首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The six-transmembrane epithelial antigen of prostate (STEAP) protein is an attractive candidate for T cell-based immunotherapy because it is overexpressed in prostate cancer and various other tumor types. Several peptide epitopes capable of stimulating CTLs that killed STEAP-expressing tumor cells have been described. Our goal was the identification of helper T lymphocyte (HTL) epitopes of STEAP for the optimization of T cell-based immunotherapies against STEAP-expressing malignancies. Candidate HTL epitopes for STEAP were predicted using in silico algorithms for HLA class II-binding peptides and were tested for their ability to elicit HTL responses by in vitro peptide vaccination of CD4 T lymphocytes from healthy individuals and prostate cancer patients. Two peptides (STEAP(102-116) and STEAP(192-206)) were effective in stimulating in vitro antitumor HTL responses in both normal individuals and prostate cancer patients. Notably, both STEAP HTL peptides behaved as promiscuous T-cell epitopes because they stimulated T cells in the context of more than one MHC class II allele. These newly described STEAP HTL epitopes could be of value for the design and optimization of T cell-based immunotherapy against STEAP-expressing tumors.  相似文献   

2.
Vaccine therapy for prostate and breast cancer may have potential for treating these major causes of death in males and females, respectively. Critical to the development of tumor-specific vaccines is finding and characterizing novel antigens to be recognized by CD8(+) T cells. To define new CD8(+) T-cell tumor antigens, we determined two wild-type HLA-A2 epitopes from a recently found tumor-associated protein, TARP (T-cell receptor gamma alternate reading frame protein), expressed in prostate and breast cancer cells. We were also able to engineer epitope-enhanced peptides by sequence modifications. Both wild-type and enhanced epitopes induced peptide-specific CD8(+) T-cell responses in A2K(b) transgenic mice. In vitro restimulation of human CD8(+) T cells from a prostate cancer patient resulted in CD8(+) T cells reactive to the peptide epitopes that could lyse HLA-A2(+) human breast cancer cells (MCF-7) expressing TARP. Epitope-specific human CD8(+) T cells were also enumerated in patients' peripheral blood by tetramer staining. Our data suggest that HLA-A2-binding TARP epitopes and enhanced epitopes discovered in this study could be incorporated into a potential vaccine for both breast and prostate cancer.  相似文献   

3.
EBV-encoded latent membrane protein 1 (LMP1) has oncogenic potential and is expressed in many EBV-associated malignancies. Although LMP1 is regarded as a potential tumor-associated antigen for immunotherapy and several LMP1-specific MHC class I-restricted CTL epitopes have been reported, little is known regarding MHC class II-restricted CD4 helper T-lymphocyte (HTL) epitopes for LMP1. The goal of the present studies was to determine whether MHC class II-restricted CD4 T-cell responses could be induced against the LMP1 antigen and to evaluate the antitumor effect of these responses. We have combined the use of a predictive MHC class II binding peptide algorithm with in vitro vaccination of CD4 T cells using candidate peptides to identify naturally processed epitopes derived from LMP1 that elicit immune responses against EBV-expressing tumor cells. Peptide LMP1(159-175) was effective in inducing HTL responses that were restricted by HLA-DR9, HLA-DR53, or HLA-DR15, indicating that this peptide behaves as a promiscuous T-cell epitope. Moreover, LMP1(159-175)-reactive HTL clones directly recognized EBV lymphoblastoid B cells, EBV-infected natural killer (NK)/T-lymphoma cells and naturally processed antigen in the form of LMP1+ tumor cell lysates presented by autologous dendritic cells. Because the newly identified epitope LMP1(159-175) overlaps with an HLA-A2-restricted CTL epitope (LMP1(159-167)), this peptide might have the ability to induce simultaneous CTL and HTL responses against LMP1. Overall, our data should be relevant for the design and optimization of T-cell epitope-based immunotherapy against various EBV-associated malignancies, including NK/T cell lymphomas.  相似文献   

