首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).  相似文献   

2.
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.  相似文献   

3.
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found that D-erythro-sphingosine, a metabolite arising during the de novo synthesis of cellular sphingolipids, activated TRPM3. Other transient receptor potential (TRP) channels tested [classic or canonical TRP (TRPC3, TRPC4, TRPC5), vanilloid-like TRP (TRPV4, TRPV5, TRPV6), and melastatin-like TRP (TRPM2)] did not significantly respond to application of sphingosine. Sphingosine-induced TRPM3 activation was not mediated by inhibition of protein kinase C, depletion of intracellular Ca2+ stores, and intracellular conversion of sphingosine to sphingosine-1-phosphate. Although sphingosine-1-phosphate and ceramides had no effect, two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N,N-dimethyl-D-erythro-sphingosine, also activated TRPM3. Sphingolipids, including sphingosine, are known to have inhibitory effects on a variety of ion channels. Thus, TRPM3 is the first ion channel activated by sphingolipids.  相似文献   

4.
TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.  相似文献   

5.
In the current review we will summarise data from the recent literature describing molecular and functional properties of TRPM4. Together with TRPM5, these channels are up till now the only molecular candidates for a class of non-selective, Ca(2+)-impermeable cation channels which are activated by elevated Ca2+ levels in the cytosol. Apart from intracellular Ca2+, TRPM4 activation is also dependent on membrane potential. Additionally, channel activity is modulated by ATP, phosphatidylinositol bisphosphate (PiP2), protein kinase C (PKC) phosphorylation and heat. The molecular determinants for channel activation, permeation and modulation are increasingly being clarified, and will be discussed here in detail. The physiological role of Ca(2+)-activated non-selective cation channels is unclear, especially in the absence of gene-specific knock-out mice, but evidence indicates a role as a regulator of membrane potential, and thus the driving force for Ca2+ entry from the extracellular medium.  相似文献   

6.
The TRPM ion channel subfamily: molecular, biophysical and functional features   总被引:17,自引:0,他引:17  
Significant progress in the molecular and functional characterization of a subfamily of genes that encode melastatin-related transient receptor potential (TRPM) cation channels has been made during the past few years. This subgroup of the TRP superfamily of ion channels contains eight mammalian members and has isoforms in most eukaryotic organisms. The individual members of the TRPM subfamily have specific expression patterns and ion selectivity, and their specific gating and regulatory mechanisms are tailored to integrate multiple signaling pathways. The diverse functional properties of these channels have a profound effect on the regulation of ion homoeostasis by mediating direct influx of Ca2+, controlling Mg2+ entry, and determining the potential of the cell membrane. TRPM channels are involved in several physiological and pathological conditions in electrically excitable and non-excitable cells, which make them exciting targets for drug discovery.  相似文献   

7.
Mg2+作为人体细胞内含量最多的二价阳离子,在人体生理活动中起着重要的作用。在心血管系统,Mg2+更是发挥着举足轻重的作用。已知与Mg2+相关的心血管疾病有动脉粥样硬化、高血压、心肌肥厚等。由于人体内Mg2+的跨膜转运机制仍不清楚,所以虽然已知这些疾病与Mg2+浓度的变化有相关性,但并不了解其具体的致病机制和治疗靶点。近年来国内外学者研究较多的Mg2+跨膜转运通道是TRP超家族通道,其中TRPM6和TRPM7两个成员被认为参与调控哺乳动物细胞内Mg2+平衡。该文就调节人体心血管系统内Mg2+平衡的重要通道——TRPM7通道与心血管系统之间的关系的研究进展做一简要综述。  相似文献   

