首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The present work was planned to study the effects of changes in lipid metabolism irrespective of FFA concentrations (FFA) on the regulation of oxidative and nonoxidative disposal of a glucose infusion during hyperinsulinaemia. Fifteen normal volunteers participated in the 3 protocols, in which 1) Intralipid 2) beta-pyridylcarbinol or 3) isotonic saline were infused during 2 hours. Thereafter, these infusions were discontinued and a two-hour euglycaemic hyperinsulinaemic clamp was performed. All three studies were carried out in combination with indirect calorimetry to measure glucose uptake, and oxidative and nonoxidative glucose disposal (corresponding essentially to glucose storage). Plasma FFA concentrations were 508 +/- 34, 601 +/- 43 and 546 +/- 45 mumol/l in the basal state during the Intralipid, beta-pyridylcarbinol and control protocols. It increased to 960 +/- 71 mumol/l after the Intralipid infusion, fell to 246 +/- 17 mumol/l after the beta-pyridylcarbinol infusion, vs 600 +/- 48 mumol/l in the control. At the end of the glucose-insulin clamp the values were low in the 3 protocols: 263 +/- 17, 233 +/- 19 and 204 +/- 14 mumol/l. Intralipid infusion prior to the clamp protocol induced a suppression of both insulin-mediated glucose uptake (4.91 +/- 0.46 (Intralipid) vs 6.83 +/- 0.63 mg.kg-1.min-1 (saline)) and storage (1.61 +/- 0.34 vs 2.99 +/- 0.53 mg.kg-1.min-1) while beta-pyridylcarbinol infusion induced an increased insulin-mediated glucose uptake (8.58 +/- 0.37 mg.kg-1.min-1) and in glucose storage (4.29 +/- 0.31 mg.kg-1.min-1) (p less than 0.5 vs Intralipid). These changes occurred even though FFA plasma concentrations were similar in the 3 experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Using the euglycemic clamp technique, we investigated the effects of high ketone body levels on basal and insulin-stimulated glucose utilization in normal subjects. Infusion of sodium acetoacetate in the postabsorptive state raised ketone body levels from 150 +/- 20 (+/- SE) mumol/liter to more than 1 mmol/liter. Endogenous glucose production declined from 2.71 +/- 0.20 mg kg-1 min-1 to 1.75 + 0.26 (P less than 0.01) and glucose utilization from 2.71 +/- 0.20 to 1.98 +/- 0.17 mg kg-1 min-1 (P less than 0.01), while blood glucose was maintained at the initial level by the infusion of glucose. There were no changes in plasma glucagon, insulin, or C-peptide. Plasma nonesterified fatty acids (P less than 0.01) and blood glycerol (P less than 0.01) and alanine (P less than 0.05) decreased, while blood lactate increased (P less than 0.01). Infusion of sodium bicarbonate had no effect on glucose kinetics. The decreases in glucose utilization and endogenous glucose production during the infusion of acetoacetate were not modified when the fall of plasma nonesterified fatty acids was prevented by iv heparin injection. During control euglycemic hyperinsulinemic clamps (1 and 10 mU kg-1 min-1 insulin infusion), endogenous glucose production was suppressed at the lowest insulin infusion rate; glucose utilization increased first to 7.32 +/- 0.96 mg kg-1 min-1 and then to 16.5 +/- 1.27 mg kg-1 min-1. During euglycemic hyperinsulinemic clamps with simultaneous sodium acetoacetate infusion, similar insulin levels were attained; endogenous glucose production was also suppressed at the lowest insulin infusion rate, and insulin-stimulated glucose utilization rates (7.93 +/- 1.70 and 15.80 +/- 1.30 mg kg-1 min-1) were not modified. In conclusion, acetoacetate infusion decreased basal, but not insulin-stimulated, glucose utilization. The increase in lactate during acetoacetate infusion in the postabsorptive state suggests that ketone body acted by decreasing pyruvate oxidation.  相似文献   

3.
