首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several neuropathologic analyses postulate that Alzheimer disease (AD) in the oldest-old is associated with substantial neurofibrillary tangle (NFT) formation in the CA fields of the hippocampus and neuronal loss confined to the entorhinal cortex. All of these studies have measured densities, rather than absolute numbers, and most do not take into account the potential interaction between the above pathological hallmarks in a global multivariate analysis. We present here a stereologic analysis of AD-related pathology in 12 oldest-old individuals including a complete assessment of total NFT, neuron numbers and amyloid volume in entorhinal cortex, CA fields, and dentate gyrus. The progression of NFT numbers and amyloid volume across the different Clinical Dementia Rating (CDR) groups was significantly slower in these cases compared to previously reported younger cases. Although patients with mild and moderate dementia showed significantly lower mean neuron numbers compared to CDR 0-0.5 cases, there was a marked overlap in individual values among CDR groups. A modest proportion of the variability in CDR scores was explained by NFT numbers in the CA2 field (18.1%) and the dentate gyrus (17.3%). In contrast, neither Nissl-stained neuron numbers nor total amyloid volume in the areas studied significantly predicted cognitive status. These data indicate that the occurrence and progression of AD-related pathologic changes are not an unavoidable consequence of aging. They also suggest that dementia in extreme aging depends more on the damage of hippocampal subdivisions commonly less affected than on severe NFT formation and neuronal loss in the CA1 field and entorhinal cortex.  相似文献   

2.
Although neuropil threads are thought to account for 85–90% of cortical tau pathology in brain ageing, their clinical significance remains controversial. Previous studies have measured densities, rather than absolute numbers, and most did not take into account possible interactions among the pathological hallmarks of Alzheimer's disease (AD). We report here stereological estimates of total neurofibrillary tangle (NFT) and neuron numbers as well as total amyloid volume and neuropil thread (NT) length, in the hippocampus and entorhinal cortex of 19 very old individuals (age range: 83–101 years) with various degrees of cognitive decline. Total NT length in all areas studied increased in mildly demented cases but showed a marked decrease in Clinical Dementia Rating (CDR) scale 3 cases. Both total NFT and neuron numbers were related to NT length in the CA1 field and entorhinal cortex. A strong positive relationship was also present between the total NFT numbers in the entorhinal cortex and NT length in the CA1 field and dentate gyrus. Total NT length in the CA1 field was related to both CDR scores and presence or absence of dementia explaining 7% and 37% of their variability respectively. In multivariate models, this relationship was highly dependent on the severity of NFT formation in this area. Our data reveal that NT formation in hippocampal subdivisions and entorhinal cortex accompanies AD neuronal pathology in early stages of the degenerative process, yet its rate may decrease in severe dementia. In terms of clinicopathological correlations, NT length in the hippocampal formation does not represent an independent marker of dementia severity.  相似文献   

3.
The presence of microvascular changes has been documented both in brain aging and Alzheimer disease (AD), although the relationship between the morphometry of brain capillaries and cognitive impairment is still unknown. We performed an analysis of capillary morphometric parameters and AD-related pathology in 19 elderly individuals with variable degrees of cognitive decline. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale. Total capillary lengths and numbers as well as mean length-weighted diameter, total neurofibrillary tangle (NFT) and neuron numbers, and amyloid volume were estimated in entorhinal cortex and the CA1 field. Total capillary numbers and mean diameters explained almost 40% of the neuron number variability in both the CA1 and entorhinal cortex. Total capillary length and numbers in the CA1 and entorhinal cortex did not predict cognitive status. Mean capillary diameters in the CA1 and entorhinal cortex were significantly related to CDR scores, explaining 18.5% and 31.1% of the cognitive variability, respectively. This relationship persisted after controlling for NFT and neuron numbers in multivariate regression models. Consistent with the growing interest about microvascular pathology in brain aging, the present data indicate that changes in capillary morphometric parameters may represent independent predictors of AD-related neuronal depletion and cognitive decline.  相似文献   

