. Two major phases of outward currents were identified by voltage jumps from negative holding levels to more positive levels. The first phase was a fast transient outward current. This current remained intact after external tetraethylammonium (TEA, 20 mM) was added. Following the transient current, a large delayed rectified outward current reached its peak over a period of 50 ms and then decayed. The reversal potential for this outward current was determined by observing the change of polarity of the tail currents with the change in extracellular K+ concentration ([K+]0). The slope for the change of reversal potential per ten-fold change in [K+]0 is 57.7 mV at more than 23.2 mM [K+]o, indicating that this current is mostly carried by K+ ions. Voltage-dependent inactivation of the delayed rectified outward current was determined by the standard method. The membrane potential for half inactivation and the slope factor were estimated to be –42.8±3.9 mV (n=3) and 10.1±1.5 mV (n=3), respectively. External TEA (20 mM) effectively eliminated the delayed rectified outward currents. Nifedipine (10 M) suppressed not only Ca2+ current but also outward K+ currents.  相似文献   

5.
Large-conductance Ca2+-activated K+ channels were studied in membranes of cultured rabbit airway smooth muscle cells, using the patch-clamp technique. In cell-attached recordings, channel openings were rare and occurred only at very positive potentials. Bradykinin (10 M), an agonist which releases Ca2+ from the sarcoplasmic reticulum, transiently increased channel activity. The metabolic blocker 2,4-dinitrophenol (20 M), which lowers cellular adenosine triphosphate (ATP) levels, induced a sustained increase of channel activity in cell-attached patches. In excised patches, these channels had a slope conductance of 155 pS at 0 mV, were activated by depolarization and by increasing the Ca2+ concentration at the cytoplasmic side above 10–7 mol/l. ATP, applied to the cytoplasmic side of the patches, dose-dependently decreased the channel's open-state probability. An inhibition constant (K i) of 0.2 mmol/l was found for the ATP-induced inhibition. ATP reduced the Ca2+ sensitivity of the channel, shifting the Ca2+ activation curve to the right and additionally reducing its steepness. Our results demonstrate that cytoplasmic ATP inhibits a large-conductance Ca2+-activated K+ channel in airway smooth muscle. This ATP modulation of Ca2+-activated K+ channels might serve as an important mechanism linking energy status and the contractile state of the cells.  相似文献   

6.
The outer hair cell isolated from the guinea-pig was superfused in vitro and the cytosolic calcium concentration ([Ca2+]i) and sodium concentration ([Na+]i) were measured using fluorescence indicators. Under the resting condition, [Ca2+]i and [Na+]i were 91±9 nM (n = 51) and 110±5 mM (n = 12), respectively. Removal of external Na+ by replacing with N-methyl-D-glucamine (NMDG+) increased [Ca2+]i by 270±79% (n = 27) and decreased [Na+]i by 23±4 mM (n = 6). Both changes in [Ca2+]i and [Na+]i were totally reversible on returning external Na+ to the initial value and were inhibited by addition of 0.1 mM La3+ or 100 M amiloride 5-(N,N-dimethyl) hydrochloride. Elevation of external Ca2+ ions to 20 mM reversibly decreased [Na+]i by 8±6 mM (n = 5). Moreover, the chelation of the intracellular Ca2+ with 1,2-bis (2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) exerted an inhibitory action on the NMDG+-induced reduction in [Na+]i. Exposure to 5 mM NaCN for 2 min significantly and reversibly increased [Ca2+]i by 290±37% (n = 5), but did not affect the [Ca2+]i elevation induced by the NMDG+ solution. The rise in [Ca2+]i induced by the NMDG+ solution was not enhanced by ouabain pretreatment. Addition of ouabain did not alter the [Na+]i. The present results are best explained by the presence of an Na+-Ca2+ exchanger in cell membrane and indicate that the activity of Na+/K+ pump is poor in outer hair cells.  相似文献   