Decreased glucose oxidation during short-term starvation   总被引:3,自引:0,他引:3  
Prolonged fasting (for days or weeks) decreases glucose production and oxidation. The effects of short-term starvation (ie, less than 24 hours) on glucose metabolism are not known. To evaluate this issue, glucose oxidation and glucose turnover were measured after 16-hour and subsequently after 22-hour fasting. Glucose oxidation was calculated by indirect calorimetry in 12 healthy men (age 22 to 44 years); glucose turnover was measured by primed, continuous infusion of 3-3H-glucose in eight of these 12 volunteers. After 16-hour fasting net glucose oxidation was 0.59 +/- 0.17 mg x kg-1 x min-1 and glucose tissue uptake 2.34 +/- 0.12 mg x kg-1 x min-1. No correlation was found between net glucose oxidation and glucose tissue uptake. Prolonging fasting with an additional 6 hours resulted in decreases of respiratory quotient (0.77 +/- 0.01 v 0.72 +/- 0.01) (P less than .005), plasma glucose concentration (4.7 +/- 0.1 v 4.6 +/- 0.1 mmol/L) (P less than .05), glucose tissue uptake (2.10 +/- 0.12 mg x kg-1 x min-1) (P less than .05), net glucose oxidation (0.09 +/- 0.04 mg x kg-1 x min-1) (P less than .005), and plasma insulin concentration (8 +/- 1 v6 +/- 1 mU/L) (P less than .005). Net glucose oxidation expressed as a percentage of glucose tissue uptake decreased from 22% +/- 8% to 2% +/- 1% (P less than .05). There was no net glucose oxidation in seven of 12 controls after 22-hour fasting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A recent report suggested that the glucose-free fatty acid (FFA) cycle may contribute to steroid-induced insulin resistance in rats, and that glucose tolerance could be restored to normal when FFA levels were lowered with nicotinic acid. To test this hypothesis in man, we measured insulin sensitivity (by euglycemic insulin clamp in combination with indirect calorimetry and infusion of tritiated glucose) before and after short-term administration of a nicotinic-acid derivative (Acipimox) in 10 steroid-treated, kidney transplant patients with insulin resistance. Thirty-five healthy subjects served as controls. Six of them received Acipimox. Total body glucose metabolism was reduced in steroid-treated patients compared with control subjects (41.7 +/- 3.3 v 50.0 +/- 2.2 mumol/kg lean body mass [LBM].min, P less than .05). The reduction in insulin-stimulated glucose uptake was mainly due to an impairment in nonoxidative glucose metabolism (primarily glucose storage as glycogen) (18.3 +/- 2.8 v 27.2 +/- 2.2 mumol/kg LBM.min, P less than .01). Acipimox lowered basal FFA concentrations (from 672 +/- 63 to 114 +/- 11 mumol/L, P less than .05) and the rate of lipid oxidation measured in the basal state (1.5 +/- 0.2 to 0.6 +/- 0.1 mumol/kg LBM.min, P less than .01) and during the clamp (0.7 +/- 0.2 to 0.03 +/- 0.2 mumol/kg LBM.min, P less than .05). In addition, Acipimox administration normalized total glucose disposal (to 54.4 +/- 4.4 mumol/kg LBM.min), mainly due to enhanced nonoxidative glucose metabolism (to 28.9 +/- 3.9 mumol/kg LBM.min) in steroid-treated patients (both P less than .05 v before Acipimox).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
To evaluate the in vivo effect of hyperglycemia per se on plasma free fatty acid (FFA) and glycerol concentrations, euglycemic and hyperglycemic clamp studies were performed in six overnight fasted dogs in the state of insulin deficiency produced by somatostatin (SRIF) infusion. The mean blood glucose concentrations during the steady-state (the second hour of each study) averaged 4.65 +/- 0.10 mmol/L in euglycemic clamp and 14.11 +/- 0.10 mmol/L in hyperglycemic clamp. During the SRIF infusion, plasma FFA concentrations increased from 0.32 +/- 0.05 mumol/mL at the basal state to 0.76 +/- 0.04 mumol/mL at the steady-state in euglycemic clamp and from 0.26 +/- 0.04 mumol/mL to 0.43 +/- 0.02 mumol/mL in hyperglycemic clamp. Plasma glycerol concentrations increased from the basal value of 0.07 +/- 0.01 mumol/mL to 0.15 +/- 0.01 mumol/mL during the steady-state in euglycemic clamp and from 0.06 +/- 0.01 mumol/mL to 0.08 +/- 0.01 mumol/mL in hyperglycemic clamp. The steady-state concentrations of plasma FFA and glycerol in hyperglycemic clamp were significantly lower than those in euglycemic clamp (P less than .001; respectively). These results suggest that hyperglycemia per se might decrease plasma FFA and glycerol concentrations at least in part by decreasing lipolysis in the acutely insulin-deficient dog.  相似文献   

6.
