共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory T cells and Toll-like receptors in tumor immunity 总被引:5,自引:0,他引:5
Regulatory T (Treg) cells induce immune tolerance by suppressing host immune responses against self- or non-self-antigens, thus playing critical roles in preventing autoimmune diseases. However, tumor cells may take advantage of Treg cells to protect themselves from immune attack elicited by vaccines. Recent studies demonstrate the presence of Treg cells in various types of cancers and their suppressive function. Therefore, Treg cells at tumor sites have detrimental effects on immunotherapy directed to cancer and infectious diseases. This review will discuss antigen specificity of Treg cells, the factors that contribute to Treg cell generation and suppressive function, and their regulation through Toll-like receptor signaling. It was generally though that TLR-mediated recognition of specific structures of invading pathogens initiate innate as well as adaptive immune responses through dendritic cells. New evidence suggests that TLR signaling may directly regulate the suppressive function of Treg cells. Linking TLR signaling to the functional control of Treg cells opens intriguing opportunities to shift the balance between CD4(+) T-helper and Treg cells, in ways that may improve the outcome of cancer immunotherapy. 相似文献
2.
Simon AK Jones E Richards H Wright K Betts G Godkin A Screaton G Gallimore A 《European journal of immunology》2007,37(3):758-767
CD4+CD25+ regulatory T cells (Treg) are known to influence T cell responses to tumours. Here we have explored the role of Treg in inhibiting not only adaptive, but also innate immune responses to tumours. To this end we used a Fas ligand (FasL)-expressing melanoma cell line in a mouse model. In this system, innate immunity is sufficient to reject the tumour. All mice depleted of Treg and challenged with FasL-expressing melanoma remained tumour-free. Investigation of the underlying cellular effector mechanisms revealed that depletion of Treg enhanced an NK cell response capable of tumour lysis. Furthermore, this initial innate immune response primed mice to make an effective adaptive immune response leading to complete rejection of challenge with the parental melanoma. Both antigen-specific antibody and CD4+ T cells were implicated in protection via adaptive immunity. We conclude that removal of Treg and vaccination with whole tumour cells expressing FasL activates multiple arms of the immune system, leading to efficient tumour rejection. These findings highlight a novel role for FasL in inducing innate immune responses that are normally inhibited by Treg and uncover an adjuvant effect of FasL that can be used to stimulate tumour immunity after depletion of Treg. 相似文献
3.
4.
Immunoregulatory T cells in tumor immunity 总被引:28,自引:0,他引:28
One mechanism of cancer immune evasion is the suppression of anti-tumor immunity by immunoregulatory T cells. Recent studies of these cells, especially CD4(+)CD25(+) T cells and NKT cells, have revealed molecular and cellular mechanisms of immunosuppression. Mouse studies have shown that either removing immunoregulatory T cells or blocking an immunoregulatory pathway induced by such cells unmasks natural tumor immunosurveillance and improves responses to cancer vaccines. Studies of the corresponding T-cell populations in human cancer patients support a similar role for immunoregulatory T cells in immunosuppression, implying that blocking immunoregulatory T-cell activity might improve the efficacy of tumor vaccines or the immunotherapy of cancer. 相似文献
5.
The function of gammadelta T cells in innate immunity 总被引:4,自引:0,他引:4
Many researchers believe that gammadelta T lymphocytes belong somewhere 'in-between' the innate and adaptive immune systems. Recent studies strongly emphasize the innate features and functions of these cells, including the use of germline elements of the T cell receptor for ligand recognition, segregation into functionally specialized cell populations in correlation with T cell receptor variable gene or protein expression, interactions with cells of the innate system at many levels and, the latest addition, the ability to present antigen. Thus, at present, much evidence suggests that gammadelta T cells function in an innate manner, although they are arguably the most complex and advanced cellular representatives of the innate immune system. 相似文献
6.
7.
Yisong Y Wan 《Cellular & molecular immunology》2010,7(3):204-210
Foxp3-expressing regulatory T cells (Tregs) were originally identified ascritical in maintaining self-tolerance and immune homeostasis. Theimmunosuppressive functions of Tregs are widely acknowledged and have beenextensively studied. Recent studies have revealed many diverse roles of Tregs inshaping the immune system and the inflammatory response. This review willdiscuss our efforts as well as the efforts of others towards understanding themultifaceted function of Tregs in immune regulation. 相似文献
8.