7.
We investigated the inhibitory action of K+ channel blockers on carbachol-stimulated Ca2+ entry into human Cl-secretory colonic epithelial cells (HT-29/B6). Digital imaging of the fluorescent calcium indicator dye fura-2 was performed to monitor effects of K+ channel blockers on cytosolic calcium in resting and carbachol-stimulated HT-29/B6 cells. Stimulation with the muscarinic agonist carbachol (100 M) caused a clearly biphasic intracellular calcium (Cai response: Cai was stimulated from resting levels (85±3 nM, n=100) to a sudden transient peak (821±44 nM) followed by a sustained plateau (317±12 nM). The maintained elevation was dependent on external Ca2+ and represented a new steady state between Ca2+ entry and exit across the plasma membrane. A monophasic Ca2+ response was induced in the absence of external Ca2+ and after the initial peak Cai returned to baseline. The Cai plateau was reduced to resting levels by either the muscarinic antagonist atropine (1 M) or the inorganic Ca2+ channel blocker lanthanum (effective concentration for 50% inhibition of Ca1 plateau EC50=68±18 nM), but it was unaffected by the organic Ca2+ channel blockers verapamil and nifedipine. Barium, lidocaine and 4-nitro-2-(3-phenylpropylamino)benzoate (NPPB), well-known blockers of basolateral K+ channels of HT-29/B6 cells, rapidly and reversibly reduced carbachol-stimulated Ca2+ entry. The Cai plateau was calculated to be 50% inhibited by barium (96±2 M), lidocaine (74±3 M) and NPPB (27±10 M). The Cai plateau was transiently increased by 1 M and 10 M NPPB to 50% and 34%, respectively, probably via hyperpolarization of the membrane potential by blockade of Cl channels (so that the membrane potential approached V K). The resting Cai was transiently increased by 50 M and 300 M NPPB to 308±13 nM and 447±153 nM, respectively, suggesting that NPPB induced a Ca2+ release from internal Ca stores. We conclude that carbachol-stimulated Ca2+ entry into HT-29/B6 cells (a) requires muscarinic receptor occupation, (b) is highly sensitive to lanthanum and (c) is dependent on membrane potential and therefore inhibited by channel blockers that depolarize the cell potential. Also, the sensitivity of Cai levels to K+ channel blockers indicates that there are feedback relationships among rates of Ca2+ entry, activity of Ca2+-activated K+ and Cl channels and membrane potential.  相似文献   

8.
The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2-7-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.  相似文献   

9.
The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and insideout oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20–30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficientP K of (0.17±0.04) · 10–12 cm3/s was obtained, the single channel slope conductance at infinite positive potentialg(V ) was 50±12 pS and the single channel conductance at the membrane resting potentialg(V bl) was 12±3 pS (n=4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yieldedP K = (0.1 ±0.01) ·10–12 cm3/s,g(V ) = 40 ± 4 pS andg(V bl) = 7 ± 1 pS (n=8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification. The single channel conductance, obtained from the linear part of the i/V curve by linear regression, was 46±3 pS and the reversal potential was 59±6 mV (n=9). In cell-excised patches with KCl in the pipette and NaCl in the bath, inward directed K+ channel currents could again be described by the GHK equation. The single channel parameters were similar to those recorded for outward K+ currents (see above). In inside-out oriented cell-excised patches with NaCl in the pipette and KCl in the bath, reducing bath (i.e. cytosolic) Ca2+ concentration from 10–6 mol/l to less than 10–9 mol/l did not affect the open state probability of single channel currents. These results demonstrate that the observed channels are permeable for K+ ions in both directions and that these basolateral K+ channels in rabbit proximal straight tubule are not directly dependent on Ca2+ ions.  相似文献   

10.
Single-channel currents were recorded with the patch-clamp technique from freshly dissociated vertebrate smooth muscle cells from the stomach ofBufo marinus. Of the variety of channels observed, one displayed a large linear conductance of 250 pS (in symmetric 130 mM KCl) which in excised patches was shown to be highly K+ selective. The probability of the channel being open (P o) increased when [Ca2+]i was elevated and/or when the membrane potential was made more positive. Thus, the features of this channel resemble the large-conductance Ca2+-activated K+ channel found in a wide variety of cell types. The voltage sensitivity of the channel was studied in detail. For patches containing a single large-conductance channel a plot ofP o versus membrane potential followed the Boltzman relationship. Increasing [Ca2+]i shifted this plot to the left along the voltage axis to more negative potentials. Both the mean closed time and mean open time varied with potential as a single exponential with almost all of the voltage sensitivity ofP o residing in the mean closed time. These results were verified with a series of experiments carried out at lowP o (<0.1) in patches containing multiple (N) large-conductance channels. Here the ln (NP o) was a linear function of potential with an inverse slope of 9 mV. Almost all of the potential sensitivity lay in the mean closed time the natural log of which was also a linear function of potential with an inverse slope 11 mV in magnitude. The characteristics of this channel as well as the appearance of several of them in almost every patch suggest that they underlie the large peak outward macroscopic current found with whole-cell voltage-clamp studies.  相似文献   