To elucidate the short-term actions of growth hormone on insulin sensitivity and forearm metabolism, we have studied six normal male subjects receiving a 6-h hyperinsulinaemic euglycemic clamp with and without a concomitant 4-h growth hormone infusion. When infused, serum growth hormone rose to 25 +/- 4 mU/l and during administration of insulin serum insulin increased by 11 +/- 1 mU/l. During euglycemic clamp, administration of growth hormone decreased forearm glucose uptake after 180 min and onward (240 min 0.216 +/- 0.031 vs 0.530 +/- 0.090 mg/100 ml/min, p less than 0.05). Glucose infusion rate (240 min 2.83 +/- 0.24 vs 4.35 +/- 0.28 mg.kg-1.min-1, p less than 0.05) and glucose disposal rate (240 min 3.57 +/- 0.17 vs 4.00 +/- 0.15 mg.kg-1.min-1, p less than 0.05) also decreased. Growth hormone persistently increased hepatic glucose production after 120 min. After 210 min, all circulating lipid intermediates increased slightly. The decrease in forearm glucose uptake and glucose infusion rate and the increase in hepatic glucose production was observed before there was any detectable increase in circulating levels and forearm uptake of lipid intermediates. These data suggest that growth hormone induces insensitivity to insulin in liver, muscle and fat after 120, 180 and 210 min respectively. The early effects of growth hormone on glucose metabolism seems independent of changes in the rate of lipolysis.  相似文献   

7.
Peripheral insulin resistance is a feature of essential hypertension, but there is little information about hepatic insulin sensitivity. To investigate peripheral and hepatic insulin sensitivity and activity of the hepatic glucose/glucose 6-phosphate (G/G6P) substrate cycle in essential hypertension, euglycemic glucose clamps were performed in eight untreated patients and eight matched controls at insulin infusion rates of 0.2 and 1.0 mU.kg-1.min-1. A simultaneous infusion of (2(3)H)- and (6(3)H)glucose, combined with a selective detritiation procedure, was used to determine glucose turnover, the difference being G/G6P cycle activity. Endogenous hepatic glucose production (EGP) determined with (6(3)H)glucose was similar in hypertensive and control groups in the postabsorptive state (11.0 +/- 0.3 v 10.9 +/- 0.3 mumol.kg-1.min-1) and with the 0.2 mU insulin infusion (4.9 +/- 0.5 v 4.0 +/- 0.8 mumol.kg-1.min-1). With the 1.0 mU insulin infusion, glucose disappearance determined with (6(3)H)glucose was lower in the hypertensive group (21.8 +/- 2.4 v 29.9 +/- 2.4 mumol.kg-1.min-1, P less than .001). G/G6P cycle activity was similar both in the postabsorptive state (2.2 +/- 0.4 v 2.7 +/- 0.4 mumol.kg-1.min-1) and during insulin infusion (0.2 mU, 2.5 +/- 0.3 v 2.9 +/- 0.4; 1.0 mU, 4.7 +/- 0.3 v 5.3 +/- 1.1 mumol.kg-1.min-1 for hypertensive and control groups, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Previous work has indicated that 40-50% of glucose intake is oxidized in normal humans with protein-sparing effect. In contrast, the catabolic stressed patient is hyperglycaemic with decreased glucose oxidation and protein wasting. This study evaluated whether the plasma glucose concentration alone would be a reliable indicator of efficient glucose utilization and protein sparing in the critically ill septic cancer patients receiving glucose infusions. Glucose turnover, glucose concentration, nitrogen excretion, oxygen consumption, and glucose oxidation were measured in 8 septic cancer-bearing patients during a glucose infusion of 4.0 mg/kg/min followed by the infusion of insulin with the same glucose load. During glucose infusion without insulin the glucose concentration was 11.8 +/- 1.4 mmol/l, glucose oxidation 10 +/- 5% of glucose tissue uptake, and nitrogen excretion 9.0 +/- 1.3 mg/kg/h. During the euglycaemic clamp the glucose concentration was 3.8 +/- 0.2 mmol/l, glucose oxidation increased to 45 +/- 6% of glucose tissue uptake (p < 0.001), and nitrogen excretion dropped to 6.8 +/- 1.2 mg/kg/h (p < 0.001). The glucose concentration was greater than 10 mmol/l in 4 patients and between 6.9 and 9.3 mmol/l in 4 patients after glucose infusion alone. Despite this difference in initial glucose concentration, normalization of plasma glucose to less than 5 mmol/l with insulin resulted in the same decrease in nitrogen excretion and improvement in glucose oxidation. We conclude that, independent of the initial glucose concentration, maintenance of euglycaemia with insulin appears to be a good indicator of efficient glucose utilization and protein sparing in septic cancer-bearing patients receiving glucose as the primary mode of nutritional support.  相似文献   

9.
