首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of benzene-soluble fraction (FAE) and benzene-insoluble fraction (FAR) of fly ash for 3 consecutive days to rats significantly raised cytochrome P-450 levels, aryl hydrocarbon hydroxylase (AHH) activity, and glutathione S-transferase activity in liver. This treatment also significantly increased pulmonary AHH and glutathione S-transferase activity. Intratracheal administration of FAR (5 mg/100 g body weight) alone for 6 consecutive days also significantly increased hepatic cytochrome P-450 levels and the activity of glutathione S-transferase. Intragastric administration of retinyl palmitate (5000 IU/100 g body weight), along with intratracheal FAE and FAR administration, significantly reduced P-450 levels, activity of glutathione S-transferase in liver, and activity of AHH and glutathione S-transferase in lung of rats. Intraperitoneal administration of citrate (40 mg/100 g body weight) along with FAR significantly reduced FAR-induced increase in hepatic cytochrome P-450 levels and glutathione S-transferase activity. The activity of AHH was not affected by these treatments.  相似文献   

2.
Somatic cell hybrids were made between mouse myeloma cells and spleen cells derived from BALB/c female mice immunized with purified phenobarbital-induced rat liver cytochrome P-450 (PB-P-450). Hybridomas were selected in HAT medium, and the monoclonal antibodies (MAbs) produced were screened for binding to the PB-P-450 by radioimmunoassay, for immunoprecipitation of the PB-P-450, and for inhibition of PB-P-450-catalyzed enzyme activity. In two experiments, MAbs of the IgM and IgG1 were produced that bound and, in certain cases, precipitated PB-P-450. None of these MAbs, however, inhibited the PB-P-450-dependent aryl hydrocarbon hydroxylase (AHH) activity. In two other experiments, MAbs to PB-P-450 were produced that bound, precipitated and, in several cases, strongly or completely inhibited the AHH and 7-ethoxycoumarin deethylase (ECD) activities of PB-P-450. These MAbs showed no activity toward the purified 3-methylcholanthrene-induced cytochrome P-450 (MC-P-450), β-naphthoflavone-induced cytochrome P-450 (BNF-P-450) or pregnenolone 16-α-carbonitrile-induced cytochrome P-450 (PCN-P-450) in respect to RIA determined binding, immunoprecipitation, or inhibition of AHH activity. One of the monoclonal antibodies, MAb 2-66-3, inhibited the AHH activity of liver microsomes from PB-treated rats by 43% but did not inhibit the AHH activity of liver microsomes from control, BNF-, or MC-treated rats. The MAb 2-66-3 also inhibited ECD in microsomes from PB-treated rats by 22%. The MAb 2-66-3 showed high cross-reactivity for binding, immunoprecipitation and inhibition of enzyme activity of PB-induced cytochrome P-450 from rabbit liver (PB-P-450LM2). Two other MAbs, 4-7-1 and 4-29-5, completely inhibited the AHH of the purified PB-P-450. MAbs to different cytochromes P-450 will be of extraordinary usefulness for a variety of studies including phenotyping of individuals, species, and tissues and for the genetic analysis of P-450s as well as for the direct assay, purification, and structure determination of various cytochromes P-450.  相似文献   

3.
The cytochrome P-450-dependent aryl hydrocarbon hydroxylase (AHH) metabolizes a wide variety of endogenous and exogenous compounds to nontoxic metabolites and/or toxic products. We have utilized a series of 18 flavone modulators of AHH to distinguish and probe for different cytochrome P-450 isozymes in liver microsomes from control and 3-methylcholanthrene (MC)-injected rats. some flavones (maackiain acetate, flavanone, mollisacacidin, embinin, sciadopitysin) activated, while most of the tested compounds inhibited the MC-induced type of AHH. Although all flavones either inhibited or had little effect on the constitutive AHH in microsomes from control rats, the degree of inhibition varied greatly: some flavones (chrysin, chrysoeriol, baicalein, maackiain acetate, isoliquiritigenin, sciadopitysin) inhibited over 75% of the AHH. The various flavones we screened may prove useful in defining the cytochrome P-450 content of tissues and for probing the active sites of individual isozymes. The modulatory effects of the naturally occurring flavones assume additional importance in that they may be factors in animal and human responsiveness to cytochrome P-450 substrates.  相似文献   