4.
PURPOSE: There is growing evidence that CD4(+) helper T lymphocytes (HTLs) play an essential role in the induction and long-term maintenance of antitumor CTL responses. Thus, approaches to develop effective T-cell-based immunotherapy should focus in the stimulation of both CTLs and HTLs reactive against tumor-associated antigens. The present studies were performed with the purpose of identifying HTL epitopes for prostate-specific membrane antigen (PSMA) for the optimization of vaccines for prostate cancer. EXPERIMENTAL DESIGN: Synthetic peptides from regions of the PSMA sequence that were predicted to serve as HTL epitopes were prepared with use of computer-based algorithms and tested for their capacity to trigger in vitro HTL responses in lymphocytes from normal volunteers. RESULTS: Our results show that 4 peptides from PSMA were effective in eliciting HTL responses. Moreover, HTL reactive to 3 of the 4 peptides were capable of reacting with naturally processed antigen in the form of freeze/thaw lysates or apoptotic cells produced from PSMA-positive LNCaP tumor cell lines. CONCLUSIONS: Human HTLs are capable of effectively recognizing epitopes derived from PSMA. The information presented here should facilitate the design of improved vaccination strategies for prostate cancer.  相似文献   

5.
6.
An effective tumor vaccine may be required to induce both CTLs and T-helper (Th) responses against tumor-associated antigens. CD4+ Th cells that recognize MHC class II-restricted epitopes play a central role in the initiation and maintenance of antitumor immune responses. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and thus is a potential target for prostate cancer immunotherapy. In this study, we attempted to identify Th epitopes derived from PSMA for enhancing prostate cancer vaccine by eliciting PSMA-specific Th responses. We first screened a panel of six epitope peptide candidates selected with the TEPITOPE program and found that all six peptides induced peptide-specific T-cell proliferation from one or more donors with estimated T-cell precursor frequencies of 0-4.17 x 10(-6). We then established peptide-specific T-cell clones for five of these six peptides and demonstrated that the T-cell clone specific for the PSMA(459) epitope (NYTLRVDCTPLMYSL) can recognize processed antigens from recombinant PSMA proteins. The PSMA(459) peptide was found to induce CD4+ T-cell responses in healthy individuals and prostate cancer patients with different HLA-DR alleles. To test the potential clinical application, human HLA-DR4 transgenic mice were immunized with PSMA(459) peptide and we found that PSMA(459) peptide immunization activated T cells that specifically responded to antigenic peptides derived from PSMA proteins and PSMA-positive tumor. Thus, the naturally processed Th epitope PSMA(459) could be included in prostate tumor vaccines to enhance PSMA-specific CTL responses.  相似文献   

7.
Kobayashi H  Wood M  Song Y  Appella E  Celis E 《Cancer research》2000,60(18):5228-5236
It is accepted that both helper and CTLs play a critical role in immune antitumor responses. Thus, the design of effective immune-based therapies for cancer relies in the identification of relevant tumor-associated antigens (TAAs) capable of eliciting strong helper and cytotoxic T-cell responses against tumor cells. The product of the HER2/neu oncogene is considered as a prototype TAA, because it is found overexpressed in a large variety of malignancies, whereas normal cells only produce low levels of this product. Several cytotoxic T-cell epitopes for HER2/neu have been identified that enable the design of peptide-based therapeutic vaccines for tumors expressing this TAA. Nevertheless, it is expected that inclusion of peptide epitopes capable of eliciting HER2/neu-specific T helper responses into these vaccines may enhance their effectiveness in the clinic. We describe here a strategy to identify helper T-cell epitopes for HER2/neu that focuses on peptides predicted to bind to numerous histocompatibility alleles (promiscuous epitopes), which would encourage their use in therapeutic vaccines for the general cancer patient population. Following this approach, we successfully identified several peptides that elicited T helper (CD4+) proliferative responses to peptides derived from HER2/neu. Most of the T-cell responses appeared to reflect a low affinity for antigen, which could be the result of immune tolerance because HER2/neu is expressed in low levels in normal cells and possibly including lymphocytes and monocytes. Interestingly, one of these peptides, HER2(883), was recognized by T cells in the context of either HLA-DR1, HLA-DR4, HLA-DR52, and HLA-DR53, indicating a high degree of histocompatibility promiscuity. Furthermore, T cells that reacted with peptide HER2(883) could also recognize antigen-presenting cells that process HER2/neu recombinant protein. These results may be relevant for the design of more effective therapeutic vaccines for tumors expressing the HER2/neu oncogene product.  相似文献   