4.
The entorhinal cortex and hippocampus are the first cortical regions to be affected by the degenerative cellular process that leads to Alzheimer disease (AD) and display a limited degree of neuronal alterations in normal aging. Several quantitative studies have reported a substantial loss of neurons in these regions and a parallel increase in the number of neurofibrillary tangles (NFTs). However, accurate quantitative data on the dynamics of NFT formation are lacking. Here, we performed a stereologic assessment of the proportions of intracellular and extracellular (ghost) NFTs (iNFTs and eNFTs, respectively) and unaffected neurons in layer II of the entorhinal cortex and in the pyramidal cell layer of the CA1 field of the hippocampus in elderly control cases compared to cases with varying degrees of cognitive dysfunction. The data revealed differential rates of formation of iNFTs and eNFTs between the 2 regions and confirmed the presence of a severe disease-associated, but not age-related, neuronal loss. They also revealed that large numbers of neurons may persist either unaffected or in a transitional stage of NFT formation until the late stages of AD progression. These neurons with viability potential constitute 73% of the total numbers of profiles in layer II of the entorhinal cortex and 77% in the CA1 field in cases with a Clinical Dementia Rating score of 3. Whereas it is not possible in the present study to assess how functional such neurons with altered physiology might be, it is nonetheless likely that these transitional neurons open new options for potential therapeutic interventions aimed at protecting neurons vulnerable to neurofibrillary degeneration.  相似文献   

5.
BACKGROUND: The relationship between neuropathological lesions and mild, "preclinical," cognitive impairments of Alzheimer disease is poorly understood. Identification of the lesions that are most closely associated with the earliest symptoms of Alzheimer disease is crucial to the understanding of the disease process and the development of treatment strategies to affect its progression. DESIGN AND MAIN OUTCOME MEASURES: We examined the extent of neurofibrillary tangles (NFTs) in 4 neocortical regions, the hippocampus, the entorhinal cortex, and the amygdala in 65 elderly subjects with no dementia, questionable dementia, mild dementia, or moderate dementia as assessed using the Clinical Dementia Rating Scale (CDR). SETTING AND PATIENTS: Postmortem study of nursing home residents. RESULTS: Neurofibrillary tangles were present in the entorhinal cortex and the hippocampus of all subjects, including those without cognitive deficits. Neocortical NFTs were mostly absent in the nondemented (CDR score, 0.0) subjects. The density of NFTs in the questionably demented (CDR score, 0.5) subjects was not significantly increased (P>.20) relative to the nondemented group in any of the brain regions studied. Significant increases (P<.04) in NFT density become apparent first in the amygdala and the temporal cortex in subjects rated to be mildly impaired (CDR score, 1.0). By the time that cognitive impairments were judged to be moderately severe (CDR score, 2.0), all regions of the brain examined, except for the occipital cortex, were significantly (P<.05) involved. CONCLUSIONS: Some NFTs are present in the entorhinal cortex and hippocampus of most elderly individuals irrespective of their cognitive status, but the density of NFTs increases as a function of dementia severity.  相似文献   

6.
MRI measures of entorhinal cortex vs hippocampus in preclinical AD   总被引:24,自引:0,他引:24  
BACKGROUND: MRI measures of the entorhinal cortex and the hippocampus have been used to predict which nondemented individuals with memory problems will progress to meet criteria for AD on follow-up, but their relative accuracy remains controversial. OBJECTIVES: To compare MRI measures of the entorhinal cortex and the hippocampus for predicting who will develop AD. METHODS: MRI volumes of the entorhinal cortex and the hippocampus were obtained in 137 individuals comprising four groups: 1) individuals with normal cognition both at baseline and after 3 years of follow-up (n = 28), 2) subjects with memory difficulty but not dementia both at baseline and after 3 years of follow-up (n = 73), 3) subjects with memory difficulty at baseline who were diagnosed with probable AD within 3 years of follow-up (n = 21), and 4) patients with mild AD at baseline (n = 16). RESULTS: Measures of both the entorhinal cortex and the hippocampus were different for each of the pairwise comparisons between the groups (p < 0.001) and were correlated with tests of memory (p < 0.01). However, the volume of the entorhinal cortex differentiated the subjects from those destined to develop dementia with considerable accuracy (84%), whereas the measure of the hippocampus did not. CONCLUSION: These findings are consistent with neuropathologic data showing substantial involvement of the entorhinal cortex in the preclinical phase of AD and suggest that, as the disease spreads, atrophic change develops within the hippocampus, which is measurable on MRI.  相似文献   