4.
The cytochromes P-450 of the mixed function oxidase system metabolize a wide variety of endogenous compounds to either nontoxic products or toxic metabolites. A number of natural products, such as flavonoids, influence this metabolism. Exposure to these compounds may therefore be a factor in animal and human responsiveness to cytochrome P-450 substrates. We have examined the effect of the pterocarpan medicarpin on the cytochrome P-450-dependent aryl hydrocarbon hydroxylase (AHH) and ethoxycoumarin deethylase (ECD) activities of rat liver microsomes. Medicarpin and maackiain and two of their biosynthetic precursors inhibit the constitutive and phenobarbital (PB)-induced types of AHH, but have little effect on the 3-methylcholanthrene (MC)-induced type of AHH. This is in contrast to the effect of the commonly used cytochrome P-450 inhibitor 7,8-benzoflavone, which inhibits the hepatic AHH of MC-treated rats and has no effects on the AHH of control or PB-treated rats. However, medicarpin inhibited the constitutive as well as the PB- and MC-induced ECD. The specific modulatory effect as well as its relative availability suggests the utility of medicarpin as a probe for different forms of cytochrome P-450 in animal tissues.  相似文献   

5.
o-Benzyl-p-chlorophenol (BCP) is widely used as a broad spectrum disinfectant. Treatment of male Fischer 344 rats with BCP resulted in an increase in cytochrome P-450 content and an accompanying decrease in aryl hydrocarbon hydroxylase (AHH) activity in both liver and kidney microsomes. Several other drug-metabolizing enzymes were not affected by BCP treatment. However, in kidney, BCP induced NADPH-cytochrome c reductase and uridine diphosphate glucuronyl transferase activities and caused a small increase in total cytochrome P-450 content and glutathione concentration. The cytochrome P-450 isozymes induced by BCP were fractionated by high pressure liquid chromatography (HPLC). The HPLC profile following BCP treatment most closely resembled that seen after phenobarbital. Using an immunoblotting procedure and a radioimmunoassay, it was shown that the increase in cytochrome P-450 content in the liver after BCP treatment was, in part, due to an increase in the phenobarbital-inducible isozymes, P-450b + e. In the kidney, the increase in total cytochrome P-450 content after BCP exposure was not due to an increase in P-450b + e. The decrease in AHH activity appeared to be caused by noncompetitive inhibition of constitutive AHH activity by BCP. BCP also inhibited benzphetamine demethylation, although to a lesser extent. The failure to observe an increase in benzphetamine demethylase activity in vivo, despite the induction of P-450b, was probably due to the concomitant induction and inhibition of drug-metabolizing enzymes by BCP.  相似文献   

6.
Groups of male Wistar rats were given either a basal diet or diets supplemented with 10 or 25% broccoli or 0.8% BHA. Liver fractions were assayed for cytochrome P-450, for aryl hydrocarbon hydroxylase (AHH), glutathione-S-transferase and epoxide hydrolase activities and for benzo[a]pyrene (BaP) metabolism. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of liver microsomes was also performed. Mean relative liver weight in the BHA group was significantly higher than that of the control and 10% broccoli groups but not significantly higher than that of the 25% broccoli group. Gel electrophoresis of liver microsomes indicated a diet-dependent variation in intensity in a band that corresponded in mol wt to those of certain cytochrome P-450s. Diet-dependent increases (20-90% over control) in cytochrome P-450 and in the activities of AHH, glutathione-S-transferase and epoxide hydrolase were observed in livers from rats given broccoli-supplemented diets. Except for AHH activity, such increases also occurred in the group fed BHA. Analysis of BaP metabolites revealed that the proportion of 4,5-diol formed relative to the major diols identified was unchanged in the broccoli- or BHA-treated groups relative to the control group. The proportion of 9,10-diol formed was unchanged in the broccoli-fed groups but was significantly higher in the BHA group than in the control group. The proportion of cis and trans-7,8-diol formed was unchanged in both broccoli-fed groups but was significantly lower in the BHA group. In comparison with the control group, the ratio of phenol I (comprising primarily 9-OH-BaP) to total phenols (primarily 9-OH and 3-OH) was significantly decreased by about 30% in the 25%-broccoli group and by about 70% in the BHA group. Qualitative differences in the phenol-II peak (comprising 3-OH and 7-OH phenols) were also observed between samples from the controls and those of 25%-broccoli- and BHA-fed rats. The implications of these findings are discussed with respect to the effects of broccoli and BHA on benzo[a]pyrene toxicity.  相似文献   