8.
The development of effective T cell-based immunotherapy for cancer requires the identification of antigens capable of inducing both CTL and T helper immune responses. Although CTLs will participate in the antitumor response mainly by exerting their lytic activity on the tumor cells, helper T lymphocytes will be critical for the induction and maintenance of the CTLs. Thus, effective subunit therapeutic vaccines should include both CTL and T helper epitopes from antigens expressed on the tumor cells. The product of the MAGE-A3 gene is an attractive candidate for tumor immunotherapy because it is expressed in the majority of melanomas and in a great proportion of other solid tumors. Although numerous CTL epitopes for the MAGE-A3 antigen have been reported, only a few have been described for helper T cells. Here we show that a synthetic peptide derived from the MAGE-A3 sequence (MAGE-A3(146-160)) was effective in inducing in vitro T helper responses in the context of HLA-DR4 and HLA-DR7 alleles. Most significantly, the peptide-reactive helper T lymphocytes were capable of recognizing various forms of MAGE-A3 antigen (tumor cell lysates, dead/apoptotic tumor cells, or recombinant MAGE-A3 protein), indicating that the T-cell epitope represented by peptide MAGE-A3(146-160) is naturally processed by antigen-presenting cells. These studies are relevant for the design of multi-epitope vaccines for treating MAGE-A3-expressing tumors through the simultaneous stimulation of CTL and T helper lymphocytes.  相似文献   

9.
Specific immunotherapy of prostate cancer may be an alternative or be complementary to other approaches for treatment of recurrent or metastasized disease. This study aims at identifying and characterizing prostate cancer-associated peptides capable of eliciting specific CTL responses in vivo. Evaluation of peptide-induced CTL activity in vitro was done following immunization of HLA-A2 transgenic (HHD) mice. An in vivo tumor rejection was tested by adoptive transfer of HHD immune lymphocytes to nude mice bearing human tumors. To confirm the existence of peptide-specific CTL precursors in human, lymphocytes from healthy and prostate cancer individuals were stimulated in vitro in the presence of these peptides and CTL activities were assayed. Two novel immunogenic peptides derived from overexpressed prostate antigens, prostatic acid phosphatase (PAP) and six-transmembrane epithelial antigen of prostate (STEAP), were identified; these peptides were designated PAP-3 and STEAP-3. Peptide-specific CTLs lysed HLA-A2.1+ LNCaP cells and inhibited tumor growth on adoptive immunotherapy. Furthermore, peptide-primed human lymphocytes derived from healthy and prostate cancer individuals lysed peptide-pulsed T2 cells and HLA-A2.1+ LNCaP cells. Based on the results presented herein, PAP-3 and STEAP-3 are naturally processed CTL epitopes possessing anti-prostate cancer reactivity in vivo and therefore may constitute vaccine candidates to be investigated in clinical trials.  相似文献   

10.
Wen W  Zhang L  Peng J  Chen J  Hao J  Li X  Qian X  Zeng P  Zhang Y  Yin Y 《Cancer science》2011,102(8):1455-1461
The cancer testis antigen HCA587 is an attractive candidate for T cell-based immunotherapy because it is overexpressed in a wide spectrum of malignant tumors but not normal tissues, except testis. Several CTL epitopes derived from HCA587 have been described. Our aim was to identify helper T lymphocyte epitopes of HCA587 for the optimization of T cell-based immunotherapies against HCA587-expressing tumors. Candidate helper T lymphocyte epitopes for HCA587 were predicted using the SYFPEITHI algorithm and were tested for their ability to induce helper T lymphocyte responses by in vitro peptide vaccination of CD4(+) T lymphocytes from healthy individuals and hepatocellular carcinoma patients. Four CD4(+) T-cell epitopes for HCA587 (p43-57, p145-159, p186-200 and p249-263) were identified. Among them, the p43-57 epitope was shown to be naturally processed and presented by HCA587-expressing tumor cells as well as autologous dendritic cells pulsed with whole-protein HCA587. Notably, this epitope behaved as a promiscuous T-cell epitope as it stimulated T cells in the context of more than one HLA class II allele. Thus, p43-57 is the first HCA587-derived major histocompatibility complex class II-restricted epitope to fulfil all prerequisites for use as a peptide vaccine in patients with HCA587-expressing tumors.  相似文献   