7.
Past dogma asserted that extensive loss of cortical neurons accompanies normal aging. However, recent stereologic studies in humans, monkeys, and rodents have found little evidence of age-related neuronal loss in several cortical regions, including the neocortex and hippocampus. Yet to date, a complete investigation of age-related neuronal loss or size change has not been undertaken in the entorhinal cortex, a retrohippocampal structure essential for learning and memory. The aged rhesus macaque monkey (Macaca mulatta), a species that develops beta-amyloid plaques and exhibits cognitive deficits with age, is considered the best commonly available model of aging in humans. In the present study, we examined changes in total neuron number and size in layers II, III, and V/VI of the intermediate division of the entorhinal cortex in aged vs. nonaged rhesus monkeys by using unbiased stereologic methods. Total neuron number was conserved in aged primates when compared with nonaged adults in entorhinal cortex layer II (aged = 56,500 +/- 12,100, nonaged adult = 48,500 +/- 10,900; P = 0.37), layer III (aged = 205, 600 +/- 50,700, nonaged adult = 187,600 +/- 60,300; P = 0.66), and layers V/VI (aged = 246,400 +/- 76,700, nonaged adult = 236,800 +/- 69,600; P = 0.87). In each of the layers examined, neuronal area and volume were also conserved with aging. This lack of morphologically evident neurodegeneration in primate entorhinal cortex with aging further supports the concept that fundamental differences exist between the processes of normal "healthy" aging and pathologic age-related neurodegenerative disorders such as Alzheimer's disease.  相似文献   

8.
Autobiographical memory (AM) is part of declarative memory and includes both semantic and episodic aspects. AM deficits are among the major complaints of patients with Alzheimer's disease (AD) even in early or preclinical stages. Previous MRI studies in AD patients have showed that deficits in semantic and episodic AM are associated with hippocampal alterations. However, the question which specific hippocampal subfields and adjacent extrahippocampal structures contribute to deficits of AM in individuals with mild cognitive impairment (MCI) and AD patients has not been investigated so far. Hundred and seven participants (38 AD patients, 38 MCI individuals and 31 healthy controls [HC]) underwent MRI at 3 Tesla. AM was assessed with a semi‐structured interview (E‐AGI). FreeSurfer 5.3 was used for hippocampal parcellation. Semantic and episodic AM scores were related to the volume of 5 hippocampal subfields and cortical thickness in the parahippocampal and entorhinal cortex. Both semantic and episodic AM deficits were associated with bilateral hippocampal alterations. These associations referred mainly to CA1, CA2‐3, presubiculum, and subiculum atrophy. Episodic, but not semantic AM loss was associated with cortical thickness reduction of the bilateral parahippocampal and enthorinal cortex. In MCI individuals, episodic, but not semantic AM deficits were associated with alterations of the CA1, presubiculum and subiculum. Our findings support the crucial role of CA1, presubiculum, and subiculum in episodic memory. The present results implicate that in MCI individuals, semantic and episodic AM deficits are subserved by distinct neuronal systems.  相似文献   

9.
Layer II of the entorhinal cortex contains the cells of origin for the perforant path, plays a critical role in memory processing, and consistently degenerates in end-stage Alzheimer's disease. The extent to which neuron loss in layer II of entorhinal cortex is related to mild cognitive impairment without dementia has not been extensively investigated. We analyzed 29 participants who came to autopsy from our ongoing longitudinal study of aging and dementia composed of religious clergy (Religious Orders Study). All individuals underwent detailed clinical evaluation within 12 months of death and were categorized as having no cognitive impairment (n = 8), mild cognitive impairment (n = 10), or mild or moderate Alzheimer's disease (n = 11). Sections through the entorhinal cortex were immunoreacted with an antibody directed against a neuron-specific nuclear protein (NeuN). Stereological counts of NeuN-immunoreactive stellate cells, their volume, and the volume of layer II entorhinal cortex were estimated. Cases exhibiting no cognitive impairment averaged 639,625 +/- 184,600 layer II stellate neurons in the right entorhinal cortex. Individuals with mild cognitive impairment (63.5%; p < 0.0003) and mild or moderate Alzheimer's disease (46.06%; p < 0.0017) displayed significant losses of layer II entorhinal cortex neurons relative to those with no cognitive impairment but not relative to each other (p > 0.33). There was also significant atrophy of layer II entorhinal cortex neurons in individuals with mild cognitive impairment (24.1%) and Alzheimer's disease (25.1%). The volume of layer II was also reduced in individuals with mild cognitive impairment (26.5%), with a further reduction in those with Alzheimer's disease (46.4%). The loss and atrophy of layer II entorhinal cortex neurons significantly correlated with performance on clinical tests of declarative memory. Atrophy of layer II entorhinal cortex and the neurons within this layer significantly correlated with performance on the Mini Mental Status Examination. These data indicate that atrophy and loss of layer II entorhinal cortex neurons occur in elderly subjects with mild cognitive impairment prior to the onset of dementia and suggests that these changes are not exacerbated in early Alzheimer's disease.  相似文献   

