首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Accuracy of four different types of memory-guided saccades was studied in two patients with a small central thalamic lesion, probably involving the region of the internal medullary lamina (IML), and in a control group. In the first paradigm, the eyes and head remained immobile between the time of the presentation of the visual target to be remembered and the memory-guided saccade. In the other three paradigms, the eyes were displaced during the same period (before the memory-guided saccade) by either visually-guided saccades, a smooth pursuit eye movement or a body movement (with vestibulo-ocular reflex suppression). Therefore, in these three paradigms, the initial eye displacement required the use of extraretinal eye position to produce accurate memory-guided saccades. Compared with the control group, the two patients had normal accuracy in the first memory-guided saccade paradigm, in which there was no initial eye displacement, but markedly impaired saccade accuracy in the other three paradigms. These results suggest that the cortical areas triggering saccades did not receive correct extraretinal eye position signals. They are consistent with an impairment of the efference copy, which could be distributed to the cortical ocular motor areas by the IML.  相似文献   

2.
The time course of extraretinal eye position signals (EEPSs) for visually guided saccades made successively with a short intersaccadic interval was estimated on the basis of perceptual errors in localizing a visual target flashed between the two saccades. The EEPSs for the first and the second saccades were shown to interact in a specific way when the intersaccadic interval was short. The pattern of interaction depended on the direction of the second saccade. It is suggested that when the second saccade was made in the opposite direction to the first saccade, the EEPS for the first saccade was interrupted before its completion in preparation for the onset of the second saccade. When the two saccades were made in the same direction, the EEPS for the first saccade developed more quickly than in a single-saccade condition. the results are discussed in relation to the findings of recent neurophysiological studies.  相似文献   

3.
Many neurons in macaque lateral intraparietal cortex (LIP) maintain elevated activity induced by visual or auditory targets during tasks in which monkeys are required to withhold one or more planned eye movements. We studied the mechanisms for such memory activity with neural network modeling. Recurrent connections among simulated LIP neurons were used to model memory responses of LIP neurons. The connection weights were computed using an optimization procedure to produce desired outputs in memory-saccade tasks. One constraint for the training process is the "single-purpose" rule, which mimics the fact that once LIP neurons hold the memory activity of a saccade, they are insensitive to further stimuli until the motor action is completed. After training, excitatory connections were developed between units with similar preferred saccade directions, while inhibitory connections were formed between units with dissimilar directions. This "push-pull" mechanism enables the network to encode the next intended eye movement and is essential for programming sequential saccades. In simulating double saccades, the push-pull connections locked the on-going activity in the network for the first saccade until the saccade was made, then a new population of units became active to prepare for the second saccade. The simulated LIP neurons exhibited sensory responses and memory activities similar to those recorded in LIP neurons. We propose that push-pull recurrent connections might be the basic structure mediating the memory activity of area LIP in planning sequential eye movements.  相似文献   

4.
Previous studies from our laboratory identified a parietal eye field in the primate lateral intraparietal sulcus, the lateral intraparietal area (area LIP). Here we further explore the role of area LIP in processing saccadic eye movements by observing the effects of reversible inactivation of this area. One to 2 microl of muscimol (8 mg/ml) were injected at locations where saccade-related activities were recorded for each lesion experiment. After the muscimol injection we observed in two macaque monkeys consistent effects on both the metrics and dynamics of saccadic eye movements at many injection sites. These effects usually took place within 10-30 min and disappeared after 5-6 h in most cases and certainly when tested the next day. After muscimol injection memory saccades directed toward the contralesional and upper space became hypometric, and in one monkey those to the ipsilesional space were slightly but significantly hypermetric. In some cases, the scatter of the end points of memory saccades was also increased. On the other hand, the metrics of visual saccades remained relatively intact. Latency for both visual and memory saccades toward the contralesional space was increased and in many cases displayed a higher variance after muscimol lesion. At many injection sites we also observed an increase of latency for visual and memory saccades toward the upper space. The peak velocities for memory saccades toward the contralesional space were decreased after muscimol injection. The peak velocities of visual saccades were not significantly different from those of the controls. The duration of saccadic eye movements either to the ipsilesional or contralesional space remained relatively the same for both visual and memory saccades. Overall these results demonstrated that we were able to selectively inactivate area LIP and observe effects on saccadic eye movements. Together with our previous recording studies these results futher support the view that area LIP plays a direct role in processing incoming sensory information to program saccadic eye movements. The results are consistent with our unit recording data and microstimulation studies, which suggest that area LIP represents contralateral space and also has a bias for the upper visual field.  相似文献   