7.
The effects of long-term inhalation of diluted diesel exhaust on aryl hydrocarbon hydroxylase activity (AHH) and cytochrome P-450 content in lung and liver microsomes were investigated in male Fischer-344 rats and compared with repeated parenteral administration of organic solvent extracts of hydrocarbons adsorbed on the diesel particulate surface during the combustion process. The animals were exposed to concentrations of 750 micrograms m-3 or 1500 micrograms m-3 of diesel particulates from a 5.7L GM diesel engine 20 h per day, 5 1/2 days per week for up to 9 months or treated by repeated IP injections of diesel particulate extract (dissolved in corn oil) from the same engine at several dose levels for 4 days. No significant effects of long-term inhalation exposure were observed in liver microsomal AHH activity. A slight decrease in lung microsomal AHH activity was found in rats following 6 months of exposure to diesel exhaust at the particulate concentration of 1500 micrograms m-3. The total mass of particles deposited in the lung during the inhalation exposure was estimated and an equivalent dose of extractable hydrocarbons was administered intraperitoneally; no increase in AHH activity was observed in the lung or liver microsomes. In contrast, 1.4- to 9-fold increases in AHH activity were observed in liver and lung microsomes of rats pretreated by intraperitoneal doses 10-50 times larger than the most conservative estimate of the deposited lung burden. No changes in cytochrome P-450 content were observed in the microsomes of rat liver after inhalation or injection treatment studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Several 1,3-benzodioxoles (BD) and related compounds were studied in relation to their ability to generate metabolite complexes with hepatic cytochrome P-450 following administration in vivo to rats. BD derivatives that formed stable metabolite complexes with cytochrome P-450 were considerably more effective inducers of cytochrome P-450 and aryl hydrocarbon (benzo[alpha]pyrene) hydroxylase (AHH) activity than derivatives that did not form stable complexes. Linear regression analysis showed that AHH activity was well correlated (r = 0.980) with total (i.e. complexed plus uncomplexed) cytochrome P-450 content and was not correlated with levels of uncomplexed cytochrome P-450. Aminopyrine N-demethylase (APDM) activity in hepatic microsomes from rats treated with 1,3-benzodioxoles was moderately correlated in a linear relationship with uncomplexed levels of cytochrome P-450 and not with total cytochrome P-450.  相似文献   