10.
BACKGROUND: It has been reported that nonsteroidal anti-inflammatory drugs may delay the onset of Alzheimer's disease (AD). Since nonsteroidal anti-inflammatory drugs inhibit cyclooxygenase (COX), COX-2, an inducible form of COX, may be involved in the pathology of AD in association with the arachidonic acid cascade. In addition, it has been suggested that alterations in the balance of polyunsaturated fatty acids are associated with brain dysfunctions such as neurodegerative pathologies of the aging brain. METHOD: To explore COX-2 expression in the hippocampus, we analyzed 45 consecutive autopsy subjects without dementia and 25 AD patients derived from the town of Hisayama, Japan. RESULTS: The neuronal expression of COX-2 in the CA3 subdivision of the hippocampus, subiculum, entorhinal cortex and transentorhinal cortex were consistently observed in both nondemented and AD brains, and COX-2 immunoreactivity correlated with age in nondemented brains. In AD patients, neurons of CA1 exhibited increased COX-2 immunoreactivity which correlated with the severity of AD pathology. This correlation was not apparent in nondemented subjects. CONCLUSION: These results suggest that COX-2 expression may be differentially regulated among subdivisions of the hippocampus and that elevated COX-2 expression in the CA1 of AD brains may be associated with AD pathology and thus cognitive dysfunction.  相似文献   

11.
The hippocampal involvement in amyotrophic lateral sclerosis (ALS) patients has been known for more than a decade, however, its relationship to clinical manifestations including memory deficits and topographical differentiation from Alzheimer disease (AD) remain unclear. In order to clarify the anatomopathological features in the hippocampus and their relevance to disease-specific memory deficits in ALS patients, topography and cytopathology of the hippocampal lesions along the perforant pathway were quantitatively and semiquantitatively surveyed in 14 ALS patients with extramotor involvement. These pathological findings were compared with clinical characteristics assessed from their clinical records. Cytoplasmic inclusions initially appear in the granular cells of the dentate gyrus (DG) and superficial small neurons of the transentorhinal cortex (TEC) with mild subicular degeneration (stage I: inclusion stage). Subsequent gliosis and neuronal loss of the TEC, concomitant with presynaptic degeneration of the outer molecular layer of the DG, suggests an extension of the degeneration through the perforant pathway (stage II: early perforant stage). In a more advanced stage, the presynaptic degeneration is more evident with moderate to severe neuronal loss in the TEC (stage III: advanced perforant stage). This advanced stage was associated with episodic memory deficits mimicking AD in some ALS patients. This ALS pathology initiated by cytoplasmic inclusions and neuronal loss in layer II–III of the TEC is different from neurofibrillary tangles of AD, dominant in layer II–III of the entorhinal cortex. Because this involvement of the TEC-molecular DG projection and subiculum is specific to ALS, it will provide a basis for clinical characterization of memory deficits of ALS, which could be distinct from those of AD.  相似文献   

