首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
1. We investigated whether protein kinase C (PKC) activation stimulates Ca2+ entry in HEK 293 cells transfected with human TRPV4 cDNA and loaded with fura-2. 2. Phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, increased the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner, with an EC50 value of 11.7 nm. Exposure to a hypotonic solution (HTS) after PMA further increased [Ca2+]i. Two other PKC-activating phorbol esters, phorbol 12,13-didecanoate (PDD) and phorbol 12,13-dibutyrate, also caused [Ca2+]i to increase. 3. The inactive isomer 4alpha-PMA was less effective and the peak [Ca2+]i increase was significantly smaller than that induced by PMA. In contrast, 4alpha-PDD produced a monophasic or biphasic [Ca2+]i increase with a different latency, while 4alpha-phorbol had no effect. 4. The PMA-induced [Ca2+]i increase was abolished by prior exposure to bisindolylmaleimide (BIM), a PKC-specific inhibitor, and suppressed by the nonspecific PKC inhibitor 1-(5-isoquinolinesulphonyl)-2-methylpiperazine. The [Ca2+]i increase induced by 4alpha-PMA, 4alpha-PDD or HTS was not significantly affected by BIM. 5. These results suggest that both PKC-dependent and -independent mechanisms are involved in the phorbol ester-induced activation of TRPV4, and the PKC-independent pathway is predominant in HTS-induced Ca2+ entry.  相似文献   

2.
Phosphatidylinositol-4,5-bisphosphate (PIP2) has emerged as a versatile regulator of TRP ion channels. In many cases, the regulation involves interactions of channel proteins with the lipid itself independent of its hydrolysis products. The functions of the regulation mediated by such interactions are diverse. Some TRP channels absolutely require PIP2 for functioning, while others are inhibited. A change of gating is common to all, endowing the lipid a role for modulation of the sensitivity of the channels to their physiological stimuli. The activation of TRP channels may also influence cellular PIP2 levels via the influx of Ca2+ through these channels. Depletion of PIP2 in the plasma membrane occurs upon activation of TRPV1, TRPM8, and possibly TRPM4/5 in heterologous expression systems, whereas resynthesis of PIP2 requires Ca2+ entry through the TRP/TRPL channels in Drosophila photoreceptors. These developments concerning PIP2 regulation of TRP channels reinforce the significance of the PLC signaling cascade in TRP channel function, and provide further perspectives for understanding the physiological roles of these ubiquitous and often enigmatic channels.  相似文献   

3.
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).  相似文献   

4.
Noxious thermal, mechanical, or chemical stimuli evoke pain through excitation of the peripheral terminals called nociceptor, and many kinds of ionotropic and metabotropic receptors are involved in this process. Capsaicin receptor TRPV1 is a nociceptor-specific ion channel that serves as the molecular target of capsaicin. TRPV1 can be activated not only by capsaicin but also by noxious heat (with a thermal threshold >43 degrees C) or protons (acidification), all of which are known to cause pain in vivo. Studies using TRPV1-deficient mice have shown that TRPV1 is essential for selective modalities of pain sensation and for thermal hyperalgesia. One mechanism underlying inflammatory pain which is initiated by tissue damage/inflammation and characterized by hypersensitivity is sensitization of TRPV1. In addition to TRPV1, there are five thermosensitive ion channels in mammals, all of which belong to the TRP (transient receptor potential) super family. These include TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. These channels exhibit distinct thermal activation thresholds (> 52 degrees C for TRPV2, > approximately 34-38 degrees C for TRPV3, > approximately 27-35 degrees C for TRPV4, < approximately 25-28 degrees C for TRPM8 and < 17 degrees C for TRPA1) and are expressed in primary sensory neurons as well as other tissues. Some of the thermosensitive TRP channels are likely to be involved in thermal nociception, since their activation thresholds are within the noxious range of temperatures.  相似文献   

5.
The transient receptor potential vanilloid-4 (TRPV4) belongs to a family of ion channels and can be activated by warm temperature, hypotonicity, cell swelling or lipid mediators of the arachidonic cascade. The metabolites or events responsible for TRPV4 activation are associated with inflammation, arguing in favor of a role for this receptor in inflammatory diseases. The first studies have focused their attention on the role of TRPV4 in neurons and endothelial cells but TRPV4 cellular distribution is widespread, particularly in the gastrointestinal tract. Herein, we review a number of studies demonstrating the expression of TRPV4 in the gut, the regulation of its expression and functions by inflammatory mediators in that organ and the consequences of TRPV4 activation or inhibition in the intestine. We further discuss the relevance of considering this receptor as a potential target for therapeutic development in inflammatory bowel diseases.  相似文献   

