首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombospondin-1 is a multifunctional protein interacting with several cell surface receptors including integrins. We found that it is a ligand for alpha9beta1 integrin, and has an integrin binding site within its N-terminal domain (NoC1). Interaction of thrombospondin-1 and its recombinant NoC1 domain with alpha9beta1 integrin was confirmed in ELISA and cell adhesion assays. Binding of NoC1 to cells expressing alpha9beta1 integrin activated signaling proteins such as Erk1/2 and paxillin. Blocking of this integrin by monoclonal antibody and the met-leu-asp-disintegrin inhibited dermal human microvascular endothelial cell proliferation and NoC1-induced migration of these cells. Immunohistochemical studies revealed that alpha9beta1 is expressed on microvascular endothelium in several organs including skin, lung, heart and brain. NoC1 induced neovascularization in an experimental quail chorioallantoic membrane system and Matrigel plug formation assay in mice. This proangiogenic activity of NoC1 in vivo was inhibited by alpha9beta1 inhibitors. In summary, our results revealed that alpha9beta1 integrin expressed on microvascular endothelial cells interacts with thrombospondin-1, and this interaction is involved in modulation of angiogenesis.  相似文献   

2.
Redox signaling plays an important role in the positive regulation of angiogenesis by vascular endothelial growth factor, but its role in signal transduction by angiogenesis inhibitors is less clear. Using muscle explants in 3D culture, we found that explants from mice lacking the angiogenesis inhibitor thrombospondin-1 (TSP1) exhibit exaggerated angiogenic responses to an exogenous NO donor, which could be reversed by providing exogenous TSP1. To define the basis for inhibition by TSP1, we examined the effects of TSP1 on several proangiogenic responses of endothelial cells to NO. NO has a biphasic effect on endothelial cell proliferation. The positive effect at low doses of NO is sensitive to inhibition of cGMP signaling and picomolar concentrations of TSP1. NO stimulates both directed (chemotactic) and random (chemokinetic) motility of endothelial cells in a cGMP-dependent manner. TSP1 potently inhibits chemotaxis stimulated by NO. Low doses of NO also stimulate adhesion of endothelial cells on type I collagen in a cGMP-dependent manner. TSP1 potently inhibits this response both upstream and downstream of cGMP. NO-stimulated endothelial cell responses are inhibited by recombinant type 1 repeats of TSP1 and a CD36 agonist antibody but not by the N-terminal portion of TSP1, suggesting that CD36 or a related receptor mediates these effects. These results demonstrate a potent antagonism between TSP1 and proangiogenic signaling downstream of NO. Further elucidation of this inhibitory signaling pathway may identify new molecular targets to regulate pathological angiogenesis.  相似文献   

3.
OBJECTIVE: Endothelial-derived nitric oxide (NO), by increasing cGMP, is a major physiological regulator of vascular tone and of vascular smooth muscle cell (VSMC) adhesion, chemotaxis, and proliferation. Thrombospondin-1 is a potent antagonist of NO/cGMP signaling in endothelial cells. Because endothelial and VSMC typically exhibit opposing responses to thrombospondin-1, we examined thrombospondin-1 effects on NO signaling in VSMC. METHODS: Effects of exogenous thrombospondin-1 on human VSMC adhesion, chemotaxis, proliferation, and cGMP signaling were examined. Endogenous thrombospondin-1 function was characterized by comparing NO signaling in VSMC from wild type and thrombospondin-1 null mice. RESULTS: Picomolar concentrations of exogenous thrombospondin-1 prevented adhesive, chemotactic, and proliferative responses of human aortic VSMC stimulated by low dose NO. A recombinant CD36-binding domain of thrombospondin-1 or antibody ligation of CD36 similarly inhibited NO-stimulated VSMC responses. Thrombospondin-1 and CD36 ligation inhibited NO responses in VSMC by preventing cGMP accumulation. Thrombospondin-1 null VSMC responses to NO and cGMP signaling were enhanced relative to wild type murine VSMC. CONCLUSIONS: In the presence of NO, thrombospondin-1 is converted from a weak stimulator to a potent inhibitor of VSMC responses. Both exogenous and endogenous thrombospondin-1 inhibit NO signaling in VSMC. This activity is mediated by the type 1 repeats and utilizes the same CD36-dependent cGMP signaling pathway in endothelial and VSMC.  相似文献   