5.
It is an essential feature for the visual system to keep track of self-motion to maintain space constancy. Therefore the saccadic system uses extraretinal information about previous saccades to update the internal representation of memorized targets, an ability that has been identified in behavioral and electrophysiological studies. However, a smooth eye movement induced in the latency period of a memory-guided saccade yielded contradictory results. Indeed some studies described spatially accurate saccades, whereas others reported retinal coding of saccades. Today, it is still unclear how the saccadic system keeps track of smooth eye movements in the absence of vision. Here, we developed an original two-dimensional behavioral paradigm to further investigate how smooth eye displacements could be compensated to ensure space constancy. Human subjects were required to pursue a moving target and to orient their eyes toward the memorized position of a briefly presented second target (flash) once it appeared. The analysis of the first orientation saccade revealed a bimodal latency distribution related to two different saccade programming strategies. Short-latency (<175 ms) saccades were coded using the only available retinal information, i.e., position error. In addition to position error, longer-latency (>175 ms) saccades used extraretinal information about the smooth eye displacement during the latency period to program spatially more accurate saccades. Sensory parameters at the moment of the flash (retinal position error and eye velocity) influenced the choice between both strategies. We hypothesize that this tradeoff between speed and accuracy of the saccadic response reveals the presence of two coupled neural pathways for saccadic programming. A fast striatal-collicular pathway might only use retinal information about the flash location to program the first saccade. The slower pathway could involve the posterior parietal cortex to update the internal representation of the flash once extraretinal smooth eye displacement information becomes available to the system.  相似文献   

6.
Parietal representation of object-based saccades   总被引:3,自引:0,他引:3  
When monkeys make saccadic eye movements to simple visual targets, neurons in the lateral intraparietal area (LIP) display a retinotopic, or eye-centered, coding of the target location. However natural saccadic eye movements are often directed at objects or parts of objects in the visual scene. In this paper we investigate whether LIP represents saccadic eye movements differently when the target is specified as part of a visually displayed object. Monkeys were trained to perform an object-based saccade task that required them to make saccades to previously cued parts of an abstract object after the object reappeared in a new orientation. We recorded single neurons in area LIP of two macaque monkeys and analyzed their activity in the object-based saccade task, as well as two control tasks: a standard memory saccade task and a fixation task with passive object viewing. The majority of LIP neurons that were tuned in the memory saccade task were also tuned in the object-based saccade task. Using a hierarchical generalized linear model analysis, we compared the effects of three different spatial variables on the firing rate: the retinotopic location of the target, the object-fixed location of the target, and the orientation of the object in space. There was no evidence of an explicit object-fixed representation in the activity in LIP during either of the object-based tasks. In other words, no cells had receptive fields that rotated with the object. While some cells showed a modulation of activity due to the location of the target on the object, these variations were small compared to the retinotopic effects. For most cells, firing rates were best accounted for by either the retinotopic direction of the movement, the orientation of the object, or both spatial variables. The preferred direction of these retinotopic and object orientation effects were found to be invariant across tasks. On average, the object orientation effects were consistent with the retinotopic coding of potential target locations on the object. This interpretation is supported by the fact that the magnitude of these two effects were roughly equal in the early portions of the trial, but around the time of the motor response, the retinotopic effects dominated. We conclude that LIP uses the same retinotopic coding of saccade target whether the target is specified as an absolute point in space or as a location on a moving object.  相似文献   

7.
A saccade triggered during sustained smooth pursuit is programmed using retinal information about the relative position and velocity of the target with respect to the eye. Thus the smooth pursuit and saccadic systems are coordinated by using common retinal inputs. Yet, in the absence of retinal information about the relative motion of the eye with respect to the target, the question arises whether the smooth and saccadic systems are still able to be coordinated possibly by using extraretinal information to account for the saccadic and smooth eye movements. To address this question, we flashed a target during smooth anticipatory eye movements in darkness, and the subjects were asked to orient their visual axis to the remembered location of the flash. We observed multiple orientation saccades (typically 2-3) toward the memorized location of the flash. The first orienting saccade was programmed using only the position error at the moment of the flash, and the smooth eye movement was ignored. However, subsequent saccades executed in darkness compensated gradually for the smooth eye displacement (mean compensation congruent with 70%). This behavior revealed a 400-ms delay in the time course of orientation for the compensation of the ongoing smooth eye displacement. We conclude that extraretinal information about the smooth motor command is available to the saccadic system in the absence of visual input. There is a 400-ms delay for smooth movement integration, saccade programming and execution.  相似文献   