Xiao Wang Huawei Xia Shengde Liu Lili Cao Fuping You 《European journal of immunology》2021,51(7):1641-1651
Emerging life-threatening viruses have posed great challenges to public health. It is now increasingly clear that epigenetics plays a role in shaping host-virus interactions and there is a great need for a more thorough understanding of these intricate interactions through the epigenetic lens, which may represent potential therapeutic opportunities in the clinic. In this review, we highlight the current understanding of the roles of key epigenetic regulators — chromatin remodeling and histone modification — in modulating chromatin openness during host defense against virus. We also discuss how the RNA modification m6A (N6-methyladenosine) affects fundamental aspects of host-virus interactions. We conclude with future directions for uncovering more detailed functions that epigenetic regulation exerts on both host cells and viruses during infection. 相似文献
9.
Xuefang Cao 《Immunologic research》2010,46(1-3):79-93
Immune cells infiltrate tumors and make up a significant component of the multicellular cancer micro-environment, yet the immune system often fails to prevent tumor formation and progression. One explanation for this paradox is the presence of tolerance-promoting regulatory T cells (Tregs) that counteract antitumor immune cells. Tregs were known to be essential for maintaining self-tolerance. Recently, Tregs have been found to promote tolerance to tumors in mouse models. Moreover, Treg infiltration in human tumors and malignant ascites is associated with worse clinical outcomes for various types of cancers. As many reviews have discussed the development and function of Tregs, this review focuses on the cellular and molecular mechanisms by which Tregs influence antitumor immune responses, and also discusses how these mechanisms might be exploited to develop innovative immune-based approaches that can improve cancer therapy. 相似文献
10.
Raz E 《Nature immunology》2007,8(1):3-4
Immune responses to microbial challenge in various tissues are not the same. Organ-specific immune responses are adapted to maintain organ physiology. 相似文献
11.
Th17 T cells: linking innate and adaptive immunity 总被引:2,自引:0,他引:2
While the cytokine IL-17 has been cloned and described more than 10 years ago [Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995;3(6):811-21; Kennedy J, Rossi DL, Zurawski SM, Vega Jr F, Kastelein RA, Wagner JL, et al. Mouse IL-17: a cytokine preferentially expressed by alpha beta TCR+CD4-CD8-T cells. J Interferon Cytokine Res 1996;16(8):611-7], it was only 2 years ago that IL-17 producing T cells have been classified as a new distinct CD4 T cell subset [Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123-32] and only in 2006 the molecular mechanisms underlying their differentiation were identified [Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24(2):179-89; Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-8; Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441(7090):231-4]. Since then the literature on IL-17 producing cells has grown steadily and many reviews of the field are already outdated by the time they are published, a fate that no doubt will affect this review as well. In order to avoid too many repetitions we focus this review mainly on publications in 2006 and 2007 and refer to a number of reviews, which cover earlier aspects of Th17/IL-17 biology. 相似文献
12.
13.
T cell immunity is the key to protective immune responses against tumors. Traditionally, this function has been ascribed to CD8 T lymphocytes with cytotoxic activity, which are restricted by MHC class I molecules. In recent years the realization that CD4 T cells can also play a relevant role in protective anti-tumor responses has received growing attention. Here we will discuss the role of MHC class II-restricted T cells in response to, and in the regulation of, tumor antigens. Emphasis will be placed on four areas: (1) the role of CD4 T cell immunity in tumor protection in animal models and putative mode of action, (2) tumor antigens recognized by human CD4 T cells, (3) the cooperation between two CD4 T cells of different specificity as a new way to jump start the response against sub-immunogenic determinants of tumor antigens in a tolerant environment, and (4) the negative impact of regulatory CD4 T cells on anti-tumor T cell responses. By drawing attention to these four areas, it is our intention to provide the reader with a comprehensive view of issues of contemporary importance for this field, in the expectation that the information will help a better design of therapeutic cancer vaccines. 相似文献
14.
CD4 T cells in tumor immunity 总被引:3,自引:0,他引:3
T cell immunity is the key to protective immune responses against tumors. Traditionally, this function has been ascribed to CD8 T lymphocytes with cytotoxic activity, which are restricted by MHC class I molecules. In recent years the realization that CD4 T cells can also play a relevant role in protective anti-tumor responses has received growing attention. Here we will discuss the role of MHC class II-restricted T cells in response to, and in the regulation of, tumor antigens. Emphasis will be placed on four areas: (1) the role of CD4 T cell immunity in tumor protection in animal models and putative mode of action, (2) tumor antigens recognized by human CD4 T cells, (3) the cooperation between two CD4 T cells of different specificity as a new way to jump start the response against sub-immunogenic determinants of tumor antigens in a tolerant environment, and (4) the negative impact of regulatory CD4 T cells on anti-tumor T cell responses. By drawing attention to these four areas, it is our intention to provide the reader with a comprehensive view of issues of contemporary importance for this field, in the expectation that the information will help a better design of therapeutic cancer vaccines. 相似文献
15.