11.
Single Ca2+-activated K+ channels were studied in membrane patches from the GH3 anterior pituitary cell line. We have previously demonstrated the coexistence of large-conductance and small-conductance (280 pS and 11 pS in symmetrical 150 mM K+, respectively) Ca2+-activated K+ channels in this cell line (Lang and Ritchie 1987). Here we report the existence of a third type of Ca2+-activated K+ channel that has a conductance of about 35 pS under similar conditions. In excised inside-out patches, this channel can be activated by elevations of the internal free Ca2+ concentration, and the open probability increases as the membrane potential is made more positive. In excised patches, the sensitivity of this 35-pS channel to internal Ca2+ is low; at positive membrane potentials, this channel requires Ca2+ concentrations greater than 10 M for activation. However, 35-pS channels have a much higher sensitivity to Ca2+ in the first minute after excision (activated by 1 M Ca2+ at –50 mV). Therefore, it is possible that the Ca2+ sensitivity of this channel is stabilized by intracellular factors. In cell-attached patches, this intermediate conductance channel can be activated (at negative membrane potentials) by thyrotropin-releasing hormone-induced elevations of the intracellular Ca2+ concentration and by Ca2+ influx during action potentials. The intermediate conductance channel is inhibited by high concentrations of external tetraethylammonium ions (K d=17 mM) and is relatively resistant to inhibition by apamin.  相似文献   

12.
The patch-clamp technique was used to investigate ion channels in the basolateral perilymph-facing membrane of freshly isolated outer hair cells (OHCs) from the guinea-pig cochlea. These sensory cells probably determine, via their motile activity, the fine tuning of sound frequencies and the high sensitivity of the inner ear. A Ca2+-activated nonselective cationic channel was found in excised inside-out membrane patches. The current/voltage relationship was linear with a unit conductance of 26.3±0.3 pS (n=15) under symmetrical inger conditions. The channel excluded anions (P Na/P Cl=18 whereP Na/P Cl denotes the relative permeability of Na to Cl); it was equally permeant to the Na+ and K+ ions and exhibited a low permeability toN-methyl-D-glucamine and Ba2+ or Ca2+. Channel opening required a free Ca2+ concentration of about 10–6 mol/l on the internal side of the membrane and the open probability (P o) was maximal at 10–3 mol/l (P o=0.72±0.06,n=12). Adenosine 5mono-, tri- and di-phosphate reducedP o to 29±14 (n=5), 42±10 (n=8) and 51±12 (n=5) % of controlP o, respectively, when they were added at a concentration of 10–3 mol/l to the internal side. The channel was partially blocked by flufenamic acid (10–4 mol/l) and 3,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC, 10–5 mol/l). This type of channel, together with Ca2+-activated K+ channels, might participate in the control of membrane potential and modulate the motility of OHCs.  相似文献   

13.
We have used whole-cell patch-clamp techniques to study the conductances in the plasma membranes of human parathyroid cells. With a KCl-rich pipette solution containing Ca2+ buffered to a concentration of 0.1 mol/l, the zero current potential was –71.1±0.5 mV (n=19) and the whole-cell current/ voltage (I/V) relation had an inwardly rectifying and an outwardly rectifying component. The inwardly rectifying current activated instantaneously on hyperpolarization of the plasma membrane to potentials more negative than –80 mV, and a semi-logarithmic plot of the reversal potential of the inward current (estimated by extrapolation from the range in which it was linear) as a function of extracellular K+ concentration ([K+]o) revealed a linear relation with a slope of 64 mV per decade change in [K+]o, which is not significantly different from the Nernstian slope, demonstrating that the current was carried by K+ ions. The conductance exhibited a square root dependence on [K+]o as has been observed for inward rectifiers in other tissues. The current was blocked by the presence of Ba2+ (1 mmol/l) or Cs+ (1.5 mmol/l) in the bath. The outwardly rectifying current was activated by depolarization of the membrane potential to potentials more positive than –20 mV. It was inhibited by replacement of pipette K+ with Cs+, indicating that it also was a K+ current: it was partially (42%) blocked when tetraethylammonium (TEA+, 10 mmol/l) was added to the bath. The outwardly rectifying, but not the inwardly rectifying K+ current, was regulated by intracellular free Ca2+ concentration ([Ca2+]i) such that increasing [Ca2+]i above 10 nmol/l inhibited the outwardly rectifying current, the half-maximum effect being seen at 1 mol/l. Since it is known that increases in [Ca2+]o produce increases in [Ca2+]i, and that they depolarize parathyroid cells by reducing the membrane K+ conductance, we suggest that it is the reduction of the outwardly rectifying K+ conductance by increases in [Ca2+]i which is responsible for the reduction in K+ conductance seen when [Ca2+]o is increased.  相似文献   