4.
Abair TD  Bulus N  Borza C  Sundaramoorthy M  Zent R  Pozzi A 《Blood》2008,112(8):3242-3254
Integrin alpha1beta1, the major collagen type IV receptor, is expressed by endothelial cells and plays a role in both physiologic and pathologic angiogenesis. Because the molecular mechanisms whereby this collagen IV receptor mediates endothelial cell functions are poorly understood, truncation and point mutants of the integrin alpha1 subunit cytoplasmic tail (amino acids 1137-1151) were generated and expressed into alpha1-null endothelial cells. We show that alpha1-null endothelial cells expressing the alpha1 subunit, which lacks the entire cytoplasmic tail (mutant alpha1-1136) or expresses all the amino acids up to the highly conserved GFFKR motif (mutant alpha1-1143), have a similar phenotype to parental alpha1-null cells. Pro(1144) and Leu(1145) were shown to be necessary for alpha1beta1-mediated endothelial cell proliferation; Lys(1146) for adhesion, migration, and tubulogenesis and Lys(1147) for tubulogenesis. Integrin alpha1beta1-dependent endothelial cell proliferation is primarily mediated by ERK activation, whereas migration and tubulogenesis require both p38 MAPK and PI3K/Akt activation. Thus, distinct amino acids distal to the GFFKR motif of the alpha1 integrin cytoplasmic tail mediate activation of selective downstream signaling pathways and specific endothelial cell functions.  相似文献   

5.
Tumstatin and endostatin are two inhibitors of angiogenesis derived from precursor human collagen molecules known as alpha 3 chain of type IV collagen and alpha1 chain of type XVIII collagen, respectively. Although both these inhibitors are noncollagenous (NC1) domain fragments of collagens, they only share a 14% amino acid homology. In the present study we evaluated the functional receptors, mechanism of action, and intracellular signaling induced by these two collagen-derived inhibitors. Human tumstatin prevents angiogenesis via inhibition of endothelial cell proliferation and promotion of apoptosis with no effect on migration, whereas human endostatin prevents endothelial cell migration with no effect on proliferation. We demonstrate that human tumstatin binds to alpha v beta 3 integrin in a vitronectin/fibronectin/RGD cyclic peptide independent manner, whereas human endostatin competes with fibronectin/RGD cyclic peptide to bind alpha 5 beta 1 integrin. The activity of human tumstatin is mediated by alpha v beta 3 integrin, whereas the activity of human endostatin is mediated by alpha 5 beta 1 integrin. Additionally, although human tumstatin binding to alpha v beta 3 integrin leads to the inhibition of Cap-dependent translation (protein synthesis) mediated by focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathway, human endostatin binding to alpha 5 beta 1 integrin leads to the inhibition of focal adhesion kinase/c-Raf/MEK1/2/p38/ERK1 mitogen-activated protein kinase pathway, with no effect on phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 and Cap-dependent translation. Collectively, such distinct properties of human tumstatin and human endostatin provide the first insight into their diverse antiangiogenic actions and argue for combining them for targeting tumor angiogenesis.  相似文献   

6.
Thromboxane (TX) A2 is released from multiple cell types and is a prime mediator of the pathogenesis of many vascular events, including angiogenesis. Endothelial cells express TXA2 receptors (TP) but the effects of TP stimulation on angiogenesis remain controversial. In this study, we show that stimulation of endothelial cell TP impairs ligand-induced FGF receptor internalization and consequently abrogates FGF-2-induced endothelial cell migration in vitro and angiogenesis in vivo. Prevention of FGF-2-induced angiogenesis was associated with expression of the TPbeta isoform. The deficit in FGFR1 internalization was mediated through activation of TPbeta preventing the FGF-2-mediated decrease in p53 expression, thus enhancing thrombospondin-1 (TSP-1) release from EC and reducing FGFR1 internalization. Once released TSP-1 interacted with the alpha(v)beta3 integrin on the EC surface. On stimulation, FGFR1 and alpha(v)beta3 were found to associate in a complex. We determined that complex formation was important for receptor internalization as conditions that inhibit FGFR1 internalization, such as inappropriate ligation of alpha(v)beta3 by either TSP-1 or a neutralizing antibody, disrupted the complex. These results establish a novel role for isoform specific regulation of angiogenesis by TP, provide the first functional significance for the existence of two TP isoforms in humans, and clarify the mechanism by which TP signaling regulates FGFR1 kinetics and signaling.  相似文献   