Effect of somatostatin-induced insulinopenia on glucose oxidation in man   总被引:4,自引:0,他引:4  
Felber  J. P.  Thiébaud  D.  Maeder  E.  Jéquier  E.  Hendler  R.  DeFronzo  R. A. 《Diabetologia》1983,25(4):325-330
In the basal state the body utilizes glucose at a rate of 2.2 - 2.3 mg.kg-1.min-1; of this approximately 1.2 - 1.3 mg.kg-1.min-1 is oxidized, while the remaining 1.0 mg.kg-1.min-1 must be utilized by non-oxidative pathways. Little information is, however, available concerning the insulin dependency of these processes. To examine the role of basal insulin levels on glucose oxidation, glucose storage and total body glucose uptake, somatostatin (10 microgram/min) was infused for 2 h in nine volunteers while maintaining plasma glucose concentration constant at basal levels by an exogenous glucose infusion. Basal plasma insulin fell by about 50% (13 +/- 2 to 7 +/- 1 mU/l, p less than 0.01). Total body glucose metabolism (3H-3-glucose) declined from 2.3 +/- 0.1 to 1.9 +/- 0.1 mg.kg-1.min-1 (p less than 0.01). This decrease was entirely accounted for by a fall in basal glucose oxidation (measured by indirect calorimetry) from 1.3 +/- 0.1 to 0.7 +/- 0.1 mg.kg-1.min-1 (p less than 0.001). To assess the specific role of insulin deficiency in the decline in glucose oxidation, subjects were restudied with somatostatin plus basal insulin replacement (0.07 mg.kg-1.min-1). Fasting insulin concentration (14 +/- 1 mU/l) remained constant during somatostatin plus insulin infusion (13 +/- 1 mU/l) and basal rates of glucose oxidation (1.2 +/- 0.1 mg.kg-1.min-1) and total body glucose uptake did not change significantly. After 2 h, the basal insulin infusion was stopped and somatostatin was continued. Over the subsequent hour, glucose oxidation declined by 0.4 +/- 0.1 mg.kg-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of [6,6-2H]glucose and [U-13C]glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We tested whether FFAs influence glucose uptake by human peripheral tissues in vivo. Whole body glucose uptake, FFA turnover, energy expenditure and substrate oxidation rates, forearm glucose and FFA uptake, and nonoxidative glycolysis (net release of alanine and lactate) were measured in 14 normal male subjects in the basal state (0-240 min; serum insulin, approximately 5 microU/mL) and during euglycemic hyperinsulinemia (240-360 min; approximately 75 microU/mL) on 2 separate occasions, once during elevation of plasma FFA by infusions of Intralipid and heparin (plasma FFA, 4.6 +/- 0.1 vs. 4.2 +/- 0.4 mmol/L; 180-240 vs. 300-360 min) and once during infusion of saline (plasma FFA, 0.50 +/- 0.07 vs. 0.02 +/- 0.07 mmol/L, respectively). In the basal state, whole body glucose disposal remained unchanged, but the fate of glucose was significantly altered toward diminished oxidation (7.3 +/- 0.8 vs. 5.6 +/- 0.5 mumol/kg.min; P less than 0.05, saline vs. Intralipid) and increased nonoxidative glycolysis (P less than 0.05). Elevation of plasma FFA significantly increased forearm glucose uptake (1.0 +/- 0.6 vs. 2.4 +/- 0.7 mumol/kg.min; P less than 0.01) and nonoxidative glycolysis (net release of alanine and lactate, 0.4 +/- 0.5 vs. 1.2 +/- 0.4 mumol glucose equivalents/kg.min; P less than 0.05). During hyperinsulinemia, FFA decreased whole body glucose disposal (38 +/- 2 vs. 30 +/- 3 mumol/kg.min; P less than 0.001) due to a decrease in glucose oxidation (13 +/- 1 vs. 7 +/- 1 mumol/kg.min; P less than 0.01, saline vs. Intralipid), and forearm glucose uptake (31 +/- 4 vs. 24 +/- 6 mumol/kg.min; P less than 0.01, saline vs. Intralipid). Under these conditions, 7 +/- 2% and 3 +/- 1% (P less than 0.05) of forearm glucose uptake could be accounted for by nonoxidative glycolysis in the Intralipid and saline studies, respectively. In summary, 1) elevation of plasma FFA concentrations suppresses the rate of carbohydrate oxidation to a rate that, both basally and during hyperinsulinemia, is similar to that reported for insulin-independent glucose oxidation in the brain; 2) basally, forearm glucose uptake is increased by FFA; and 3) during hyperinsulinemia, FFA inhibit glucose uptake by forearm tissues. We conclude that the interaction between glucose and FFA fuels in human forearm tissues is dependent upon the ambient insulin concentration; the increase in basal glucose uptake would be compatible with the increase need of glucose for FFA reesterification; the decrease in insulin-stimulated glucose uptake supports operation of the glucose-FFA cycle in human forearm tissues.  相似文献   

12.