9.
The effect of a choline-deficient diet on microsomal cytochrome P-450 and mixed-function oxidase (MFO) activity was investigated in relation to the development of nutritional cirrhosis. In rats that received the choline-deficient diet for 28 weeks cirrhosis was evident macroscopically and histologically; control rats that received an identical diet supplemented with choline had normal livers. Microsomal cytochrome P-450 and cytochrome b5 were reduced in cirrhotic liver to 50% of control levels. Three MFO activities (ethylmorphine N-demethylase, aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase) were also reduced to 40-70% of control levels. However, the turnover number for the O-deethylation of 7-ethoxycoumarin was not reduced in cirrhotic liver. This finding suggested that certain drug oxidations may be selectively depressed in nutritional cirrhosis. To examine the possibility that selective changes in MFO activity may reflect the suppression of certain cytochrome P-450 isozymes, partially purified fractions of the cytochrome were prepared after solubilisation and hydrophobic affinity chromatography (on n-octylamino-Sepharose 4B) of cirrhotic and control liver microsomes. Analysis of these fractions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and laser densitometry indicated that a protein band of apparent minimum molecular weight 50.5 kD was primarily affected in cirrhotic rat liver microsomes. Levels of two other bands (apparent minimum molecular weight 48 and 52.5 kD) appeared essentially unaltered. Additional electrophoretic studies, conducted under non-reduced conditions, indicated the haemoprotein nature of protein bands in the 48-55 kD region. These data strongly suggest that cirrhosis produced in rats by a choline-deficient diet is associated with selective decreases in oxidative drug metabolism and individual cytochrome P-450 isozymes.  相似文献   

10.
Nefopam, a cyclic analogue of orphenadrine, exhibits a type I (substrate) and a type II (ligand) interaction with ferri-cytochrome P-450 in control and phenobarbitone induced rat hepatic microsomes respectively. In-vitro metabolism of nefopam in phenobarbitone-induced microsomes leads to the production of a reactive metabolite which complexes with cytochrome P-450. In contrast to the known complexation of orphenadrine, complexation by nefopam can be inhibited by glutathione (GSH, 0.1-1.0 mM). However, in-vivo administration of nefopam to rats does not diminish the GSH content of liver cytosol nor increase oxidized glutathione levels nor alter the activities of GSH transferase and GSH peroxidase. In-vivo administration does not lead to cytochrome P-450 induction nor cytochrome P-450 complexation as has been shown for orphenadrine. Finally, nefopam inhibits the NADPH dependent endogenous H2O2 production in both control and phenobarbitone-induced microsomes.  相似文献   

11.
1. Several 1,3-benzodioxoles (BD) and related compounds were studied in relation to their ability to generate metabolite complexes with hepatic cytochrome P-450 following administration in vivo to rats.

2. BD derivatives that formed stable metabolite complexes with cytochrome P-450 were considerably more effective inducers of cytochrome P-450 and aryl hydrocarbon (benzo[α]pyrene) hydroxylase (AHH) activity than derivatives that did not form stable complexes.

3. Linear regression analysis showed that AHH activity was well correlated (r = 0.980) with total (i.e. complexed plus uncomplexed) cytochrome P-450 content and was not correlated with levels of uncomplexed cytochrome P-450.

4. Aminopyrine N-demethylase (APDM) activity in hepatic microsomes from rats treated with 1,3-benzodioxoles was moderately correlated in a linear relationship with uncomplexed levels of cytochrome P-450 and not with total cytochrome P-450.  相似文献   

12.
The possibility of a relationship between hepatic and renal cytochrome P-450 contents was assessed in rats with liver disease. In rats killed 3 days after two-thirds hepatectomy (a model for hepatocellular insufficiency), the total microsomal cytochrome P-450 content of the whole liver was decreased by 60% as compared to that in control rats; renal cytochrome P-450 was increased by 30% while the 7-ethoxycoumarin deethylase activity of kidney microsomes was increased by 80%. In rats killed 7 days after bile duct ligation (a model for cholestasis) or 35 days after bile duct ligation (a model for biliary cirrhosis), hepatic cytochrome P-450 was decreased by 60% and 45%, respectively, while renal cytochrome P-450 content was increased by 50% and 150%, respectively. In contrast, in rats killed 15 days after the last dose of carbon tetrachloride, 1.3 ml/kg twice weekly for 3 months (a model for post-necrotic cirrhosis), both hepatic and renal cytochrome P-450 contents remained unchanged. Phenobarbital (80 mg/kg daily for 3 days) was a poor inducer of renal cytochrome P-450 in sham-operated rats but became a potent inducer of renal cytochrome P-450 in rats with two-thirds hepatectomy. We conclude that renal cytochrome P-450 is increased in three models in which hepatic cytochrome P-450 contents are decreased (two-thirds hepatectomy, cholestasis and biliary cirrhosis), but remains unchanged in a model of severe liver pathology, in which hepatic cytochrome P-450 content is not modified (late, post-necrotic cirrhosis). The hypothetical role of endogenous inducer(s) is discussed.  相似文献   