7.
Nitric oxide (NO) donors have been shown to stimulate and inhibit the proliferation, migration, and differentiation of endothelial cells in vitro and angiogenesis in vivo. Recently, we have shown distinct thresholds for NO to regulate p53-Ser-15P, phosphorylated extracellular signal-regulated kinase (pERK), and hypoxia inducible factor 1alpha in tumor cells. Because these signaling pathways also promote the growth and survival of endothelial cells, we examined their roles in angiogenic responses of venous endothelial cells and vascular outgrowth of muscle explants elicited by NO. An additional protein involved in the regulation of angiogenesis is thrombospondin-1 (TSP1), a matricellular glycoprotein known to influence adhesion, migration, and proliferation of endothelial cells. Here we demonstrate a triphasic regulation of TSP1 mediated by a slow and prolonged release of NO that depends on ERK phosphorylation. Under conditions of 5% serum, a 24-h exposure of NO donor (0.1-1,000 microM) mediated a triphasic response in the expression of TSP1 protein: decreasing at 0.1 microM, rebounding at 100 microM, and decreasing again at 1,000 microM. Under the same conditions, we observed a dose-dependent increase in P53 phosphorylation and inverse biphasic responses of pERK and mitogen-activated protein kinase phosphatase-1. Both the growth-stimulating activity of low-dose NO for endothelial cells and suppression of TSP1 expression were ERK-dependent. Conversely, exogenous TSP1 suppressed NO-mediated pERK. These results suggest that dose-dependent positive- and negative-feedback loops exist between NO and TSP1. Limiting TSP1 expression by positive feedback through the ERK mitogen-activated protein kinase pathway may facilitate switching to a proangiogenic state at low doses of NO.  相似文献   

8.
Human alpha3 chain, a noncollagenous domain of type IV collagen [alpha3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of alpha3(IV)NC1 to alphaVbeta3 and alpha3beta1 integrins. alpha3(IV)NC1 binds alphaVbeta3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of alpha3beta1 and alphaVbeta3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on alpha3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by alpha3(IV)NC1 in endothelial cells, only alpha3beta1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of alpha3(IV)NC1 to alpha3beta1 integrin leads to inhibition of COX-2-mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IkappaBalpha/NFkappaB axis, and is independent of alphaVbeta3 integrin. Furthermore, beta3 integrin-null endothelial cells, when treated with alpha3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in alpha3 integrin-null endothelial cells, indicating that regulation of COX-2 by alpha3(IV)NC1 is mediated by integrin alpha3beta1. Our in vitro and in vivo findings demonstrate that alpha3beta1 integrin is critical for alpha3(IV)NC1-mediated inhibition of COX-2-dependent angiogenic signaling and inhibition of tumor progression.  相似文献   

9.
Endorepellin, a C-terminal fragment of the vascular basement membrane proteoglycan perlecan, inhibits angiogenesis via the alpha2beta1-integrin receptor. Because this integrin is also implicated in platelet-collagen responses and because endorepellin or its fragments are generated in response to injury and inflammation, we hypothesized that endorepellin could also affect platelet biology. We discovered that endorepellin supported alpha2beta1-dependent platelet adhesion, without appreciably activating or aggregating platelets. Notably, endorepellin enhanced collagen-evoked responses in platelets, in a src kinase-dependent fashion, and enhanced the collagen-inhibitory effect of an alpha2beta1-integrin function-blocking antibody. Collectively, these results suggest that endorepellin/alpha2beta1-integrin interaction and effects are specific and dependent on cell type, differ from those emanated by exposure to collagen, and may be due to cellular differences in alpha2beta1-integrin activation/ligand affinity state. These studies also suggest a heretofore unrecognized role for angiostatic basement membrane fragments in platelet biology.  相似文献   