8.
TRPM7 is a member of the melastatin-related subfamily of TRP channels and represents a protein that contains both an ion channel and a kinase domain. The protein is ubiquitously expressed and represents the only ion channel known that is essential for cellular viability. TRPM7 is a divalent cation-selective ion channel that is permeable to Ca2+ and Mg2+, but also conducts essential metals such as Zn2+, Mn2+, and Co2+, as well as nonphysiologic or toxic metals such as Ni2+, Cd2+, Ba2+, and Sr2+. The channel is constitutively open but strongly downregulated by intracellular levels of Mg2+ and MgATP and other Mg-nucleotides. Reducing the cellular levels of these regulators leads to activation of TRPM7-mediated currents that exhibit a characteristic nonlinear current-voltage relationship with pronounced outward rectification due to divalent influx at physiologically negative voltages and monovalent outward fluxes at positive voltages. TRPM7 channel activity is also actively regulated following receptor-mediated changes in cyclic AMP (cAMP) and protein kinase A activity. This regulation as well as that by Mg-nucleotides requires a functional endogenous kinase domain. The function of the kinase domain is not completely understood, but may involve autophosphorylation of TRPM7 as well as phosphorylation of other target proteins such as annexin and myosin IIA heavy chain. Based on these properties, TRPM7 is currently believed to represent a ubiquitous homeostatic mechanism that regulates Ca2+ and Mg2+ fluxes based on the metabolic state of the cell. Physiologically, the channel may serve as a regulated transport mechanism for these ions that could affect cell adhesion, cell growth and proliferation, and even cell death under pathological stress such as anoxia.  相似文献   

9.
It has long been known that many chemical and physical stimuli imposed on the cell from its exterior environments elicit a long-lasting Ca2+ influx through yet poorly elucidated transmembrane pathways distinct from voltage-gated and fast ligand-gated Ca2+ entry channels, thereby activating and modulating a variety of cellular functions. Recent progress in molecularly identifying these pathways, initiated from the discovery of Drosophila's visual transduction mutants transient receptor potential (TRP) proteins, has begun to reveal the presence of an enormous superfamily of non-voltage-gated Ca2+ channels. The mammalian members of TRP superfamily are (except for two members) Ca2+-permeable non-selective cation channels which are constitutively active or gated by a multitude of physicochemical stimuli such as receptor stimulation, phospholipids, oxidants, pheromones, cell volume change/shear stress, exogenous compounds affecting sensations, and changes in ambient temperature, acidity and osmolarity and cellular metabolic status. Owing to these diversities in activation and their broad distribution from brain to peripheral organs and tissues, TRP channels are now thought to be involved in divergent physiological functions including; pain and taste transductions; thermo- and mechano-sensations; regulation of mineral absorption/reabsorption; blood pressure, gut motility and airway responsiveness; cell proliferation/death, some of which seem tightly associated with specific genetic disorders. These features will render TRP channels the attractive novel molecular targets for future drug therapy. This paper briefly overviews the current knowledge available for these channels with a main interest in their possible linkage with in vivo function.  相似文献   

10.
1. The influx of Ca2+, Mg2+ and Na+ and the efflux of K+ have central importance for the function and survival of vascular smooth muscle cells, but progress in understanding the influx/efflux pathways has been restricted by a lack of identification of the genes underlying many of the non-voltage-gated cationic channels. 2. The present review highlights evidence suggesting the genes are mammalian homologues of the Transient Receptor Potential (TRP) gene of the fruit-fly Drosophila. The weight of evidence supports roles for TRPC1, TRPP2/1 and TRPC6, but recent studies point also to TRPC3, TRPC4/5, TRPV2, TRPM4 and TRPM7. 3. Activity of these TRP channels is suggested to modulate contraction and sense changes in intracellular Ca2+ storage, G-protein-coupled receptor activation and osmotic stress. Roles in relation to myogenic tone, actions of vasoconstrictors substances, Mg2+ homeostasis and the vascular injury response are suggested. 4. Knowledge that TRP channels are relevant to vascular smooth muscle cells in both their contractile and proliferative phenotypes should pave the way for a better understanding of vascular biology and provide the basis for the discovery of a new set of therapeutic agents targeted to vascular disease.  相似文献   