CD4+CD25+调节性T细胞(CD4+CD25+Tr)是一类具有维持机体自身耐受的T细胞亚群,其分布广泛,且有不同的表型.它们可由胸腺自然产生,也可在外周血中诱导产生.这群细胞具有免疫无能和免疫抑制特性,其抑制作用机制可能是通过细胞间直接接触和/或分泌抑制性细胞因子发挥效应.去除CD4+CD25+Tr或抑制其功能可增强机体抗肿瘤作用,为肿瘤治疗提供了一种可行的免疫治疗方法. 相似文献
16.
Recognition of tumor cells by the innate immune system 总被引:5,自引:0,他引:5
Soloski MJ 《Current opinion in immunology》2001,13(2):154-162
There has been a rapid increase in our understanding of the cellular components of the innate immune system, the receptors used to distinguish changes in homeostasis, and how these components integrate into an anti-tumor effector response. Recently, significant progress has been made in the identification of ligands for receptors that activate NK cells, and the results have implications for the recognition of tumor cells. 相似文献
17.
Mast cells in innate immunity 总被引:8,自引:0,他引:8
Mast cells have been most extensively studied in their traditional role as an early effector cell of allergic disease. However, in the majority of individuals, it might be the role of this cell as a sentinel in host defense that is most important. Mast cells have been repeatedly demonstrated to play a critical role in defense against bacterial infections, and evidence for their involvement in early responses to viral and fungal pathogens is growing. Mast cells are activated during innate immune responses by multiple mechanisms, including well-established responses to complement components. In addition, novel mechanisms have emerged as a result of the explosion of knowledge in our understanding of pattern-recognition receptors. The mast cell shares many features with other innate immune effector cells, such as neutrophils and macrophages. However, a unique role for mast cells is defined not only by their extensive mediator profile but also by their ability to interact with the vasculature, to expedite selective cell recruitment, and to set the stage for an appropriate acquired response. 相似文献
18.
NK cells in innate immunity 总被引:9,自引:0,他引:9
NK cells have an important role in innate immune responses, particularly in anti-viral immunity. Recent studies have revealed a molecular basis for NK cell recognition of virus-infected cells, implicating the activating KIR and Ly49 receptors and NKG2D in this process. Additionally, mutual cooperation between NK cells and dendritic cells suggests that these innate cells can shape the nature of an adaptive immune response. These findings, as well as advances in understanding NK cell development and homeostasis, indicate that NK cell biology is more sophisticated than previously appreciated. 相似文献
19.
Mast cells in innate immunity 总被引:21,自引:0,他引:21
Summary: Mast cells are known to be the main effector cells in the elicitation of the IgE-mediated allergic response. The specific location of mast cells within tissues that interface the external environment, and the extent of their functional capacity, including the ability to phagocytose and to produce and secrete a wide spectrum of mediators, have led investigators to propose a potential role for mast cells in innate immune responses. Certain microorganisms have been found to interact either directly or indirectly with mast cells. This interaction results in mast cell activation and mediator release which elicit an inflammatory response or direct killing leading to bacterial clearance. The in vivo relevance of these in vitro observations has been demonstrated by the use of complement-deficient and/or mast cell-deficient and mast cell-reconstituted mice. It thus has been shown that both C3 and mast cell- and tumor necrosis factor‐a-dependent recruitment of circulating leukocytes with bactericidal properties are crucial to a full response in certain models of acute infection. Modulation of mast cell numbers in vivo was also found to affect the host response against bacterial infection. Thus, mast cells do have a role in innate immunity in defined animal models of bacterial infection. Whether mast cells participate in innate immune responses in the protection of the human host against bacteria remains to be determined. 相似文献
20.
It is now well established that regulatory T (T(R)) cells can inhibit harmful immunopathological responses directed against self or foreign antigens. However, many key aspects of T(R) cell biology remain unresolved, especially with regard to their antigen specificities and the cellular and molecular pathways involved in their development and mechanisms of action. We will review here recent findings in these areas, outline a model for how T(R) cells may inhibit the development of immune pathology and discuss potential therapeutic benefits that may arise from the manipulation of T(R) cell function. 相似文献