11.
PURPOSE: Human T-cell leukemia virus type I (HTLV-I) can cause an adult T-cell leukemia/lymphoma (ATLL). Because ATLL is a life-threatening lymphoproliferative disorder and is resistant to chemotherapy, the establishment and enhancement of T-cell immunity to HTLV-I through the development of therapeutic vaccines could be of value. Thus, the identification of HTLV-I epitopes for both CD8(+) and CD4(+) T cells should facilitate the development of effective vaccines. Although numerous HTLV-I epitopes for CTLs have been identified, few epitopes recognized by CD4(+) helper T cells against this virus have been described. EXPERIMENTAL DESIGN: Synthetic peptides prepared from several regions of the HTLV-I envelope (Env) sequence that were predicted to serve as helper T-cell epitopes were prepared with use of computer-based algorithms and tested for their capacity to trigger in vitro helper T-cell responses using lymphocytes from normal volunteers. RESULTS: The results show that the HTLV-I-Env(317-331), and HTLV-I-Env(384-398)-reactive helper T lymphocytes restricted by HLA-DQw6 and HLA-DR15, respectively, could recognize intact HTLV-I+ T-cell lymphoma cells and, as a consequence, secrete lymphokines. In addition, HTLV-I Env(196-210)-reactive helper T lymphocytes restricted by HLA-DR9 were able to directly kill HTLV-I+ lymphoma cells and recognize naturally processed antigen derived from killed HTLV-I+ lymphoma cells, which was presented to the helper T cells by autologous antigen-presenting cells. CONCLUSIONS: The present findings hold relevance for the design and optimization of T-cell epitope-based immunotherapy against HTLV-I-induced diseases such as ATLL.  相似文献   

12.
PURPOSE: Adult T-cell leukemia/lymphoma induced by human T-cell leukemia virus type 1 (HTLV-1) is usually a fatal lymphoproliferative malignant disease. HTLV-1 Tax protein plays a critical role in HTLV-1-associated leukemogenesis and is an attractive target for vaccine development. Although HTLV-1 Tax is the most dominant antigen for HTLV-1-specific CD8(+) CTLs in HTLV-1-infected individuals, few epitopes recognized by CD4(+) helper T lymphocytes in HTLV-1 Tax protein have been described. The aim of the present study was to study T-helper-cell responses to HTLV-1 Tax and to identify naturally processed MHC class II-restricted epitopes that could be used for vaccine development. EXPERIMENTAL DESIGN: An MHC class II binding peptide algorithm was used to predict potential T-helper cell epitope peptides from HTLV-1 Tax. We assessed the ability of the corresponding peptides to elicit helper T-cell responses by in vitro vaccination of purified CD4(+) T lymphocytes. RESULTS: Peptides Tax(191-205) and Tax(305-319) were effective in inducing T-helper-cell responses. Although Tax(191-205) was restricted by the HLA-DR1 and DR9 alleles, responses to Tax(305-319) were restricted by either DR15 or DQ9. Both these epitopes were found to be naturally processed by HTLV-1(+) T-cell lymphoma cells and by autologous antigen-presenting cells that were pulsed with HTLV-1 Tax(+) tumor lysates. Notably, the two newly identified helper T-cell epitopes are found to lie proximal to known CTL epitopes, which will facilitate the development of prophylactic peptide-based vaccine capable of inducing simultaneous CTL and T-helper responses. CONCLUSION: Our data suggest that HTLV-1 Tax protein could serve as tumor-associated antigen for CD4(+) helper T cells and that the present epitopes might be used for T-cell-based immunotherapy against tumors expressing HTLV-1.  相似文献   