8.
The double-step saccade task (DSST) was used to test the hypothesis that children with developmental co-ordination disorder (DCD) who experience deficits in motor imagery have difficulty processing the visual spatial consequences of intended movements using efference copy signals. In order to ensure that the second saccade in the DSST was executed in the absence of visual cues and had to be programmed on the basis of extra-retinal information (efference copy), we analysed only those double-step ensembles where latency plus duration of first saccades was greater than 240 ms (total presentation time of the targets). No significant differences between DCD and control children were evident on measures of latency of first saccades, intersaccadic interval and first saccade error. As predicted, children with DCD who have impaired motor imagery demonstrated specific deficits on the DSST where efference copy had been used to program the saccade sequence. More specifically, these children were less accurate in terms of final eye position on second saccades. Our results raise the possibility that abnormalities in the processing of efference copy signals could underlie motor clumsiness in the majority of children with DCD. Furthermore, the origin of this deficit in efference copy probably exists at the level of the parietal lobe.  相似文献   

9.
Fourteen patients with a chronic, unilateral lesion restricted to the frontal lobe (twelve involving the frontal eye field (FEF)), nine patients with a chronic, unilateral lesion restricted to posterior association cortex (eight involving the intraparietal sulcus (IPS)), and twelve neurologically normal control subjects were studied in an anti-saccade task. A combination of manipulating cuing and fixation offset enabled us to examine the effects of chronic oculomotor lesions on both saccade preparation and voluntary control over ocular fixation. Patients with lesions of the FEF made more errors (reflexive glances) toward contralesional targets, whereas patients with IPS lesions made fewer errors toward contralesional targets. Patients with IPS lesions had increased latencies to initiate saccades away from contralesional targets. For FEF patients, the presence of a fixation point inhibited the initiation of contralesionally directed saccades less than those directed ipsilesionally. Saccade preparation in response to a cue did not reduce the inhibitory effect of a fixation point on initiating anti-saccades directed either ipsilesionally or contralesionally for either patient group. We conclude that chronic IPS lesions result in a reduced contralesional visual grasp reflex (VGR) and delayed utilization of visual signals in the contralesional field for planning voluntary eye movements. In contrast, patients with chronic FEF lesions are impaired in inhibiting the VGR toward contralesional signals, and manifest an asymmetry in the balance between fixation and saccade activity. Moreover, voluntary control of fixation is compromised after chronic damage to either frontal or parietal oculomotor cortex.  相似文献   

10.
Neurons in area PEc in the superior parietal cortex encode signals from different modalities, such as visual, extraretinal and somatosensory, probably combining them to encode spatial parameter of extrapersonal space to prepare body movements. This study reports the characterization of the functional properties of PEc non-visual neurons that showed saccade-related activity. We analyzed the pre- and post-saccadic firing activity in 189 neurons recorded in five hemispheres of three behaving monkeys. Spiking activity of PEc single neurons was recorded while the monkeys performed visually-guided saccades in a reaction time task. We found that 84% of neurons recorded from area PEc showed pre-saccadic activity with directional tuning. In 26% of neurons, we found inhibition of activity in the pre-saccadic period. The onset of this "pause" always started before the saccade and, in 51% of neurons, it was invariant among different gaze directions. The post-saccadic activity in these cells was either a phasic response with directional tuning (77%) and/or an eye position tuning (75%). The analysis of the preferred direction did not show hemispheric preference, however, for the majority of neurons, the angular difference in the preferred direction, in the pre- and post-saccadic period, was more than 60 degrees . By confirming, therefore, that PEc neurons carry information about eye position, these novel findings open new horizons on PEc function that, to date, is not well documented. The pre-saccadic activity may reflect an involvement in saccade control, whereas post-saccadic activity may indicate a role in informing on the new eye position. These novel results about saccade and eye position processing may imply a role of area PEc in gaze direction mechanisms and, possibly, in remapping visual space after eye movements.  相似文献   