Insulin-stimulated glucose disposal was investigated using the euglycemic hyperinsulinemic glucose clamp technique in six women with anorexia nervosa (27.3 +/- 4.9 yr old; weight, 38.8 +/- 6.6 kg) and compared to results obtained in six normal women (22.6 +/- 1.2 yr old; weight, 58 +/- 2.5 kg) and seven obese women (26.8 +/- 7.7 yr old; weight, 92.5 +/- 13.8 kg). The glucose clamp was performed for 2 h using the Biostator and a continuous insulin infusion of 100 mU kg-1 h-1. Plasma levels of insulin were determined at 30-min intervals. Plasma levels of glucagon, FFA, glycerol, 3-hydroxy-butyrate, and alanine were measured basally. Blood glucose levels were similar in normal subjects and anorectic patients; they were slightly but significantly higher in the obese patients. The indices of insulin sensitivity measured were the MCR of glucose and the ratio of glucose infused to insulin infused (G/I). They were very similar in anorectic subjects [MCR, 13.5 +/- 2.4 (+/- SEM) ml kg-1 min-1; G/I, 5.2 +/- 0.9 mg/mU) and normal subjects (MCR, 13.5 +/- 1.7 ml kg-1 min-1; G/I, 5.2 +/- 0.4 mg/mU), but were significantly reduced in obese patients (MCR, 5.1 +/- 0.8 ml kg-1 min-1; G/I, 2.6 +/- 0.3 mg/mU; P less than 0.0025). Differences in plasma insulin among the three groups were not statistically significant. Plasma alanine levels were higher in anorectic than in normal or obese subjects, suggesting defective gluconeogenesis. Thus, insulin-stimulated glucose disposal is normal in patients with anorexia nervosa, a finding that contrasts with the previously reported increase in erythrocyte insulin receptors in this disease.  相似文献   

13.
To determine whether the anti-insulin effect of epinephrine is due to a direct antagonism on target tissues or is mediated by indirect mechanisms (systemic substrate and/or hormone changes), insulin and epinephrine were infused intrabrachially in five normal volunteers using the forearm perfusion technique. Insulin (2.5 mU/min) was infused alone for 90 minutes and in combination with epinephrine (25 ng/min) for an additional 90 minutes, so as to increase the local concentrations of these hormones to physiological levels (60 to 75 microU/mL and 200 to 250 pg/mL for insulin and epinephrine, respectively). Systemic plasma glucose and free fatty acids (FFA) concentrations remained stable at their basal values during local hormone infusion. Forearm glucose uptake (FGU) increased in response to insulin alone from 0.8 +/- 0.2 mg.L-1.min-1 to 4.3 +/- 0.8. Addition of epinephrine completely abolished the insulin effect on FGU, which returned to its preinfusion value (0.7 +/- 0.2). Forearm lactate release was slightly increased by insulin alone, but rose markedly on addition of epinephrine (from 5.2 +/- 0.8 mumol.L-1.min-1 to 17 +/- 2; P less than .02). During infusion of insulin alone, forearm FFA release (FFR) decreased significantly from the postabsorptive value of 1.76 +/- 0.25 mumol.L-1.min-1 to 1.05 +/- 0.11 (P less than .01). Epinephrine addition reverted insulin suppression of FFR, which returned to values slightly above baseline (2.06 +/- 0.47 mumol.L-1.min-1; P less than .05 v insulin alone). The data demonstrate that epinephrine is able to antagonize directly insulin action on forearm tissues with respect to both stimulation of glucose uptake and inhibition of FFA mobilization.  相似文献   

14.