13.
14.
PURPOSE: The product of the carcinoembryonic antigen (CEA) gene is an attractive candidate for T-cell-based immunotherapy because it is frequently expressed in epithelial solid carcinomas. Although many CEA peptide epitopes capable of stimulating CTLs have been identified, no MHC class II-restricted T helper epitope has yet been reported. Experimental Design: The amino acid sequence of CEA was examined for the presence of potential T helper epitopes, and candidate peptides were used to stimulate in vitro T-cell responses. RESULTS: We describe here that using an algorithm to identify promiscuous helper T-cell epitopes, a peptide of CEA occupying residue positions 653 to 667 (CEA(653-667)), was effective in inducing in vitro T helper responses in the context of the HLA-DR4, HLA-DR7, and HLA-DR 9 alleles. Most significantly, some of the peptide-reactive helper T lymphocytes were also capable of recognizing naturally processed antigen in the form of recombinant CEA protein or cell lysates from tumors that express CEA. Interestingly, the newly identified helper T-cell epitope was found to overlap with a previously described HLA-A24-restricted CTL epitope, CEA(652-660), which could facilitate the development of a therapeutic vaccine capable of eliciting both CTL and T helper responses in patients suffering from epithelial carcinomas. CONCLUSION: These results indicate that T helper lymphocytes are capable of recognizing CEA as a tumor antigen and that epitope CEA(653-667) could be used for immunotherapy against tumors expressing CEA.  相似文献   

15.
Wang W  Epler J  Salazar LG  Riddell SR 《Cancer research》2006,66(13):6826-6833
Immunotherapy for breast cancer using cytotoxic T cells (CTL) is hindered by the lack of well-characterized breast cancer antigens that are expressed in most breast tumor cells and recognized by CD8+ CTL. A recently described breast tissue differentiation antigen, NY-BR-1, is expressed in >80% breast tumors and elicits a humoral response in a subset of breast cancer patients. To identify potential NY-BR-1 epitopes that are recognized by CTL, CD8+ T cells were stimulated in vitro with autologous dendritic cells pulsed with NY-BR-1 peptides that were predicted to bind to HLA-A2. In multiple normal female donors and breast cancer patients, specific CD8+ CTL responses were detected by enzyme-linked immunospot assay against several NY-BR-1 peptides after two cycles of stimulation. CD8+ CTL clones against three NY-BR-1 epitopes were isolated and recognized peptide-pulsed target cells with high avidity. T-cell clones specific for one of the NY-BR-1 epitopes (p904) also recognized breast tumor cells expressing NY-BR-1, NY-BR-1(-) cells transfected with a cDNA encoding the NY-BR-1 protein, and autologous dendritic cells pulsed with opsonized NY-BR-1+ breast tumor cells. Taken together, these results show that the p904 epitope derived from NY-BR-1 is efficiently processed and presented endogenously and identify NY-BR-1 as a promising target for T-cell-based immunotherapy for breast cancer.  相似文献   

16.
Lu J  Celis E 《Cancer research》2002,62(20):5807-5812
The development of immunotherapy for cancer, such as synthetic peptide-based vaccines, relies heavily on the identification of appropriate epitopes capable of eliciting antitumor T-cell responses. We have used a combination of computer-based algorithms to predict peptide sequences from prostate-specific membrane antigen (PSMA) capable of stimulating in vitro CTLs restricted by the HLA-A2 MHC molecule. Four of the five peptides that were predicted by these algorithms were capable of inducing antigen-specific CTLs that killed target cells that were pulsed exogenously with the corresponding peptides. However, only one of the four peptides, PSMA(27), induced CTLs that were effective at recognizing prostate tumor cells expressing the HLA-A2 and PSMA molecules. These results underline the importance of demonstrating antitumor reactivity of peptide-induced CTLs for the selection of epitopes destined to become immunotherapeutic for prostate cancer.  相似文献   

17.
Peptide vaccination for cancer immunotherapy requires an ideal immune response induced by epitope peptides derived from tumor-associated antigens (TAA). Heparanase is broadly expressed in various advanced tumors. Accumulating evidence suggests that heparanase can serve as a universal TAA for tumor immunotherapy. However, due to the low immunogenicity of peptide vaccines, an ideal immune response against tumors usually cannot be elicited in patients. To increase the immunogenicity of peptide vaccines, we designed three 4-branched multiple antigenic peptides (MAP) on the basis of the human leukocyte antigen (HLA)-A2-restricted cytotoxic T lymphocyte (CTL) epitopes of human heparanase that we identified previously as antigen carriers. Our results show that MAP vaccines based on the HLA-A2-restricted CLT epitopes of human heparanase were capable of inducing HLA-A2-restricted and heparanase-specific CTL in vitro and in mice. Moreover, compared with their corresponding linear peptides, heparanase MAP vaccines elicited much stronger lysis of tumor cells by activating CD8(+) T lymphocytes and increasing the releasing of IFN-γ. However, these heparanase-specific CTLs did not lyse heparanase-expressing autologous lymphocytes and dendritic cells, which confirm the safety of these MAP vaccines. Therefore, our findings indicate that MAP vaccines based on CTL epitopes of human heparanase can be used as potent immunogens for tumor immunotherapy because of advantages such as broad spectrum, high effectiveness, high specificity, and safety.  相似文献   