6.
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found that D-erythro-sphingosine, a metabolite arising during the de novo synthesis of cellular sphingolipids, activated TRPM3. Other transient receptor potential (TRP) channels tested [classic or canonical TRP (TRPC3, TRPC4, TRPC5), vanilloid-like TRP (TRPV4, TRPV5, TRPV6), and melastatin-like TRP (TRPM2)] did not significantly respond to application of sphingosine. Sphingosine-induced TRPM3 activation was not mediated by inhibition of protein kinase C, depletion of intracellular Ca2+ stores, and intracellular conversion of sphingosine to sphingosine-1-phosphate. Although sphingosine-1-phosphate and ceramides had no effect, two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N,N-dimethyl-D-erythro-sphingosine, also activated TRPM3. Sphingolipids, including sphingosine, are known to have inhibitory effects on a variety of ion channels. Thus, TRPM3 is the first ion channel activated by sphingolipids.  相似文献   

7.
Methylsalicylate (MS) is a naturally occurring compound that is used as a major active ingredient of balms and liniments supplied as topical analgesics. Despite the common use of MS as a pain reliever, the underlying molecular mechanism is not fully understood. Here we characterize the action of MS on transient receptor potential V1 (TRPV1). In human embryonic kidney 293 cells expressing human TRPV1 (hTRPV1), MS evoked increases of [Ca(2+)](i), which declined regardless of its continuous presence, indicative of marked desensitization. TRPV1 antagonists dose-dependently suppressed the MS-induced [Ca(2+)](i) increase. MS simultaneously elicited an inward current and increase of [Ca(2+)](i) in the voltage-clamped cells, suggesting that MS promoted Ca(2+) influx through the activation of TRPV1 channels. MS reversibly inhibited hTRPV1 activation by polymodal stimuli such as capsaicin, protons, heat, anandamide, and 2-aminoethoxydiphenyl borate. Because both the stimulatory and inhibitory actions of MS were exhibited in capsaicin- and allicin-insensitive mutant channels, MS-induced hTRPV1 activation was mediated by distinct channel regions from capsaicin and allicin. In cultured rat sensory neurons, MS elicited a [Ca(2+)](i) increase in cells responding to capsaicin. MS significantly suppressed nocifensive behavior induced by intraplantar capsaicin in rats. The present data indicate that MS has both stimulatory and inhibitory actions on TRPV1 channels and suggest that the latter action may partly underlie the analgesic effects of MS independent of inhibition of cyclooxygenases in vivo.  相似文献   

8.
Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal distal convoluted tubule. TRPV5 is unique within the family of transient receptor potential (TRP) channels due to its high Ca2+ selectivity. Ca2+ flux through TRPV5 is controlled in three ways. First, TRPV5 gene expression is regulated by calciotropic hormones such as vitamin D3 and parathyroid hormone. Second, Ca2+ transport through TRPV5 is controlled by modulating channel activity. Intracellular Ca2+, for example, regulates channel activity by feedback inhibition. Third, TRPV5 is controlled by mobilization of the channel through trafficking toward the plasma membrane. The newly identified anti-aging hormone Klotho regulates TRPV5 by cleaving off sugar residues from the extracellular domain of the protein, resulting in a prolonged expression of TRPV5 at the plasma membrane. Inactivation of TRPV5 in mice leads to severe hypercalciuria, which is compensated by increased intestinal Ca2+ absorption due to augmented vitamin D3 levels. Furthermore, TRPV5 deficiency in mice is associated with polyuria, urine acidification, and reduced bone thickness. Some pharmaceutical compounds, such as the immunosuppressant FK506, affect the Ca2+ balance by modulating TRPV5 gene expression. This underlines the importance of elucidating the role of TRPV5 in Ca(2+)-related disorders, thereby enhancing the possibilities for pharmacological intervention. This chapter describes a unique TRP channel and highlights its regulation and function in renal Ca2+ reabsorption and overall Ca2+ homeostasis.  相似文献   