12.
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are common forms of dementia in the elderly. The neuropathology of AD and DLB is related to cholinergic dysfunctions, and both alpha4 and alpha7 nicotinic acetylcholine receptor (nAChR) subunits are decreased in several brain areas in both diseases. In this immunohistochemical study, we compared neuronal and astroglial alpha4 and alpha7 subunits in AD, DLB and age-matched controls in the hippocampal formation. The numbers of alpha4 reactive neurons were decreased in layer 3 of the entorhinal cortex of AD and DLB, whereas those of alpha7 reactive neurons were decreased in layer 2 of the subiculum of AD and DLB and in layer 3 of the entorhinal cortex of DLB. In contrast, the intensity of alpha7 reactive neuropil was significantly higher in AD than in controls or DLB in a number of areas of the hippocampus (CA3/4 and stratum granulosum), subiculum and entorhinal cortex. An increase in alpha7 immunoreactivity in AD was also associated with astrocytes. The number of astrocytes double-labelled with alpha7 and glial fibrillary acidic protein (GFAP) antibodies was increased in most areas of the hippocampus and entorhinal cortex in AD compared with controls and DLB. Increased astrocyte alpha7 nAChRs in AD may be associated with inflammatory mechanisms related to degenerative processes specific to this disease.  相似文献   

13.
The immunocytochemical distribution of the neuronal form of nitric oxide synthase (nNOS) was compared with neuropathological changes and with cell death related DNA damage (as revealed by in situ end labeling, ISEL) in the hippocampal formation and entorhinal cortex of 12 age-matched control subjects and 12 Alzheimer's disease (AD) patients. Unlike controls, numerous nNOS-positive reactive astrocytes were found in AD patients around beta-amyloid plaques in CA1 and subiculum and at the places of clear and overt neuron loss, particularly in the entorhinal cortex layer II and CA4. This is the first evidence of nNOS-like immunoreactivity in reactive astrocytes in AD. In contrast to controls, in all but one AD subject, large numbers of ISEL-positive neuronal nuclei and microglial cells were found in the CA1 and CA4 regions and subiculum. Semiquantitative analysis showed that neuronal DNA fragmentation in AD match with the distribution of nNOS-expressing reactive astroglial cells in CA1 (r = 0.74, P < 0.01) and CA4 (r = 0.58, P < 0.05). A portion of the nNOS-positive CA2/CA3 pyramidal neurons was found to be spared even in the most affected hippocampi. A significant inverse correlation between nNOS expression and immunoreactivity to abnormally phosphorylated tau proteins (as revealed by AT8 monoclonal antibody) in perikarya of these CA2/3 neurons (r = -0.85, P < 0.01) suggests that nNOS expression may provide selective resistance to neuronal degeneration in AD. In conclusion, our results imply that an upregulated production of NO by reactive astrocytes may play a key role in the pathogenesis of AD.  相似文献   

14.
A large body of evidence indicates that basal forebrain cholinergic neurons are selectively vulnerable to degeneration early in Alzheimer disease (AD). Recent studies, however, demonstrate reductions in cortical activity of the cholinergic enzyme choline acetyltransferase only in late stages of AD. To address this apparent contradiction, we compared abnormalities in magnocellular basal forebrain cholinergic neurons and their axons in nondemented young (<65 years; n = 6), nondemented old (>65 years; n = 7), pathologically mild (n = 5), and pathologically severe (n = 5) AD cases. Cholinergic axon abnormalities (i.e. thickened fibers and ballooned terminals) were evident in nondemented middle-aged cases, increased in nondemented old cases, and reduced in density in severe AD. This suggests that loss of cortical cholinergic axons in AD occurs preferentially in fibers with these abnormalities. Paired helical filament 1-immunoreactive pretangles and tangles were observed as early as the third decade prior to their appearance in entorhinal/perirhinal cortex; they were increased in mild and severe AD. These results indicate that basal forebrain cholinergic neuron abnormalities are present very early in aging and in the course of AD. Therefore, despite the morphologic alterations, choline acetyltransferase activity, but not necessarily normal neuron functions, may be preserved.  相似文献   