18.
Identification of TAAs recognized by CD8(+) CTLs paved the way for new concepts in cancer therapy. In view of the heterogeneity of tumors and their diverse escape mechanisms, CTL-based cancer therapy largely depends on an appropriate number of TAAs. In prostate cancer, the number of antigens defined as suitable targets of CTLs remains rather limited. PSCA is widely distributed in prostate cancer. In this report, we define immunogenic peptides of PSCA which are recognized by circulating CD8(+) T cells from prostate cancer patients and able to activate CTLs in vitro. Screening the amino acid sequence of PSCA for peptides containing a binding motif for HLA-A*0201 resulted in 8 candidate peptides. Specificity and affinity of peptide binding were verified in a competition assay. Frequencies of CD8(+) T lymphocytes reactive against selected epitopes were determined in the blood of prostate cancer patients using the ELISPOT assay. Increased frequencies were revealed for CD8(+) T cells recognizing the peptides ALQPGTALL and AILALLPAL. CTLs from prostate cancer patients were raised against these 2 peptides in vitro when presented by autologous DCs. They specifically recognized peptide-pulsed T2 target cells and prostate cancer cells that were HLA-A*0201- and PSCA-positive, indicating that these peptides were naturally generated by tumor cells. These data suggest that PSCA is a promising target for the immunotherapy of prostate cancer.  相似文献   

19.
Prostate-related antigens, including prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP), can be targets in specific immunotherapy for prostate cancer. In this study, we attempted to newly identify epitope peptides from these 2 antigens, which are immunogenic in human histocompatibility leukocyte antigen (HLA)-A2+ prostate cancer patients. Twenty-nine peptides (PSMA with 15 and PAP with 14) were prepared based on the HLA-A2 binding motif. Based on our previous finding that antigenic peptides recognized by both cellular and humoral immune systems are useful for peptide-based immunotherapy, peptide candidates were screened first by their ability to be recognized by immunoglobulin G (IgG), and then by their ability to induce peptide-specific cytotoxic T lymphocytes (CTLs). As a result, PSMA441-450 and PAP112-120 peptides were found to be frequently recognized by IgG in plasma from prostate cancer patients. These 2 candidates effectively induced HLA-A2-restricted and prostate cancer-reactive CTLs in HLA-A2+ prostate cancer patients with several HLA-A2 subtypes. In addition, their cytotoxicity was mainly dependent on peptide-specific and CD8+ T cells. These results indicate that these PSMA441-450 and PAP112-120 peptides could be promising candidates for peptide-based immunotherapy for HLA-A2(+) prostate cancer.  相似文献   

20.
Failure of immune surveillance has a prominent role in tumorigenesis. Cancerous cells can evade T-cell responses to tumor-associated antigens by multiple mechanisms. Active immunotherapy aims to stimulate the immune response against cancer cells. Unlike normal prostate tissue, prostate cancer is not ignored by the immune system, as shown by the presence of tumor infiltrating lymphocytes. This characteristic renders prostate cancer particularly suitable for immunotherapy. The existence of well-defined antigens, largely limited to prostate tissue, allows prostate cancer cells to be targeted without the risk of systemic autoimmune reactions, as autoimmunity specifically directed at the prostate is the goal of prostate cancer immunotherapy. Active immunotherapy directed towards prostate cancer can be conducted using multiple strategies, involving dendritic cells, whole-cell vaccines, viral vectors, DNA-based and peptide-based agents, as well as immunostimulatory agents. The only FDA-approved immunotherapy for prostate cancer is the dendritic-cell-based agent Sipuleucel-T, which yielded an advantage in overall survival, but not in progression-free survival in a phase III trial. We present the clinical developments in the field of immunotherapy and critically analyze methodological issues related to the evaluation of tumor responses to immunotherapy, trial design, and surrogate end points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号