14.
Vascular smooth muscle cells were obtained from rabbit aorta and were studied in primary culture on days 1–7 after seeding with electrophysiological techniques. In impalement experiments a mean membrane potential difference (PD) of –50±0.3 mV (n=387) was obtained with Ringer-type solution in the bath. PD was depolarized by 6±0.3 mV (n=45) and 16±2 mV (n= 5) when the bath K+ concentration was increased from the control value of 3.6 mmol/l to 13.6 and 23.6 mmol/l, respectively. Ba2+ (0.1–1 mmol/l) depolarized PD. Tetraethylammonium (TEA, 10 mmol/l) depolarized PD only slightly but significantly. Verapamil (0.1 mmol/l) and charybdotoxin (10 nmol/l) had no effect on PD. The conductance properties of these cells were further examined with the patch-clamp technique. K+ channels were spontaneously present in cell-attached patches. When the pipette was filled with 145 mmol/l KCl, a mean conductance (g K) of 209.6±4.6 mV (n=17) was read from the current/voltage curves at a clamp voltage (V c) of 0 mV. After excision K+ channels were found in 129 patches with inside-out and in 50 with outside-out configuration. With KCl on one and NaCl on the other side the mean g K at a V c of 0 mV was 134.6±3.9 pS (n=179). The mean permeability was 0.89±0.03×10–12 cm3/s. With symmetrical KCl solution the mean g K was 227±6 pS (n=17). The conductance sequence was g K g Rb= g Cs=g Na=0. TEA blocked dose-dependently only from the outside.(1–10 mmol/l). Lidocaine (5 mmol/l) quinidine (0.01–1 mmol/l) and quinine (0.01–1 mmol/l) blocked from both sides. Charybdotoxin (0.5–5 nmol/l) blocked only from the extracellular side. Ba2+ blocked from the cytosolic side and the inhibition was increased by depolarization and reduced by hyperpolarization. At a V c of 0 mV a half-maximal inhibition (IC50) of 2 mol/l was obtained. Verapamil and diltiazem blocked from both sides, verapamil with an IC50 of 2 mol/l and diltiazem with an IC50 of 10 mol/l. The open probability of this channel was increased by Ca2+ on the cytosolic side at activities > 0.1 mol/l. Half-maximal activation occurred at Ca2+ activities exceeding 1 mol/l. The present data indicate that the vascular smooth muscle cells of rabbit aorta in primary culture possess a K+ conductance. In excised patches only a maxi K+ channel was detected. This channel has properties different from the macroscopic K+ conductance. Hence, it is likely that the K+ conductance of the intact cell is dominated by yet another and thus far not detected K+ channel.Supported by DFG Gr 480/10  相似文献   