15.
Neuronal loss and axonal sprouting are the most typical histopathological findings in the hippocampus of patients with drug-refractory temporal lobe epilepsy (TLE). It is under dispute, however, whether remodeling of neuronal circuits is a continuous process or whether it occurs only during epileptogenesis. Also, little is known about the plasticity outside of the hippocampus. We investigated the immunoreactivity of the highly polysialylated neural cell adhesion molecule (PSA-NCAM) in the surgically removed hippocampus and the entorhinal cortex of patients with drug-refractory TLE (n = 25) and autopsy controls (n = 7). Previous studies have shown that the expression of PSA-NCAM is associated with the induction of synaptic plasticity, neurite outgrowth, neuronal migration, and events requiring remodeling or repair of tissue. In patients with TLE, the optical density (OD) of punctate PSA-NCAM immunoreactivity was increased both in the inner and outer molecular layers of the dentate gyrus, compared with controls. The intensity of PSA-NCAM immunoreactivity in the inner molecular layer correlated with the duration of epilepsy, severity of hippocampal neuronal loss, density of mossy fiber sprouting, and astrogliosis. In TLE patients with only mild neuronal loss in the hippocampus, the density of infragranular immunopositive neurons was increased twofold compared with controls, whereas in TLE patients with severe neuronal loss, the infragranular PSA-NCAM–positive cells were not present. In the hilus, the somata and tortuous dendrites of some surviving neurons were intensely stained in TLE. PSA-NCAM immunoreactivity was also increased in CA1 and in layer II of the rostral entorhinal cortex, where immunopositive neurons were surrounded by PSA-NCAM-positive fibers and puncta. Our data provide evidence that synaptic reorganization is an active process in human drug-refractory TLE. Moreover, remodeling is not limited to the dentate gyrus, but also occurs in the CA1 subfield and the entorhinal cortex.  相似文献   

16.
Alzheimer's disease (AD) is associated with neuronal degeneration, synaptic loss and deficits in multiple neurotransmitter systems. Alterations in the serotonin 1A (5‐HT1A) receptor can contribute to impaired cognitive function in AD, and both in vitro binding and Positron emission tomography (PET) imaging studies have demonstrated that 5‐HT1A receptors in the hippocampus/medial temporal cortex are affected early in AD. This neuropathological study examined the localization and immunoreaction intensity of 5‐HT1A receptor protein in AD hippocampus with the goal to determine whether neuronal receptor levels are influenced by the severity of NFT severity defined by Braaks' pathological staging and to provide immunohistochemical confirmation of the binding assays and PET imaging studies. Subjects included AD patients and non‐AD controls (NC) stratified into three Braaks' stages (Braak 0–II, NC; Braak III/IV and V/VI, AD). In the Braak 0–II group, 5‐HT1A‐immunoreactivity (ir) was prominent in the neuropil of the CA1 and subiculum, moderate in the dentate gyrus molecular layer (DGml), and low in the CA3 and CA4. No changes in 5‐HT1A‐ir were observed in the hippocampus of AD subjects in the Braak III/IV group. Hippocampal 5‐HT1A‐ir intensity was markedly decreased in the CA1 region in 6/11 (54.5%) subjects in the Braak V/VI group. Across all three groups combined, there was a statistically significant association between reduced 5HT1A‐ir and neuronal loss in the CA1, but not in the CA3. The present data demonstrate that hippocampal 5‐HT1A receptors are mainly preserved until the end‐stage of NFT progression in AD. Thus, the utility of PET imaging using a 5‐HT1A‐specific radiolabeled probe as a marker of hippocampal neuronal loss may be limited to the CA1 field in advanced stage AD cases.  相似文献   

17.
Adult neurogenesis occurs in the subgranular zone (SGZ) and subventricular zone (SVZ). New SGZ neurons migrate into the granule cell layer of the dentate gyrus (DG). New SVZ neurons seem to enter the association neocortex and entorhinal cortex besides the olfactory bulb. Alzheimer disease (AD) is characterized by neuron loss in the hippocampus (DG and CA1 field), entorhinal cortex, and association neocortex, which underlies the learning and memory deficits. We hypothesized that, if the AD brain can support neurogenesis, strategies to stimulate the neurogenesis process could have therapeutic value in AD. We reviewed the literature on: (a) the functional significance of adult-born neurons; (b) the occurrence of endogenous neurogenesis in AD; and (c) strategies to stimulate the adult neurogenesis process. We found that: (a) new neurons in the adult DG contribute to memory function; (b) new neurons are generated in the SGZ and SVZ of AD brains, but they fail to differentiate into mature neurons in the target regions; and (c) numerous strategies (Lithium, Glatiramer Acetate, nerve growth factor, environmental enrichment) can enhance adult neurogenesis and promote maturation of newly generated neurons. Such strategies might help to compensate for the loss of neurons and improve the memory function in AD.  相似文献   