Resistance to the metabolic effects of insulin has been reported with regard to glucose disposal in type I diabetic patients (IDDM) even when they were euglycemic. Our aim was to study glucose, lipid, and amino acid metabolism during glucose clamping at multiple levels of insulin in 10 normal (N) and 6 IDDM patients. Blood glucose was maintained constant (4.7 mmol/liter) at three insulin plateaus (160 min each) [42 +/- 6 (SD) 89 +/- 11, and 1255 +/- 185 microU/ml in N and 36 +/- 4, 80 +/- 13, and 1249 +/- 107 microU/liter in IDDM]. Mean glucose disposal was 34 +/- 11, 69 +/- 10, and 84 +/- 22 mumol kg-1 min-1 in N and 16 +/- 5, 40 +/- 18, and 65 +/- 27 in IDDM, respectively. Baseline concentrations of blood lactate, pyruvate, alanine, and branched chain amino acids were 560 +/- 130, 36 +/- 9, 212 +/- 44, and 451 +/- 19 mumol/liter, in N and 793 +/- 179 (P less than 0.05), 45 +/- 14, 195 +/- 50, and 439 +/- 33 in IDDM, respectively. The maximum percent change of lactate during the euglycemic clamp was +147 +/- 23% in N and +75 +/- 15% (P less than 0.05) in IDDM; that of branched chain amino acids was -61 +/- 5% in N and -48 +/- 7% (P less than 0.01) in IDDM. Baseline concentrations of glycerol, FFA, and adipate were 44 +/- 15, 449 +/- 152, and 8 - 8 mumol/liter in N and 39 +/- 14, 473 +/- 44, and 41 +/- 14 (P less than 0.01) in IDDM. The maximum percent change of glycerol during the euglycemic clamp was -50 +/- 8% in N and -16 +/- 8% (P less than 0.01) in IDDM, that of FFA -98 +/- 3% in N and -70 +/- 4% in IDDM (P less than 0.05). No significant differences were found between N and IDDM with regard to blood concentrations of ketone bodies, citrate, ketoglutarate, and hydroxymethylglutaryl coenzyme A both before and during the euglycemic clamp. The lactate percent increase was significantly correlated to glucose disposal rate (P less than 0.001). The lactate turnover rate increased during the euglycemic clamp and was lower in IDDM than in N. We conclude that during euglycemic-multiple insulin clamp studies the greater lactate increase suggests that the flux of glycolysis is higher in N than in IDDM, tricarboxylic acid concentrations are comparable in N and IDDM, and FFA, glycerol, and branched chain amino acid decreases were less in IDDM than in N, suggesting that IDDM patients are resistant to insulin with regard to lipid and protein metabolism. The higher adipate basal values demonstrate enhanced omega-oxidation in IDDM.  相似文献   

15.
Methyl palmoxirate (MP) is a member of a class of hypoglycemic agents that inhibit fatty acid oxidation in vitro. The studies presented here were undertaken to determine the effects of intravenous (IV) MP on tracer-determined rates of fatty acid oxidation and systemic adipose tissue lipolysis in dogs. MP (40 mg/kg) was administered IV to five mongrel dogs using a primed continuous infusion of [1-14C]palmitate to determine palmitate kinetics. Palmitate concentration and rate of appearance decreased rapidly (from 155 +/- 25 to 47 +/- 6 mumol/L and 2.9 +/- 0.5 to 0.9 +/- 0.2 mumol.kg-1.min-1, respectively, at 15 minutes, both P less than .05). Palmitate oxidation also decreased, from 1.5 +/- 0.4 to 0.3 +/- 0.1 mumol.kg-1.min-1, P less than .05. Oxidative clearance decreased by approximately 50% 90 minutes after MP administration (P less than .05). Fractional oxidation of palmitate also decreased by approximately 40% (P less than .05). Plasma insulin increased from 45 +/- 6 to 240 +/- 93 pmol/L at 15 minutes (P less than .05). Plasma glucose decreased over the course of study by approximately 20% (P less than .05). In summary, MP has a specific inhibitory effect on plasma free fatty acid (FFA) oxidation in dogs, confirming previous in vitro observations in an in vivo model. In addition, it has a potent antilipolytic effect when administered IV, an effect likely mediated by stimulation of insulin secretion. The observation that systemic FFA oxidation was only partially suppressed at this relatively high dose of MP is consistent with previous studies suggesting that MP may exert its major effect in the liver, and may be less potent in extrahepatic tissues.  相似文献   

16.