11.
Ca2+ entry forms an essential component of platelet activation; however, the mechanisms associated with this process are not understood. Ca2+ entry upon receptor activation occurs as a consequence of intracellular store depletion (referred to as store-operated Ca2+ entry or SOCE), a direct action of second messengers on cation entry channels or the direct occupancy of a ligand-gated P2(Xi) receptor. The molecular identity of the SOCE channel has yet to be established. Transient receptor potential (TRP) proteins are candidate cation entry channels and are classified into a number of closely related subfamilies including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin) and TRPML (mucolipins). From the TRPC family, platelets have been shown to express TRPC6 and TRPC1, and are likely to express other TRPC and other TRP members. TRPC6 is suggested to be involved with receptor-activated, diacyl-glycerol-mediated cation entry. TRPC1 has been suggested to be involved with SOCE, though many of the suggested mechanisms remain controversial. As no single TRP channel has the properties described for SOCE in platelets, it is likely that it is composed of a heteromeric association of TRP and related subunits, some of which may be present in intracellular compartments in the resting cell.  相似文献   

12.
There is rapidly growing evidence indicating multiple and important roles of Ca2+-permeable cation TRP channels in the airways, both under normal and disease conditions. The aim of this review was to summarize the current knowledge of TRP channels in sensing oxidative, chemical irritant and temperature stimuli by discussing expression and function of several TRP channels in relevant cell types within the respiratory tract, ranging from sensory neurons to airway smooth muscle and epithelial cells. Several of these channels, such as TRPM2, TRPM8, TRPA1 and TRPV1, are discussed in much detail to show that they perform diverse, and often overlapping or contributory, roles in airway hyperreactivity, inflammation, asthma, chronic obstructive pulmonary disease and other respiratory disorders. These include TRPM2 involvement in the disruption of the bronchial epithelial tight junctions during oxidative stress, important roles of TRPA1 and TRPV1 channels in airway inflammation, hyperresponsiveness, chronic cough, and hyperplasia of airway smooth muscles, as well as TRPM8 role in COPD and mucus hypersecretion. Thus, there is increasing evidence that TRP channels not only function as an integral part of the important endogenous protective mechanisms of the respiratory tract capable of detecting and ensuring proper physiological responses to various oxidative, chemical irritant and temperature stimuli, but that altered expression, activation and regulation of these channels may also contribute to the pathogenesis of respiratory diseases.  相似文献   

13.
14.
TRPC channels are ubiquitously expressed among cell types and mediate signals in response to phospholipase C (PLC)-coupled receptors. TRPC channels function as integrators of multiple signals resulting from receptor-induced PLC activation, which catalyzes the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 depletes Ca2+ stores and TRPC3 channels can be activated by store-depletion. InsP3 also activates the InsP3 receptor, which may undergo direct interactions with the TRPC3 channel, perhaps mediating store-dependence. The other PLC product, DAG, has a direct non-PKC-dependent activating role on TRPC3 channels likely by direct binding. DAG also has profound effects on the TRPC3 channel through PKC. Thus PKC is a powerful inhibitor of most TRPC channels and DAG is a dual regulator of the TRPC3 channel. PLC-mediated DAG results in rapid channel opening followed later by a slower DAG-induced PKC-mediated deactivation of the channel. The decreased level of PIP2 from PLC activation also has an important modifying action on TRPC3 channels. Thus, the TRPC3 channel and PLCgamma form an intermolecular PH domain that has high specificity for binding PIP2. This interaction allows the channel to be retained within the plasma membrane, a further operational control factor for TRPC3. As nonselective cation channels, TRPC channel opening results in the entry of both Na+ and Ca2+ ions. Thus, while they may mediate Ca2+ entry signals, TRPC channels are also powerful modifiers of membrane potential.  相似文献   

15.
16.

Aim:

Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt.

Methods:

HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution.

Results:

Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance.