13.
The role of flavin-containing monooxygenase (FMO) in the decrease in cytochrome P-450 content during the microsomal metabolism of methimazole (N-methyl-2-mercaptoimidazole) was investigated by heat inactivation of FMO. Incubation of liver microsomes from untreated Fischer 344 rats with NADPH and methimazole resulted in a 25% loss of cytochrome P-450 detectable as its ferrous-carbon monoxide complex. The same extent of cytochrome P-450 loss was observed with 1 and 20 mM methimazole, suggesting saturation of the process. There was no significant loss of cytochrome P-450 when microsomal FMO was heat-inactivated prior to incubation with NADPH and methimazole. Heat pretreatment of the microsomes did not affect cytochrome P-450 concentrations and cytochrome P-420 was not observed. These results indicate that FMO-catalyzed metabolism of methimazole is necessary for the loss of cytochrome P-450 in microsomes from untreated rats. Sulfite and N-methylimidazole, the ultimate products of methimazole metabolism, did not cause a significant loss of cytochrome P-450. There was no loss of cytochrome P-450 when glutathione was included in the incubation with methimazole, suggesting that cytochrome P-450 loss was due to an interaction with oxygenated metabolites of methimazole formed by FMO. Losses of cytochrome P-450 were also observed after incubation of microsomes from phenobarbital- (31%) of beta-naphthoflavone-pretreated rats (44%) with NADPH and methimazole. In contrast to microsomes from untreated rats, heat inactivation of FMO did not prevent the loss of cytochrome P-450 in microsomes from the pretreated rats. These results indicate that both phenobarbital and beta-naphthoflavone induce isozymes of cytochrome P-450 capable of directly activating methimazole.  相似文献   

14.
The inhibition of cytochrome P-450 dependent hydroxylations of bufuralol (BH) and antipyrine, and O-deethylation of 7-ethoxycoumarin (7-ECOD) by several monoamine oxidase inhibitors (MAOIs) was investigated in rat liver microsomes. According to their IC50 values, clorgyline was the most potent inhibitor while toloxatone, the only reversible MAOI in this study, was the least potent. A great variability of inhibitory potencies was found, even in the same chemical class of MAOIs. Irreversible inhibition of BH and 7-ECOD has been studied. Rapid irreversible inhibition occurred in some cases, and this could be responsible for in vivo inhibition after repeated dosing of these MAOIs.  相似文献   

15.
The properties of some constitutive and inducible enzyme activities of liver and lung microsomes were determined in B6C3F1 mice pretreated by either intratracheal (i.t.) administration of benzo[a]pyrene (BaP) or polychlorinated biphenyl (PCBs) mixture (Aroclor 1254), or intraperitoneal (i.p.) administration with Aroclor 1254. After i.p. administration of Aroclor 1254, liver cytochrome P-450 content, aryl hydrocarbon hydroxylase (AHH), benzphetamine N-demethylase and nitroreductase activities were increased 2.8-, 2.0-, 2.2-, and 2.0-fold, respectively. Lung cytochrome P-450 content was also increased (1.9-fold) after i.p. administration of Aroclor 1254; AHH and nitroreductase activities, however, were not affected and benzphetamine N-demethylase activity was decreased. Aroclor 1254 administered i.t. did not affect liver cytochrome P-450 content. However, AHH and benzphetamine N-demethylase activities were decreased 1.4- and 1.2-fold, respectively, and nitroreductase activity was increased 1.6-fold. After i.t. administration of Aroclor 1254, lung cytochrome P-450 content and AHH activity were increased 1.4- and 2.2-fold, respectively. Benzphetamine N-demethylase activity was decreased 2.1-fold and nitroreductase activity was not affected. After i.t. administration of BaP, liver 7-ethoxyresorufin O-deethylase and nitroreductase activities were increased 2.2- and 1.5-fold, respectively, and benzphetamine N-demethylase activity was decreased 1.3-fold. Lung AHH and 7-ethoxyresorufin O-deethylase activities were increased 4.3- and 3.1-fold, respectively, and cytochrome P-450 content, benzphetamine N-demethylase and nitroreductase activities were decreased 1.4-, 1.2- and 1.3-fold, respectively, after BaP administration. These data indicate that different cytochrome P-450 isozymes induced in B6C3F1 mice are responsible for monooxygenase and nitroreductase activities, and that the route of administration of chemicals is important in the expression of cytochrome P-450 catalyzed activities.  相似文献   