10.
J Chung  X Q Wang  F P Lindberg  W A Frazier 《Blood》1999,94(2):642-648
Integrin-associated protein (IAP; or CD47) is a receptor for the cell binding domain (CBD) of thrombospondin-1 (TS1). In platelets, IAP associates with and regulates the function of alphaIIbbeta3 integrin (Chung et al, J Biol Chem 272:14740, 1997). We test here the possibility that CD47 may also modulate the function of platelet integrin alpha2beta1, a collagen receptor. The CD47 agonist peptide, 4N1K (KRFYVVMWKK), derived from the CBD, synergizes with soluble collagen in aggregating platelet-rich plasma. 4N1K and intact TS1 also induce the aggregation of washed, unstirred platelets on immobilized collagen with a rapid increase in tyrosine phosphorylation. The effects of TS1 and 4N1K on platelet aggregation are absolutely dependent on IAP, as shown by the use of platelets from IAP-/- mice. Prostaglandin E1 (PGE1) prevents 4N1K-dependent aggregation on immobilized collagen but does not inhibit the 4N1K peptide stimulation of alpha2beta1-dependent platelet spreading. Finally, a detergent-stable, physical association of IAP and alpha2beta1 integrin is detected by coimmunoprecipitation. These results imply a role for IAP and TS1 in the early activation of platelets upon adhesion to collagen.  相似文献   

11.
R Chiba  N Nakagawa  K Kurasawa  Y Tanaka  Y Saito  I Iwamoto 《Blood》1999,94(4):1319-1329
We determined the role of the heterophilic interaction of alphavbeta3 integrin on endothelial cells with CD31 on leukocytes in mediating leukocyte-endothelial cell interactions. Preincubation of interleukin-4 (IL-4)-stimulated human umbilical vein endothelial cells (HUVECs) with anti-CD31 monoclonal antibodies (MoAbs) enhanced eosinophil adhesion to the IL-4-stimulated HUVECs, and the endothelial CD31-induced enhancement of eosinophil adhesion to IL-4-stimulated HUVECs was prevented by anti-vascular cell adhesion molecule-1 (VCAM-1) MoAb and anti-very late activation antigen-4 (VLA-4) MoAb, but not by anti-intercellular adhesion molecule-1 (ICAM-1) MoAb, anti-lymphocyte function-associated antigen-1 (LFA-1) MoAb, anti-P-selectin MoAb, or anti-E-selectin MoAb. CD31 stimulation of HUVECs increased the adhesive function of alphavbeta3 integrin to its ligand RGD peptide, the binding of which reached a maximum at 10 minutes after the stimulation, and the CD31-induced alphavbeta3 integrin activation on HUVECs was inhibited by inhibitors of protein kinase C and phosphatidylinositol 3 kinase (PI3-kinase). Furthermore, anti-alphavbeta3 integrin MoAb and RGD peptide as well as soluble CD31 inhibited endothelial CD31-induced enhancement of eosinophil adhesion to IL-4-stimulated HUVECs. However, anti-alphavbeta3 integrin MoAb had no significant inhibitory effect on the eosinophil adhesion to IL-4-stimulated or unstimulated HUVECs without CD31 stimulation of HUVECs. Finally, CD31 stimulation of eosinophils increased the adhesive function of alpha4beta1 integrin (VLA-4) to its ligand fibronectin and their adhesion to IL-4-stimulated HUVECs in a VLA-4-dependent manner. These results indicate that CD31-mediated inside-out signaling activates alphavbeta3 integrin on endothelial cells, that the heterophilic alphavbeta3 integrin/CD31 interaction induces beta1 integrin-mediated adhesion of eosinophils to endothelial cells, and that the heterophilic interaction itself is not significantly involved in firm adhesion of eosinophils to endothelial cells.  相似文献   