11.
Neurons in both the lateral intraparietal area (LIP) of the monkey parietal cortex and the intermediate layers of the superior colliculus (SC) are activated well in advance of the initiation of saccadic eye movements. To determine whether there is a progression in the covert processing for saccades from area LIP to SC, we systematically compared the discharge properties of LIP output neurons identified by antidromic activation with those of SC neurons collected from the same monkeys. First, we compared activity patterns during a delayed saccade task and found that LIP and SC neurons showed an extensive overlap in their responses to visual stimuli and in their sustained activity during the delay period. The saccade activity of LIP neurons was, however, remarkably weaker than that of SC neurons and never occurred without any preceding delay activity. Second, we assessed the dependence of LIP and SC activity on the presence of a visual stimulus by contrasting their activity in delayed saccade trials in which the presentation of the visual stimulus was either sustained (visual trials) or brief (memory trials). Both the delay and the presaccadic activity levels of the LIP neuronal sample significantly depended on the sustained presence of the visual stimulus, whereas those of the SC neuronal sample did not. Third, we examined how the LIP and SC delay activity relates to the future production of a saccade using a delayed GO/NOGO saccade task, in which a change in color of the fixation stimulus instructed the monkey either to make a saccade to a peripheral visual stimulus or to withhold its response and maintain fixation. The average delay activity of both LIP and SC neuronal samples significantly increased by the advance instruction to make a saccade, but LIP neurons were significantly less dependent on the response instruction than SC neurons, and only a minority of LIP neurons was significantly modulated. Thus despite some overlap in their discharge properties, the neurons in the SC intermediate layers showed a greater independence from sustained visual stimulation and a tighter relationship to the production of an impending saccade than the LIP neurons supplying inputs to the SC. Rather than representing the transmission of one processing stage in parietal cortex area LIP to a subsequent processing stage in SC, the differences in neuronal activity that we observed suggest instead a progressive evolution in the neuronal processing for saccades.  相似文献   

12.
 Recent neurophysiological studies of the saccadic ocular motor system have lent support to the hypothesis that this system uses a motor error signal in retinotopic coordinates to direct saccades to both visual and auditory targets. With visual targets, the coordinates of the sensory and motor error signals will be identical unless the eyes move between the time of target presentation and the time of saccade onset. However, targets from other modalities must undergo different sensory-motor transformations to access the same motor error map. Because auditory targets are initially localized in head-centered coordinates, analyzing the metrics of saccades from different starting positions allows a determination of whether the coordinates of the motor signals are those of the sensory system. We studied six human subjects who made saccades to visual or auditory targets from a central fixation point or from one at 10° to the right or left of the midline of the head. Although the latencies of saccades to visual targets increased as stimulus eccentricity increased, the latencies of saccades to auditory targets decreased as stimulus eccentricity increased. The longest auditory latencies were for the smallest values of motor error (the difference between target position and fixation eye position) or desired saccade size, regardless of the position of the auditory target relative to the head or the amplitude of the executed saccade. Similarly, differences in initial eye position did not affect the accuracy of saccades of the same desired size. When saccadic error was plotted as a function of motor error, the curves obtained at the different fixation positions overlapped completely. Thus, saccadic programs in the central nervous system compensated for eye position regardless of the modality of the saccade target, supporting the hypothesis that the saccadic ocular motor system uses motor error signals to direct saccades to auditory targets. Received: 8 September 1995 / Accepted: 22 November 1996  相似文献   

13.
The close relationship between saccadic eye movements and vision complicates the identification of neural responses associated with each function. Visual and saccade-related responses are especially closely intertwined in a subdivision of posterior parietal cortex, the lateral parietal area (LIP). We analyzed LIP neurons using an antisaccade task in which monkeys made saccades away from a salient visual cue. The vast majority of neurons reliably signaled the location of the visual cue. In contrast, most neurons had only weak, if any, saccade-related activity independent of visual stimulation. Thus, whereas the great majority of LIP neurons reliably encoded cue location, only a small minority encoded the direction of the upcoming saccade.  相似文献   

14.
Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame ("primary position") might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored.  相似文献   