To test whether clinically stable human immunodeficiency virus (HIV) infection, like other infections, is associated with insulin resistance and increased insulin clearance, we measured the sensitivity to insulin and insulin clearance using the euglycemic insulin clamp technique in 10 clinically stable outpatients with symptomatic HIV infection (Centers for Disease Control [CDC] group IV) and 10 healthy controls. During administration of 0.8 and 4 mU insulin.kg-1.min-1, HIV-infected men had 40% (P less than .02) and 83% (P less than .01) higher rates of insulin clearance when compared with healthy controls. Despite significantly lower steady-state insulin concentrations (42 +/- 2 v 52 +/- 4 microU/mL, P less than .05, and 255 +/- 17 v 392 +/- 14 microU/mL, P less than .001, patients v controls), patients and controls had similar total glucose uptake (7.99 +/- 0.81 v 7.92 +/- 0.44 mg.kg-1.min-1 and 14.00 +/- 0.81 v 13.65 +/- 0.65 mg.kg-1.min-1, patients v controls). In the postabsorptive state, no differences were found between patients and controls in insulin levels (7 +/- 1 microU/mL in both) and endogenous glucose production (2.52 +/- 0.07 and 2.24 +/- 0.17 mg.kg-1.min-1, respectively), but plasma glucose levels in the patients (5.02 +/- 0.15 mmol/L) were significantly lower when compared with controls (5.46 +/- 0.14 mmol/L, P less than .05). The results indicate that HIV-infected men have increased rates of insulin clearance and increased sensitivity of peripheral tissues to insulin, which makes HIV infection unique with regard to glucose and insulin metabolism.  相似文献   

17.
To evaluate the impact of ACE-inhibitors on insulin-mediated glucose uptake, glucose-induced glucose uptake, and hepatic glucose production, a sequential glucose clamp was performed in eight normotensive Type 1 diabetic patients after 3 weeks of enalapril therapy 20 mg day-1 and during control conditions. The experiments were carried out in random order. Mean arterial blood pressure was significantly reduced during ACE-inhibition (95 +/- 3 (+/- SE) vs 84 +/- 3 mmHg; p less than 0.02), while blood glucose control as assessed by HbA1c was unaltered (7.9 +/- 0.5 vs 7.6 +/- 0.5%). The night prior to the study normoglycaemia was maintained by a Biostator. A two-step hyperinsulinaemic euglycaemic clamp (insulin infusion rate 0.3 and 0.8 mU kg-1 min-1) was followed by a hyperinsulinaemic and hyperglycaemic clamp (insulin infusion rate 0.8 mU kg-1 min-1, plasma glucose 11 mmol l-1). Insulin concentrations were comparable with and without enalapril treatment. During the hyperinsulinaemic clamps isotopically determined glucose disposal was unchanged (low dose 2.5 +/- 0.3, high dose 4.3 +/- 0.7 vs 2.6 +/- 0.3 and 4.3 +/- 0.7 mg kg-1 min-1, enalapril vs control). Glucose-induced glucose disposal (9.2 +/- 1.2 vs 9.1 +/- 1.2 mg kg-1 min-1) was also similar, as were non-protein respiratory exchange ratios (indirect calorimetry). Glucose production was not changed by enalapril. In conclusion, treatment with enalapril has no significant effect on glucose metabolism in Type 1 diabetes.  相似文献   

18.