12.
The alpha4 laminin subunit is a component of the basement membrane of blood vessels where it codistributes with the integrins alphavbeta3, alpha3beta1, and alpha6beta1. An antibody against the G domain (residues 919-1207; G(919-1207)) of the alpha4 laminin subunit inhibits angiogenesis in a mouse-human chimeric model, indicating the functional importance of this domain. Additional support for the latter derives from the ability of recombinant G(919-1207) to support endothelial cell adhesion. In particular, endothelial cell adhesion to G(919-1207) is half-maximal at 1.4 nM, whereas residues 919-1018 and 1016-1207 of the G domain are poor cellular ligands. Function blocking antibodies against integrins alphavbeta3 and beta1 and a combination of antibodies against alpha3 and alpha6 integrin subunits inhibit endothelial cell attachment to G(919-1207). Moreover, both alphavbeta3 and alpha3beta1 integrin bind with high affinity to G(919-1207). Together, our studies demonstrate that the G domain of laminin alpha4 chain is a specific, high affinity ligand for the alphavbeta3 and alpha3beta1 integrin heterodimers and that these integrins, together with alpha6beta1, function cooperatively to mediate endothelial cell-alpha4 laminin interaction and hence blood vessel development. We propose a model based on these data that reconcile apparent discrepancies in the recent literature with regard to the role of the alphavbeta3 integrin in angiogenesis.  相似文献   

13.
Boyce JA  Mellor EA  Perkins B  Lim YC  Luscinskas FW 《Blood》2002,99(8):2890-2896
Mast cells (MCs) are central to asthma and other allergic diseases, and for responses to infection and tissue injuries. MCs arise from committed progenitors (PrMCs) that migrate from the circulation to tissues by incompletely characterized mechanisms, and differentiate in situ in perivascular connective tissues of multiple organs. PrMCs derived in vitro from human cord blood were examined for adhesion molecule expression and their ability to adhere to human umbilical vein endothelial cells (HUVECs) under conditions that mimic physiologic shear flow. The PrMCs expressed alpha(4)beta(1), low levels of beta7, and the beta2-integrins alphaLbeta2 and alphaMbeta2. The PrMCs also expressed PSGL-1, but not L-selectin. At low (0.5 dynes/cm(2)-1.0 dynes/cm(2)) shear stress, PrMCs attached and rolled on recombinant E-selectin and P-selectin and VCAM-1. An anti-PSGL-1 monoclonal antibody (mAb) blocked essentially all adhesion to P-selectin but reduced adhesion to E-selectin by only 40%, suggesting PrMCs express other ligands for E-selectin. PrMCs adhered strongly to tumor necrosis factor-alpha (TNF-alpha)-activated HUVECs, whereas adhesion to interleukin 4 (IL-4)-activated HUVECs was lower. PrMC adhesion to IL-4-activated HUVECs was totally alpha4-integrin- and VCAM-1-dependent. Adhesion to TNF-alpha-activated HUVECs was blocked by 50% by mAbs against alpha4-integrin, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or PSGL-1, whereas combinations of mAbs to alpha4-integrin plus PSGL-1, or VCAM-1 plus E-selectin, blocked adhesion by greater than 70%. Thus, PrMCs derived in vitro predominantly use alpha4-integrin, VCAM-1, PSGL-1, and other ligands that bind E-selectin for adhesion to cytokine-activated HUVEC monolayers. These observations may explain the abundance of MCs at sites of mucosal inflammation, where VCAM-1 and E-selectin are important inducible receptors.  相似文献   