15.
Eye movement disorders after frontal eye field lesions in humans   总被引:10,自引:0,他引:10  
Eye movements were recorded electro-oculographically in three patients with a small ischemic lesion affecting the left frontal eye field (FEF) and in 12 control subjects. Reflexive visually guided saccades (gap and overlap tasks), antisaccades, predictive saccades, memory-guided saccades, smooth pursuit and optokinetic nystagmus (OKN) were studied in the three patients. Staircase saccades and double step saccades were also studied in one of the three patients. For both leftward and rightward saccades, latency in the overlap task (but not in the gap task) and that of correct antisaccades and of memory-guided saccades was significantly increased, compared with the results of controls. There was a significant decrease in the amplitude gain of all rightward saccades programmed using retinotopic coordinates (gap and overlap tasks, predictive and memory-guided saccades), whereas the amplitude gain of corresponding leftward saccades was preserved. Such an asymmetry between leftward and rightward saccades was significant. In the staircase paradigm as well as for the first saccade in the double step paradigm (with the use of retinotopic coordinates in both cases), the amplitude gain of rightward saccades was also significantly lower than that of leftward saccades. Moreover, in the double step paradigm, the amplitude gain of the first rightward saccade was significantly lower than that of the second rightward saccade (programmed using extraretinal signals), which was preserved. The percentage of errors in the antisaccade task did not differ significantly from that of normal subjects. In the predictive saccade paradigm, the percentage of predictive rightward saccades was significantly decreased. The left smooth pursuit gain for all tested velocities, the right smooth pursuit gain for higher velocities, and the left OKN gain were significantly decreased. The results show, for the first time in humans, that the FEF plays an important role in (1) the disengagement from central fixation, (2) the control of contralateral saccades programmed using retinotopic coordinates, (3) saccade prediction and (4) the control of smooth pursuit and OKN, mainly ipsilaterally. In contrast, the left FEF did not appear to be crucial for the control of the only type of saccades programmed using extraretinal signals studied here.  相似文献   

16.
The saccade generator updates memorized target representations for saccades during eye and head movements. Here, we tested if proprioceptive feedback from the arm can also update handheld object locations for saccades, and what intrinsic coordinate system(s) is used in this transformation. We measured radial saccades beginning from a central light-emitting diode to 16 target locations arranged peripherally in eight directions and two eccentricities on a horizontal plane in front of subjects. Target locations were either indicated 1) by a visual flash, 2) by the subject actively moving the handheld central target to a peripheral location, 3) by the experimenter passively moving the subject's hand, or 4) through a combination of the above proprioceptive and visual stimuli. Saccade direction was relatively accurate, but subjects showed task-dependent systematic overshoots and variable errors in radial amplitude. Visually guided saccades showed the smallest overshoot, followed by saccades guided by both vision and proprioception, whereas proprioceptively guided saccades showed the largest overshoot. In most tasks, the overall distribution of saccade endpoints was shifted and expanded in a gaze- or head-centered cardinal coordinate system. However, the active proprioception task produced a tilted pattern of errors, apparently weighted toward a limb-centered coordinate system. This suggests the saccade generator receives an efference copy of the arm movement command but fails to compensate for the arm's inertia-related directional anisotropy. Thus the saccade system is able to transform hand-centered somatosensory signals into oculomotor coordinates and combine somatosensory signals with visual inputs, but it seems to have a poorly calibrated internal model of limb properties.  相似文献   

17.
Despite frequent saccadic gaze shifts we perceive the surrounding visual world as stable. It has been proposed that the brain uses extraretinal eye position signals to cancel out saccade-induced retinal image motion. Nevertheless, stimuli flashed briefly around the onset of a saccade are grossly mislocalized, resulting in a shift and, under certain conditions, an additional compression of visual space. Perisaccadic mislocalization has been related to a spatio-temporal misalignment of an extraretinal eye position signal with the corresponding saccade. Here, we investigated perceptual mislocalization of human observers both in saccade and fixation conditions. In the latter conditions, the retinal stimulation during saccadic eye movements was simulated by a fast saccade-like shift of the stimulus display. We show that the spatio-temporal pattern of both the shift and compression components of perceptual mislocalization can be surprisingly similar before real and simulated saccades. Our findings suggest that the full pattern of perisaccadic mislocalization can also occur in conditions which are unlikely to involve changes of an extraretinal eye position signal. Instead, we suggest that, under the conditions of our experiments, the arising difficulty to establish a stable percept of a briefly flashed stimulus within a given visual reference frame yields mislocalizations before fast retinal image motion. The availability of visual references appears to exert a major influence on the relative contributions of shift and compression components to mislocalization across the visual field.  相似文献   