15.
Ca2+-activated maxi K+ channels were studied in inside-out patches from smooth muscle cells isolated from either porcine coronary arteries or guinea-pig urinary bladder. As described by Groschner et al. (Pflügers Arch 417:517, 1990), channel activity (NP o) was stimulated by 3 M [Ca2+]c (1 mM Ca-EGTA adjusted to a calculated pCa of 5.5) and was suppressed by the addition of 1 mM Na2ATP. The following results suggest that suppression of NP o by Na2ATP is due to Ca2+ chelation and hence reduction of [Ca2+]c and reduced Ca2+ activation of the channel. The effect was absent when Mg ATP was used instead of Na2ATP. The effect was diminished by increasing the [EGTA] from 1 to 10 mM. The effect was absent when [Ca2+]c was buffered with 10 mM HDTA (apparent pK Ca 5.58) instead of EGTA (pK Ca 6.8). A Ca2+-sensitive electrode system indicated that 1 mM Na2ATP reduced [Ca2+]c in 1 mM Ca-EGTA from 3 M to 1.4 M. Na2ATP, Na2GTP, Li4AMP-PNP and NaADP reduced measured [Ca2+]c in parallel with their suppression of NP o. After the Na2ATP-induced reduction of [Ca2+]c was re-adjusted by adding either CaCl2 or MgCl2, the effect of Na2ATP on NP o disappeared. In vivo, intracellular [Mg2+] exceeds free [ATP4–], hence ATP modulation of maxi K+ channels due to Ca2+ chelation is without biological relevance.  相似文献   

16.
Tracheal smooth muscle cells were enzymatically isolated from guinea-pig trachea. These cells contracted in response to acetylcholine (0.01–10 M) in a concentration-dependent fashion. Under current-clamp conditions with 140 mM K+ in the pipette solution, the membrane potential oscillated spontaneously at around –30 mV. Under voltage-clamp conditions, there appeared spontaneous but steady oscillations of outward current (I o). On depolarization from a holding potential at –40 mV, three components of outward current were elicited: transient outward current (I T), steady-state outward current (I s) and I o. These three components of outward current reversed around the K+ equilibrium potential and were abolished by Cs+ in the pipette, indicating that K+ was the major charge carrier of these outward currents. All these three components were completely suppressed by extracellular tetraethylammonium (10 mM). Both I T and I o were depressed by quinidine (1 mM), 4-aminopyridine (10 mM) and nifedipine (100 nM), but I s was not affected. I T and I o were suppressed by a Ca2+-free perfusate with less than 1 nM Ca2+ in the pipette, while with 10 nM Ca2+ in the pipette, only I o was suppressed. In both conditions, I s was not affected by the Ca2+-free perfusate. Therefore, it is suggested that I o, I T and I s are separate types of K+ current. With Cs+ in the pipette, K+ currents were almost completely suppressed and a transient inward current was observed during depolarizing pulses. The inward current was not affected by tetrodotoxin and increased when the concentration of extracellular Ca2+ was raised, indicating that the current is a Ca2+ channel current. Even with a holding potential of –80 mV, the low-threshold inward current could not be observed. The high-threshold Ca2+ current was abolished by nifedipine (100 nM) and was enhanced by Bay K 8644 (100 nM). The order of permeation of divalent cations through the Ca2+ channel was Ba2+ >Sr2+ Ca2+. Cd2+ blocked the Ca2+ current more effectively than Ni2+. These results may indicate that the Ca2+ current of tracheal smooth muscle cells is mainly composed of the current through an L-type Ca2+ channel.  相似文献   

17.
The study of ion conductances in the intact cortical collecting duct (CCD) with the patch-clamp method is rather difficult. An optimized method to isolate CCD cells from rat kidneys using an in vivo followed by an in vitro enzyme digestion is described. Individual CCD segments were collected after this digestion and incubated in EGTA-buffered medium. This procedure resulted in single cells or cell clusters. These freshly isolated CCD cells were studied with different modifications of the patch-clamp method. Membrane voltages measured in the cell-attached-nystatin configuration were –74 ±1mV (n=13) and –68±3 mV (n=22) in cells isolated from normal and mineralocorticoid-treated rats respectively. These values and those measured with the nystatin-perforated slow-whole-cell configuration (–79 ±1mV, n=23) are comparable to those measured in principal cells of isolated CCD segments. The cells hyperpolarized after the addition of amiloride and depolarized with the addition of adiuretin to the bath. The amiloride effect was enhanced when cells were isolated from deoxycorticosterone-acetate-treated rats. The cells were strongly depolarized upon elevation of the extracellular K+-concentration and did not demonstrate a measurable Cl conductance. A large-conductance K+ channel (174 pS, n=5, cell-attached, 145 mmol/l K+ in the pipette; 140 pS, n=12, cell-free, 3.6 mmol/l K+ in the bath) was seen. It had a very low activity on the cell, but a high open probability when excised into a solution with 1 mmol/l Ca2+ on the cytosolic side. More often a small-conductance K+ channel (36–52 pS, n=19, cell-attached; 30 pS, n=5, cell-free) with a high open probability was found on the cell. These freshly isolated cells seem to be a powerful preparation to study the properties and regulation of ion conductances of rat CCD with several electrophysiological methods. These freshly isolated CCD cells maintain the conductance properties known from principal cells of the intact CCD.  相似文献   