14.
Kovach  NL; Lin  N; Yednock  T; Harlan  JM; Broudy  VC 《Blood》1995,85(1):159-167
Interactions between hematopoietic cells and bone marrow (BM) stroma, composed of extracellular matrix and stromal cells, are crucial for hematopoiesis. Integrins facilitate these interactions by mediating adherence of hematopoiesis. Integrins facilitate these interactions by mediating adherence of hematopoietic cells to both the extracellular matrix and stromal cells. Marrow stromal cells secrete a variety of growth factors, including stem cell factor (SCF). Because treatment with SCF in vivo mobilizes primitive hematopoietic cells from the BM, we investigated the effect of the growth factor SCF of hematopoietic cell adhesion. These studies show that SCF modulates adhesive function in a dose- and time-dependent manner, but does not modulate expression of the integrins alpha 4 beta 1 and alpha 5 beta 1 in the SCF- responsive cell line MO7E. Treatment of MO7E cells with SCF (200 ng/mL) produced a transient increase in adherence to cytokine-activated human umbilical vein endothelial cells (HUVECs) or to vascular cell adhesion molecule 1 (VCAM-1)-transfected Chinese hamster ovary (CHO) cells with peak adhesion at 30 minutes and return to baseline by 60 to 90 minutes. This increase in adhesion was paralleled by increased binding of the beta 1 activation-dependent monoclonal antibody (MoAb) 15/7, as determined by flow cytometry. However, prolonged incubation of MO7E with SCF induced a marked decrease in integrin-mediated adherence, with maximal inhibition by 24 hours. No change in expression of integrins, as determined by flow cytometry, was observed with short- or long-term incubation with SCF. SCF-treated cells were still able to respond to phorbol esters and to the activating beta 1 MoAb 8A2 with increased adherence, but not to the level seen in control cells. This suggests that a subpopulation of expressed alpha 4 beta 1 and alpha 5 beta 1 integrins is disengaged by prolonged incubation with SCF.  相似文献   

15.
O'Brien CD  Lim P  Sun J  Albelda SM 《Blood》2003,101(7):2816-2825
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a tyrosine phosphoprotein highly expressed on endothelial cells and leukocytes, is an important component in the regulation of neutrophil transendothelial migration. Engagement of endothelial PECAM-1 activates tyrosine phosphorylation events and evokes prolonged calcium transients, while homophilic engagement of neutrophil PECAM-1 activates leukocyte beta-integrins. Although PECAM-1 modulates polymorphoneutrophil transmigration via homophilic PECAM-1-PECAM-1 interaction, the mechanisms underlying endothelial PECAM-1 function are unknown. Proposed mechanisms include (1) formation of a haptotactic gradient that "guides" neutrophils to the cell-cell border, (2) service as a "passive ligand" for neutrophil PECAM-1, ultimately mediating activation of neutrophil beta integrins, (3) regulation of endothelial calcium influx, and (4) mediation of SH2 protein association, and/or (5) catenin and non-SH2 protein interaction. Utilizing PECAM-1-null "model" endothelial cells (REN cells), we developed a neutrophil transmigration system to study PECAM-1 mutations that specifically disrupt PECAM-1-dependent signaling and/or PECAM-1 cell localization. We report that interleukin-1 beta (IL-1 beta) elicits PECAM-1-dependent transmigration that requires homophilic PECAM-PECAM-1 engagement, but not heterophilic neutrophil PECAM-1 interactions, and is intercellular adhesion molecule-1 dependent. Conversely, whereas IL-8 and leukotriene-B(4)-mediated transmigration is PECAM-1-independent, PECAM-1 and IL-8-dependent transmigration represent separable and additive components of cytokine-induced transmigration. Surprisingly, neither monolayer PECAM-1-regulated calcium signaling, cell border localization, nor the PECAM-1 cytoplasmic domain was required for monolayer PECAM-1 regulation of neutrophil transmigration. We conclude that monolayer (endothelial cell) PECAM-1 functions as a passive homophilic ligand for neutrophil PECAM-1, which after engagement leads to neutrophil signal transduction, integrin activation, and ultimately transmigration in a stimulus-specific manner.  相似文献   