18.
Recent work has shown that humans and monkeys utilize both retinal error and eye position signals to compute the direction and amplitude of saccadic eye movements (Hallett and Lightstone 1976a, b; Mays and Sparks 1980b). The aim of this study was to examine the role the frontal eye fields (FEF) and the superior colliculi (SC) play in this computation. Rhesus monkeys were trained to acquire small, briefly flashed spots of light with saccadic eye movements. During the latency period between target extinction and saccade initiation, their eyes were displaced, in total darkness, by electrical stimulation of either the FEF, the SC or the abducens nucleus area. Under such conditions animals compensated for the electrically induced ocular displacement and correctly reached the visual target area, suggesting that both a retinal error and eye position error signal were computed. The amplitude and direction of the electrically induced saccades depended not only on the site stimulated but also on the amplitude and direction of the eye movement initiated by the animal to acquire the target. When the eye movements initiated by the animal coincided with the saccades initiated by electrical stimulation, the resultant saccade was the weighted average of the two, where one weighing factor was the intensity of the electrical stimulus. Animals did not acquire targets correctly when their eyes were displaced, prior to their intended eye movements, by stimulating in the abducens nucleus area. After bilateral ablation of either the FEF or the SC monkeys were still able to acquire visual targets when their eyes were displaced, prior to saccade initiation, by electrical stimulation of the remaining intact structure. These results suggest that neither the FEF nor the SC is uniquely responsible for the combined computation of the retinal error and the eye position error signals.  相似文献   

19.
Auditory spatial information arises in a head-centered coordinate frame, whereas the saccade command signals generated by the superior colliculus (SC) are thought to specify target locations in an eye-centered frame. However, auditory activity in the SC appears to be neither head- nor eye-centered but in a reference frame that is intermediate between both of these reference frames. This neurophysiological finding suggests that auditory saccades might not fully compensate for changes in initial eye position. Here, we investigated whether the accuracy of saccades to sounds is affected by initial eye position in rhesus monkeys. We found that, on average, a 12 degrees horizontal shift in initial eye position produced only a 0.6 to 1.6 degrees horizontal shift in the endpoints of auditory saccades made to targets at a range of locations along the horizontal meridian. This shift was similar in size to the modest influence of eye position on visual saccades. This virtually complete compensation for initial eye position implies that auditory activity in the SC is read out in a manner that is appropriate for generating accurate saccades to sounds.  相似文献   

20.
Area V3A is an extrastriate visual area that provides a major input to parietal cortex. To identify the sensory, saccade-related, and cognitive signals carried by V3A neurons, we recorded from single units in alert monkeys during performance of fixation and memory guided saccade tasks. We found that visual responses to stationary stimuli in area V3A were affected by the behavioral relevance of the stimulus. The amplitude of the visual response differed between the memory-guided saccade task, in which the monkey had to use the information provided by the stimulus to guide its behavior, and the fixation task. For 18% (29/163) of V3A neurons, the response was significantly enhanced in the memory-guided saccade task as compared with that in the fixation task. For 8% (13/163) of V3A neurons, the amplitude of response in the memory-guided saccade task was significantly suppressed. We also observed task-related modulation of activity prior to stimulus onset. Among the V3A neurons (37/163) that showed significant differences between tasks in prestimulus activity, the majority (89%; 33/37) showed greater prestimulus activity in the memory-guided saccade task. Task-related increases in prestimulus activity in the memory-guided saccade task were not always matched by increases in the sensory response, indicating that visual responses and prestimulus activity can be modulated independently. Activity in the memory period was suppressed compared with prestimulus activity for 83% (49/59) of the V3A neurons that showed a significant difference in activity (59/197) between these two epochs. For some neurons, memory-period activity dropped even below the baseline level in the fixation task, indicating that there may be an active suppression mechanism. Many V3A neurons (75%, 148/197) also had activity in the saccade epoch. This activity was most prominent immediately after the saccade. Postsaccadic activity was observed even when testing was carried out in total darkness, indicating that this activity reflects, at least in part, extraretinal signals and is not simply a response to visual reafference. These results indicate that several kinds of signals are carried by single neurons in extrastriate area V3A. Moreover, activity in V3A is subject to modulation by extraretinal factors, including attention, anticipation, memory, and saccadic eye movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号