18.
Pericytes are considered to contribute to the regulation of retinal microcirculation which is impaired in diabetic retinopathy. Single, large-conductance, Ca2+-dependent K+ channels (BK) were studied in cultured bovine retinal capillary pericytes using the patch-clamp method. In excised patches with symmetrical 135-mmol/l K+ solutions a single channel conductance of 238±9.9 pS was measured. With a K+ gradient of 4/ 135 mmol/l (extracellular/intracellular) the slope conductance averaged 148±2.9 pS at 0 mV. The mean permeability was 4.2×10–13 cm3/s. The channel was highly selective for K+ with a permeability ratio for K+ over Na+ of 1/0.02. The mean open time and the open probability (Po) of the BK channel increased with depolarization and with increasing internal [Ca2+] showing a maximal sensitivity to Ca2+ between 10–4 and 10–5 mol/l Ca2+. Ba2+ (5 mmol/l), quinine (5 mmol/l), and verapamil (Michaelis constant 1.5×10–5 mol/l) blocked from the intracellular side. Tetraethylammonium induced a dose-dependent block from the outside only with a halfmaximal blocking concentration of 2.5×10–4 mol/l. Charybdotoxin (10–8 mol/l) blocked completely from the extracellular side. The channel activity was not changed by either internal adenosine triphosphate (ATP, 10–4 mol/l) or the putative opener of ATP-sensitive K+ channels Hoe 234 (10–6 mol/l). In cell-attached patches channelP o was less than 3%. After a 3-day incubation in culture medium containing an elevated glucose concentration (22.5 mmol/l) the channel activity in attached patches was markedly increased. These data indicate that cultured retinal pericytes possess a BK channel. The activity of the channel increases after incubation with elevated glucose concentrations, which could indicate altered regulation of the channel under these conditions. The implications of altered function of BK channels are discussed with respect to haemodynamic changes observed in diabetic retinopathy.  相似文献   

19.
In the present experiment, we characterized the intracellular Ca2+ oscillations induced by caffeine (1 mM) or histamine (1–3 M) in voltage-clamped single smooth muscle cells of rabbit cerebral (basilar) artery. Superfusion of caffeine or histamine induced periodic oscillations of large whole-cell K+ current with fairly uniform amplitudes and intervals. The oscillatory K+ current was abolished by inclusion of ethylenebis(oxonitrilo)tetraacetate (EGTA, 5 mM) in the pipette solution. Caffeine- and histamine-induced periodic activation of the large-conductance Ca2+-activated K+ [K(Ca)] channel was recorded in the cell-attached patch mode. These results suggest that the oscillations of K+ current are carried by the K(Ca) channel and reflect the oscillations of intracellular Ca2+ concentration ([Ca2+]i). Ryanodine (1–10 M) abolished both caffeine- and histamine-induced oscillations. Caffeine- induced oscillations were abolished by the sarcoplasmic reticulum Ca2+-adenosine 5-triphosphatase (Ca2+-ATPase) inhibitor, cyclopiazonic acid (10 M), and a high concentration of caffeine (10 mM). Inclusion of heparin (3 mg/ml) in the pipette solution blocked histamine-induced oscillations, but did not block caffeine-induced oscillations. By the removal of extracellular Ca2+, but not by the addition of verapamil and Cd2+, the caffeine-induced oscillations were abolished. Increasing Ca2+ influx rate increased the frequencies of caffeine-induced oscillations. Spontaneous oscillations were also observed in cells that were not superfused with agonists, and had similar characteristics to the caffeine-induced oscillations. From the above results, it is concluded, that in smooth muscle cells of the rabbit cerebral (basilar) artery, ryanodine-sensitive Ca2+-induced Ca2+ release pools play key roles in the generation of caffeine- and histamine-induced intracellular Ca2+ oscillations.  相似文献   

20.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号