16.
Nitric oxide (NO) has been implicated as a mediator of angiogenesis. However, its precise role in angiogenesis and its mechanism of action have not been established. We performed in vivo and in vitro angiogenesis assays using NO donor S-nitroso-N-acetylpenicillamine (SNAP) and NO synthase inhibitor N-iminoethyl-l-ornithine (L-NIO). SNAP significantly increased and L-NIO significantly suppressed capillary ingrowth into subcutaneously implanted Matrigel plugs in mice. For the in vitro angiogenesis assay, human umbilical vein endothelial cells (HUVECs) (4 x 10(4) cells/well) were treated with placebo, SNAP (100 microM), or L-NIO (100 microM) and cultured on Matrigel for 18 h. The typical capillary networks formed on Matrigel by HUVECs as a result of cell migration and differentiation were quantified by computer-assisted image analysis as a measure of angiogenesis. Treatment of HUVECs with SNAP significantly increased the capillary network area compared with control, 8701 +/- 693 vs 6258 +/- 622 area units (P < 0.05), whereas L-NIO significantly decreased the capillary area (4540 +/- 342, P < 0.05). Furthermore, we have shown with a blocking monoclonal antibody that formation of capillary networks on Matrigel is mediated by the functional expression of the alpha(v)beta(3) integrin, which plays a role in facilitating endothelial cell adhesion to basement membrane matrix and endothelial cell migration. After an 18-h culture, flow cytometry revealed that SNAP significantly upregulated and L-NIO significantly downregulated in a concentration-dependent manner alpha(v)beta(3) integrin expression on endothelial cells. In conclusion, NO induces angiogenesis in vivo and in vitro by promoting endothelial cell migration and differentiation into capillaries. One possible mechanism might involve the upregulation of alpha(v)beta(3) integrin on endothelial cells, a critical mediator of cell-matrix adhesion and migration.  相似文献   

17.
We have generated a monoclonal antibody (mAb), 9EG7, against mouse endothelial cells that blocks adhesion of lymphocytes to endothelial cells. Sequencing of four tryptic peptides of the purified antigen revealed its identity with the integrin chain beta 1. The only beta 1 integrin that is known to mediate cell-cell adhesion is alpha 4 beta 1 (VLA-4). This is not the integrin that is functionally defined by the mAb 9EG7 on endothelial cells. First, alpha 4 is not present on the analyzed endothelial cells. Second, mAb 9EG7 does not block the cell-adhesion function of alpha 4 beta 1 on the nonactivated mouse lymphoma L1-2. Thus, the mAb 9EG7 can functionally distinguish between different beta 1 integrins and defines a beta 1 integrin other than alpha 4 beta 1 as a newly discovered cell-cell adhesion molecule. This integrin is most likely alpha 6 beta 1, since an antibody against the alpha 6 chain blocks lymphocyte adhesion to the same degree as the mAb 9EG7, the effect of both antibodies is not additive, and the alpha 6 chain is coprecipitated with beta 1 in 9EG7 immunoprecipitations. Surprisingly, activation of alpha 4 beta 1 on L1-2 cells with phorbol ester or Mn2+ allows blocking of alpha 4 beta 1-mediated adhesion of L1-2 cells to endothelial cells with mAb 9EG7. Furthermore, only the activated alpha 4 beta 1 heterodimer, but not the unactivated complex, is detectable with 9EG7 in immunoprecipitations and by flow cytometry. Thus, mAb 9EG7 defines an epitope on integrin chain beta 1, which is accessible on the alpha 4 beta 1 heterodimer only after activation of this integrin.  相似文献   

18.
Katayama Y  Hidalgo A  Peired A  Frenette PS 《Blood》2004,104(7):2020-2026
Previous studies have shown that alpha4beta1 (very late activation antigen-4 [VLA-4]) and vascular cell adhesion molecule-1 (VCAM-1) play a major role in hematopoietic progenitor cell (HPC) homing to bone marrow (BM). However, the antibody used to block VLA-4 function in the mouse (hybridoma clone PS/2) is not specific to VLA-4 but inhibits both alpha4beta1 and alpha4beta7 integrins. Here we have evaluated the contribution of alpha4beta7 in HPC homing to BM. Lineage(neg)Sca-1(pos)c-kit(pos) cells from adult mouse BM and the factor-dependent cell progenitor (FDCP)-mix progenitor cell line express similar levels of alpha4beta7 by flow cytometry. The alpha4beta7 complex was functional since the chemokine CXCL12 enhanced the adhesion of FDCP-mix to immobilized mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and this was completely abrogated by anti-alpha4beta7 (hybridoma clone DATK32) or anti-alpha4 integrins (PS/2). BM intravital microscopy revealed that alpha4beta7 plays a predominant role in initial tethering and rolling but not in firm adhesion of FDCP-mix cells. Using homing assays, we demonstrate that alpha4beta7 on HPCs contributes to about half of all alpha4 integrin-mediated homing activity following BM transplantation. MAdCAM-1 is likely expressed since its inhibition significantly reduced HPC homing. Although there may be other alpha4beta7 integrin ligands involved (eg, fibronectin and VCAM-1), these data thus suggest that alpha4beta7 and its counterreceptor MAdCAM-1 represent a novel adhesion pathway mediating HPC homing to BM.  相似文献   