The effect of hyperglycaemia per se on glucose utilization and glucose production was evaluated in 12 patients with insulin-dependent diabetes and in 9 non-diabetic control subjects. In diabetic patients normoglycaemia was maintained during the night preceding the study by a variable intravenous insulin infusion. During the study endogenous insulin secretion was suppressed by somatostatin (300 micrograms h-1) and replaced by infusion of insulin (0.2 mU kg-1 min-1). Glucose utilization and hepatic glucose production rates were quantified at two plasma glucose concentrations (6.7 and 16.7 mmol l-1) using the two-step sequential hyperglycaemic clamp technique in combination with 3-3H-glucose tracer infusion. Duration of each step was 120 min. In diabetic patients glucose utilization, at a glucose concentration of 6.7 mmol l-1, was not different from normal (mean +/- SE: 2.9 +/- 0.2 vs 3.6 +/- 0.3 mg kg-1 min-1, 0.05 less than p less than 0.10), but the response to marked hyperglycaemia was significantly reduced (5.4 +/- 0.5 vs 9.4 +/- 1.0 mg kg-1 min-1, p less than 0.01). Hepatic glucose production was also normal at 6.7 mmol l-1 (1.4 +/- 0.1 vs 1.4 +/- 0.1 mg kg-1 min-1, NS), but whereas in control subjects glucose production was suppressed during hyperglycaemia of 16.7 mmol l-1 (0.3 +/- 0.4 mg kg-1 min-1, p less than 0.01), a slight increase was observed in diabetic patients (2.0 +/- 0.2 mg kg-1 min-1, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We studied insulin action at submaximal and maximal insulin levels in seven newly diagnosed type I (insulin-dependent) diabetic patients after 2 weeks (t1/2) and after 3 months (t3) of insulin treatment, and in seven control subjects. Insulin action was determined with a sequential euglycemic (5.0 mmol/L) glucose clamp technique using insulin infusion rates of 0.5, 1.0, 2.0, and 5.0 mU.kg-1.min-1 in four periods of two hours each. The final 30 minutes of each infusion period (referred to as steady-state) were taken for the assessment of insulin action. Steady-state insulin levels were similar in the diabetic patients at t1/2 and t3, and in control subjects. During the first and second infusion periods, steady-state glucose infusion rates (SSGIR) were lower at t1/2 than at t3 (12.2 +/- 1.7 v 18.8 +/- 2.4, P less than .05, and 34.3 +/- 3.8 v 47.6 +/- 2.5 mumol.kg-1.min-1, P less than .02, respectively), and were lower at t1/2 compared to controls (12.2 +/- 1.7 v 22.4 +/- 2.3, P less than .01, and 34.3 +/- 3.8 v 47.3 +/- 2.8 mumol.kg-1.min-1, P less than .02). No differences were found during the third and fourth infusion periods between t1/2 and t3, or t1/2 and controls. When these data were used to construct dose-response curves, insulin action was decreased in the diabetic patients at t1/2 at submaximal insulin levels (shift to the right), while insulin responsiveness was unchanged. This finding may be regarded as a still-present manifestation of the metabolic derangement at the onset of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The hepatic vein catheterization technique was used to quantitate the splanchnic uptake and the metabolic effects of biosynthetic human insulin (BHI) and porcine insulin (PI) in normal man. BHI and PI were infused into a peripheral vein (0.9-1.3 mU kg-1 min-1) for 60 min together with SRIH (0.6 mg/h) to inhibit endogenous insulin secretion and glucose to induce moderate hyperglycemia (9-10 mmol/liter). During the infusion period, arterial-hepatic venous difference of plasma C-peptide as well as splanchnic C-peptide output fell by more than 98% indicating virtually complete cessation of endogenous insulin release. Under these conditions, the arterial-hepatic venous differences in plasma insulin concentrations represent a valid and direct measurement of splanchnic insulin uptake. During BHI infusion, arterial insulin levels rose to 82 +/- 11 (SE) microU/ml (range: 33-105 microU/ml). Splanchnic insulin uptake paralleled the rise of arterial insulin, reaching 430 +/- 72 microU kg-1 min-1 at 60 min. No appreciable difference between BHI and PI was demonstrable. A highly significant correlation between arterial insulin concentrations and splanchnic insulin uptake was found (r = 0.816; P less than 0.001). Accordingly, both fractional splanchnic insulin extraction and splanchnic insulin clearance remained unchanged throughout insulin infusion and averaged 70 +/- 4% and 5.3 +/- 2 ml kg-1 min-1, respectively. With BHI infusion, splanchnic glucose balance (-8.5 +/- 0.9 mumol kg-1 min-1, basal) became positive (7.3 +/- 1 mumol kg-1 min-1). In contrast, basal splanchnic lactate uptake was inhibited by BHI and there was lactate production (from 3.4 +/- 0.9 to -1.7 +/- 1.4 mumol kg-1 min-1). Similar changes in splanchnic glucose and lactate metabolism occurred during PI infusion. These studies indicate that: 1) A considerable amount of insulin (70 +/- 4%) is extracted by the splanchnic bed on a single passage, after exogenous administration of either human insulin or PI; 2) over a physiological range of insulin concentrations (33-105 microU/ml) a linear relationship exists between arterial insulin concentrations and splanchnic insulin removal; and 3) BHI and PI do not differ appreciably with respect to their uptake and metabolic effects at the splanchnic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号