16.
The in vivo effect of argemone oil on hepatic xenobiotic metabolizing enzymes was investigated in albino rats following either a single (10 ml kg-1 body wt.) or multiple intraparenteral doses (5 ml kg-1 body wt.) for three days. Animals sacrificed 72 h after a single intraparenteral dose of argemone oil exhibited a significant loss of hepatic cytochrome P-450 (35%) and cytochrome b5 (34%) contents and inhibition of aminopyrine-N-demethylase (APD), aryl hydrocarbon hydroxylase (AHH) and ethoxycoumarin-O-deethylase (ECD) activities (21-39%). Three successive 24-hourly intraparenteral injections of argemone oil followed by sacrificing the animals after 24 h of the last injection, showed a greater degree of inhibition of the content of cytochrome P-450 (58%) and its dependent mixed-function oxidases (35-63%). Also, multiple treatment of argemone oil caused a depletion of endogenous hepatic glutathione (GSH) content (72%) with a concomitant increase in lipid peroxidation (177%) and decrease in glutathione-S-transferase (GST) activity (30%). A significant decrease in relative liver weight (39%) was observed in animals treated with multiple treatment of argemone oil. These results suggest that argemone oil can alter both membrane and cytosolic defences and destabilizes the hepatic cytochrome P-450 dependent mixed-function oxidase system, so that it tips in the direction of autooxidative peroxidation of lipids.  相似文献   

17.
Disulfiram (DS) was administered perorally once a day to rats for 30 days to investigate the effects on cytochrome P-450 content and benzo(a)pyrene (BP) monooxygenase activity in microsomes isolated from the small intestinal mucosa. 50 mg or 100 mg DS/kg body weight caused a dose-related increase in BP monooxygenase activity, whereas the content of cytochrome P-450 was increased at the higher dose only. Similar absorption characteristics of cytochrome P-450 and turnover rates for BP on the basis o f cytochrome P-450 was observed among the different microsomal preparations. The addition of DS or diethyldithiocarbamate (DDTC) to incubates of intestinal microsomes inhibited BP monooxygenase activity. Microsomes isolated from DS-treated rats were however less sensitive to in vitro inhibition by DS.  相似文献   

18.
Monoclonal antibodies against human liver cytochrome P-450   总被引:7,自引:0,他引:7  
Monoclonal hybridomas which produce antibodies against human liver microsomal cytochrome P-450 were developed. Three similar hybridomas produced antibodies which recognized an epitope specific to a family of human P-450 isozymes (P-450(5)). This epitope was also present on cytochrome P-450 PCN-E (pregnenolone-16 alpha-carbonitrile induced) from rat liver microsomes, but this isozyme differed from the human P-450(5) by its molecular weight. These antibodies enabled us to quantify cytochrome P-450(5) in human liver microsomes and to demonstrate an important quantitative polymorphism in the human liver monooxygenase system.  相似文献   