Conclusion:

Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance.  相似文献   

17.
Transient receptor potential (TRP) channels are members of a relatively newly described family of cation channels that display a wide range of properties and mechanisms of activation. The exact physiological function and regulation of most of these channels have not yet been conclusively determined. Studies over the past decade have revealed important features of the channels that contribute to their function. These include homomeric interactions between TRP monomers, selective heteromeric interactions within members of the same subfamily, interactions of TRPs with accessory proteins and assembly into macromolecular signaling complexes, and regulation within functionally distinct cellular microdomains. Further, distinct constitutive and regulated vesicular trafficking mechanisms have a critical role not only in controlling the surface expression of TRP channels but also their activation in response to stimuli. A number of cellular components such as cytoskeletal and scaffolding proteins also contribute to TRP channel trafficking. Thus, mechanisms involved in the assembly and trafficking of TRP channels control their plasma membrane expression and critically impact their function and regulation.  相似文献   

18.
TRPM2     
TRPM2 is a cation channel enabling influx of Na+ and Ca2+, leading to depolarization and increases in the cytosolic Ca2+ concentration ([Ca2+]i). It is widely expressed, e.g. in many neurons, blood cells and the endocrine pancreas. Channel gating is induced by ADP-ribose (ADPR) that binds to a Nudix box motif in the cytosolic C-terminus of the channel. Endogenous ADPR concentrations in leucocytes are sufficiently high to activate TRPM2 in the presence of an increased [Ca2+]i but probably not at resting [Ca2+]i. Another channel activator is oxidative stress, especially hydrogen peroxide (H2O2) that may act through ADPR after ADPR polymers have been formed by poly(ADP-ribose) polymerases (PARPs) and hydolysed by glycohydrolases. H2O2-stimulated TRPM2 channels essentially contribute to insulin secretion in pancreatic beta-cells and alloxan-induced diabetes mellitus. Inhibition of TRPM2 channels may be achieved by channel blockers such as flufenamic acid or the anti-fungal agents clotrimazole or econazole. Selective blockers of TRPM2 are not yet available; those would be valuable for a characterization of biological roles of TRPM2 in various tissues and as potential drugs directed against oxidative cell damage, reperfusion injury or leucocyte activation. Activation of TRPM2 may be prevented by anti-oxidants, PARP inhibitors and glycohydrolase inhibitors. In future, binding of ADPR to the Nudix box may be targeted. In light of the wide-spread expression and growing list of cellular functions of TRPM2, useful therapeutic applications are expected for future drugs that block TRPM2 channels or inhibit their activation.  相似文献   

19.
TRP channels, in particular the TRPC and TRPV subfamilies, have emerged as important constituents of the receptor-activated Ca2+ influx mechanism triggered by hormones, growth factors, and neurotransmitters through activation ofphospholipase C (PLC). Several TRPC channels are also activated by passive depletion of endoplasmic reticulum (ER) Ca2+. Although in several studies the native TRP channels faithfully reproduce the respective recombinant channels, more often the properties of Ca2+ entry and/or the store-operated current are strikingly different from that of the TRP channels expressed in the same cells. The present review aims to discuss this disparity in the context of interaction of TRPC channels with auxiliary proteins that may alter the permeation and regulation of TRPC channels.  相似文献   

20.
Neuropathic pain is a debilitating disease which affects central as well as peripheral nervous system. Transient receptor potential (TRP) channels are ligand-gated ion channels that detect physical and chemical stimuli and promote painful sensations via nociceptor activation. TRP channels have physiological role in the mechanisms controlling several physiological responses like temperature and mechanical sensations, response to painful stimuli, taste, and pheromones. TRP channel family involves six different TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPA1) which are expressed in pain sensing neurons and primary afferent nociceptors. They function as transducers for mechanical, chemical, and thermal stimuli into inward currents, an essential first step for provoking pain sensations. TRP ion channels activated by temperature (thermo TRPs) are important molecular players in acute, inflammatory, and chronic pain states. Different degree of heat activates four TRP channels (TRPV1–4), while cold temperature ranging from affable to painful activate two indistinctly related thermo TRP channels (TRPM8 and TRPA1). Targeting primary afferent nociceptive neurons containing TRP channels that play pivotal role in revealing physical stimuli may be an effective target for the development of successful pharmacotherapeutics for clinical pain syndromes. In this review, we highlighted the potential role of various TRP channels in different types of neuropathic pain. We also discussed the pharmacological activity of naturally and synthetically originated TRP channel modulators for pharmacotherapeutics of nociception and neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号