18.
Universally accepted neuropathologic criteria for differentiating Alzheimer disease (AD) from healthy brain aging do not exist. We tested the hypothesis that Bielschowsky silver stained total, cored, and neuritic senile plaques (TSPs, CSPs, and NSPs, respectively), rather than neurofibrillary tangles (NFTs), best discriminate between the 2 conditions using rigorously defined nondemented (n = 7) and AD (n = 35) subjects with no known co-morbidities. We compared lesions in 3 neocortical regions, in hippocampal CA1, and in entorhinal cortex in 19 men and 13 women between 74 and 86 years at death. The Clinical Dementia Rating (CDR) was used to assess degree of cognitive impairment within a year of demise. Neocortical TSP measures provided the highest correlation with expiration CDR: area under the curve (AUC) = 0.986 with 97.8% sensitivity at 90% specificity with an estimated cut-point of 6.0 TSP/ mm2. All SP measures yielded higher estimated AUC and sensitivity for 90% specificity compared to NFTs. Derived TSP cut-points applied to 149 persons with clinical AD regardless of their neuropathologic diagnosis yielded a sensitivity of 97% and specificity of 84% for TSPs in the 3 neocortical areas. Thus cut-points based on both diffuse and neuritic SP in neocortical regions distinguished nondemented and AD subjects with high sensitivity and specificity.  相似文献   

19.
Aged individuals with Down syndrome (DS) develop senile plaques and neurofibrillary tangles consistent with Alzheimer disease (AD). Prior to or in parallel with AD pathology, compensatory growth responses may occur. Immunohistochemistry and confocal microscopy studies in the hippocampus from 15 individuals ranging in age from 5 months to 67 years compared markers of normal and abnormal tau accumulation (phosphorylated tau [AT8, MC-1], tau-1, N-terminal tau) with the extent and location of neuronal growth marker immunoreactivity (BDNF, GAP-43, MAP-2). In middle age (30-40 years), prior to entorhinal neuron loss, the earliest tau accumulation occurred in the outer molecular layer (OML), which was consistent with both pathological and compensatory fetal tau expression. These events were followed at a later age, associated with entorhinal neuron loss, by an increase in GAP-43. Hilar neurons exhibiting a sprouting morphology were also noted. Age-dependent observations in the DS brain in the current study parallel hippocampal compensatory responses described in entorhinal cortex lesion studies in rodents. Thus, compensatory growth responses may occur in DS prior to extensive AD pathology and may be one mechanism underlying observations in PET studies of hypermetabolism in the entorhinal cortex of individuals with DS.  相似文献   

20.
In Alzheimer’s disease (AD), neurofibrillary degeneration of neurons starts in the transentorhinal cortex and spreads in a time-dependent manner to the entorhinal cortex, which provides a major input to the hippocampus – a key structure of the memory system. People with Down’s syndrome (DS) develop neurofibrillary changes more than 30 years earlier than those with sporadic AD. To characterize AD-related pathology in the entorhinal cortex in DS, we examined seven subjects with DS of 60–74 years of age who died in the end stage of AD, and four age-matched control subjects. The volume of the entorhinal cortex in brains of subjects with DS was 42% less than that in control cases; however, the total number of neurons free of neurofibrillary changes was reduced in DS by 90%: from 9,619,000 ± 914,000 (mean ± standard deviation) to 932,000 ± 504,000. The presence of 2,488,000 ± 544,000 neurofibrillary tangles in the entorhinal cortex of people with DS, the prevalence of end-stage tangles, and the significant negative correlation between the total number of intact neurons and the percentage of neurons with neurofibrillary changes indicate that neurofibrillary degeneration is a major cause of neuronal loss in the entorhinal cortex of people with DS. The relatively low amyloid load (7 ± 1%) and lack of correlation between the amyloid load and the volumetric or neuronal loss suggest that the contribution of β-amyloid to neuronal loss in the entorhinal cortex is unsubstantial. Received: 8 June 1998 / Revised, accepted: 11 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号