19.
Four cytochrome P-450 enzyme activities, 7-ethoxyresorufin O-deethylase (ERDE), coumarin 7-hydroxylase (CH), 7-ethoxycoumarin O-deethylase (ECDE) and aryl hydrocarbon hydroxylase (AHH) were measured in human liver needle biopsy samples from smokers and non-smokers. Cigarette smoking was verified and quantitated by measuring plasma cotinine levels. Enzyme inhibitory monoclonal antibodies (MAb) to a 3-methylcholanthrene-induced (MAb 1-7-1) and phenobarbitone-induced (MAb 2-66-3) rat hepatic cytochrome P-450 were used to measure the contribution of MAb-defined, epitope-specific cytochromes P-450 to the total reaction measured for each of the above activities. ERDE activity was significantly elevated in the livers of cigarette smokers, whereas AHH, CH or ECDE activities were not affected by cigarette smoking. No correlation was observed between plasma cotinine concentration and ERDE activity. MAb 1-7-1 inhibited hepatic ERDE activity to a variable extent (from 0 to 65%), but had very little or no effect on AHH, CH or ECDE activities. The inhibitory effect of MAb 1-7-1 on ERDE activity was greater than 50% in the non-smokers. MAb 2-66-3 had no inhibitory effect on any of the enzyme activities studied. In contrast to liver both ERDE and AHH on human placental microsomes from cigarette smokers were inhibited by MAb 1-7-1. The MAb 2-66-3 was without effect. Cigarette smoking induces a form of P-450 in human liver, responsible for ERDE activity, that contains an epitope recognized by MAb 1-7-1. This form of cytochrome P-450 is insensitive to MAb 2-66-3 and is not contributing to AHH, CH or ECDE activities of human liver.  相似文献   

20.
In addition to being one of the most toxic chemicals known, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent inducer of rat liver microsomal cytochrome P-4501A1 (P-450c). Previous studies have demonstrated that a high affinity, low capacity cytosolic receptor (the Ah receptor) mediates the activity of TCDD to induce cytochrome P-4501A1, which catalyzes benzo[a]pyrene hydroxylation [aryl hydrocarbon hydroxylase (AHH]) and 7-ethoxyresorufin O-dealkylation (EROD). The results of the present study indicate that 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) effectively competes with [3H]TCDD for binding to the Ah receptor in rat liver cytosol. The concentration of MCDF effecting 50% displacement of [3H]TCDD was 4.9 X 10(-8) M, which is approximately 50 times greater than the EC50 for unlabeled TCDD (approximately 1 X 10(-9) M). However, in contrast to TCDD, MCDF was only a weak inducer of AHH and EROD activity in rat hepatoma H-4-II cells in culture. When co-incubated, MCDF diminished in a concentration-dependent manner the ability of TCDD to induce AHH and EROD activity in vitro. Treatment of rats with 20-200 mumol/kg MCDF in vivo had little or no effect on liver microsomal AHH and EROD activity, whereas treatment of rats with 16 nmol/kg TCDD caused a 6- and a 70-fold induction of AHH and EROD activity, respectively. When co-administered, MCDF diminished by approximately 50% the ability of TCDD to induce AHH and EROD activity in vivo. The partial antagonism produced by 50 mumol/kg MCDF could be partially overcome by doubling the dosage of TCDD from 16 to 32 nmol/kg. Immunochemical analysis of rat liver microsomes revealed that treatment of rats with 20-200 mumol/kg MCDF caused little or no induction of cytochromes P-4501A1 and P-4501A2 (P-450d), whereas these isozymes were induced 33- and 5-fold, respectively, in rats treated with 16 nmol/kg TCDD. When co-administered, MCDF diminished by approximately 50% the ability of TCDD to induce cytochrome P-4501A1 in vivo, which established that MCDF was not simply acting as an inhibitor of AHH and EROD activity. MCDF also antagonized the ability of TCDD to induce cytochrome P-4501A2, which suggests that the induction of both cytochromes P-4501A1 and P-4501A2 is regulated by the Ah receptor. These results indicate that MCDF binds with high affinity to the Ah receptor in rat liver cytosol and competitively blocks the binding of TCDD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号