19.
OBJECTIVE: To investigate the role of oncostatin M (OSM) in cell adhesion, angiogenesis, and matrix degradation in rheumatoid arthritis (RA) synovial tissue and normal human cartilage. METHODS: Human dermal microvascular endothelial cell (HDMEC) and RA synovial fibroblast (RASF) proliferation and intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression were assessed by a bromodeoxyuridine proliferation assay and flow cytometry. HDMEC tubule formation and migration were assessed by Matrigel culture and migration assay. Production of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases 1 (TIMP-1) in RA synovial explants, and proteoglycan/glycosaminoglycan (GAG) release, vascular endothelial growth factor (VEGF), and angiopoietin 2 production from RASF/normal cartilage cocultures were assessed by enzyme-linked immunosorbent assay and immunohistology. RESULTS: HDMEC/RASF proliferation was induced by OSM and interleukin-1beta (IL-1beta), alone and in combination. OSM enhanced cell surface expression of ICAM-1, but not VCAM-1, on endothelial cells and RASFs. OSM increased endothelial cell tubule formation and migration. In RA synovial explants, OSM induced production of MMP-1 and TIMP-1. When OSM was combined with IL-1beta, however, the MMP-1:TIMP-1 ratio was significantly increased. OSM potentiated IL-1beta-induced MMP-1 and MMP-13 expression in normal human cartilage/RASF cocultures, resulting in a significant increase in the MMP:TIMP ratio. In OSM/IL-1beta- stimulated cocultures, cartilage sections demonstrated significant proteoglycan depletion that was paralleled by a significant increase in GAG release in supernatants. Finally, compared with either cytokine alone, the combination of OSM and IL-1beta significantly induced VEGF production in RASF/cartilage cocultures. CONCLUSION: These data suggest that OSM promotes angiogenesis and endothelial cell migration and potentiates the effects of IL-1beta in promoting extracellular matrix turnover and human cartilage degradation. Furthermore, the induction of VEGF in cocultures supports the hypothesis of a link between angiogenesis and cartilage degradation.  相似文献   

20.
Cysteine-rich 61 (CYR61, CCN1) is a heparin-binding, extracellular, matrix-associated protein of the cysteine-rich 61/nephroblastoma family, which also includes connective tissue growth factor, nephroblastoma overexpressed, Wnt-induced secreted protein-1 (WISP-1), WISP-2, and WISP-3. CYR61 induces angiogenesis in vivo and supports cell adhesion, promotes cell migration, and enhances growth factor-stimulated mitogenesis in fibroblasts and endothelial cells. Although the expression of CYR61 has been observed in arterial walls, its function in vascular smooth muscle cells (VSMCs) has not been examined to date. Here we show that purified CYR61 supports VSMC adhesion in a dose-dependent, saturable manner through integrin alpha(6)beta(1) with an absolute requirement of cell surface heparan sulfate proteoglycans. In addition, CYR61 induces VSMC chemotaxis, but not chemokinesis, through integrin alpha(6)beta(1) and heparan sulfate proteoglycans. Heparin-binding defective CYR61 mutants are unable to support VSMC adhesion but can still induce chemotaxis at a reduced level. Following balloon angioplasty in rat carotid artery, CYR61 protein level is elevated in the media and neointima of the injured vessel by d 4 post angioplasty, peaks from d 7 to 14, and remains high for at least 28 d. These data demonstrate the activities of CYR61 in VSMCs, identify the receptors that mediate its functions, and show that CYR61 is synthesized in arterial smooth muscle walls during proliferative restenosis. Together, these results implicate CYR61 as a novel factor that modulates the responses of VSMCs to vascular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号