9.
Neuropathic pain is a debilitating disease which affects central as well as peripheral nervous system. Transient receptor potential (TRP) channels are ligand-gated ion channels that detect physical and chemical stimuli and promote painful sensations via nociceptor activation. TRP channels have physiological role in the mechanisms controlling several physiological responses like temperature and mechanical sensations, response to painful stimuli, taste, and pheromones. TRP channel family involves six different TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPA1) which are expressed in pain sensing neurons and primary afferent nociceptors. They function as transducers for mechanical, chemical, and thermal stimuli into inward currents, an essential first step for provoking pain sensations. TRP ion channels activated by temperature (thermo TRPs) are important molecular players in acute, inflammatory, and chronic pain states. Different degree of heat activates four TRP channels (TRPV1–4), while cold temperature ranging from affable to painful activate two indistinctly related thermo TRP channels (TRPM8 and TRPA1). Targeting primary afferent nociceptive neurons containing TRP channels that play pivotal role in revealing physical stimuli may be an effective target for the development of successful pharmacotherapeutics for clinical pain syndromes. In this review, we highlighted the potential role of various TRP channels in different types of neuropathic pain. We also discussed the pharmacological activity of naturally and synthetically originated TRP channel modulators for pharmacotherapeutics of nociception and neuropathic pain.  相似文献   

10.
Thermosensitive transient receptor potential vanil oid 2(thermo TRPV2) is a nonselective Ca2+-permeable cation channel broadly expressed, and is implicated in the pathology of diseases such as diabetes and pancreatitis.However, the physiological and pharmacological functions of TRPV2 channels have not been extensively investigated because of the absence of specific modulators and the channel with high-threshold of heat activation. In this study, we report a pair of natural coumarin derivative enantiomers(+)-murraxocin(B304-1) and(+)-murraxocin(B304-2) from the root of Murrayaexoyica for their selective inhibition of TRPV2 channels expressed in HEK293 cells and native TRPV2 currents in differentiated brown adipocytes. Both B304-1 and B304-2 were identified from screening of TRPV2-overexpressing HEK-293 cells in calcium imaging and fluorescence assays. Wholecell patch clamp recordings confirmed the enantiomers B304-1 and B304-2 could selectively inhibit the agonist 2-APB-mediated activation of TRPV2 current with IC_(50) values of(34.2±7.8) μmol·L~(-1) and(3.7±0.7) μmol·L~(-1), respectively.Molecular docking and site-directed mutagenesis revealed a key residue I600 of TRPV2 is critical for the binding of the enantiomers. Furthermore, B304-1 and B304-2 significantly reversed TRPV2 agonist-induced inhibition of mouse brown adipocyte differentiation. Taken together,our identification of two natural coumarin enantiomers provides valuable tools and chemical leads for further elucidation of TRPV2 channel function, and pharmacological modulation of thermo TRPV2 in brown adipocytes may represent a new therapeutic strategy for treatment of energy imbalance or metabolic disorders such as diabetes and obesity.  相似文献   

11.
Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.  相似文献   

12.
The mammalian branch of the Transient Receptor Potential (TRP) superfamily of cation channels consists of 28 members. They can be subdivided in six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') group. The TRPV subfamily comprises channels that are critically involved in nociception and thermo-sensing (TRPV1, TRPV2, TRPV3, TRPV4) as well as highly Ca2+ selective channels involved in Ca2+ absorption/reabsorption in mammals (TRPV5, TRPV6). In this review we summarize fundamental physiological properties of all TRPV members in the light of various cellular functions of these channels and their significance in the systemic context of the mammalian organism.  相似文献   

13.
TRPV4 belongs to the TRPV subfamily of Transient Receptor Potential (TRP) ion channels. This year marks the 10 year anniversary of the discovery of this polymodal ion channel which is activated by a variety of stimuli including warm temperatures, hypotonicity and endogenous lipids. Coupled with a widespread tissue distribution, this activation profile has resulted in a large number of disparate physiological functions for TRPV4. These range from temperature monitoring in skin keratinocytes to osmolarity sensing in kidneys, sheer stress detection in blood vessels and osteoclast differentiation control in bone. As knowledge of its physiological roles has expanded, interest in targeting TRPV4 modulation for therapeutic purposes has arisen and is now focused on several areas. First, as with related TRP channels TRPV1, TRPV3, TRPM8 and TRPA1, TRPV4 antagonism is being considered for inflammatory and neuropathic pain treatment. Recent work conducted using KO mice and agonists 4αPDD and GSK1016790A suggests bladder dysfunctions may also be targeted. Additionally, ventilator-induced lung injury has emerged as another potential indication for TRPV4 antagonists. Herein we review the known small molecule modulators of TRPV4 and relate progress made in identifying potent, selective and bioavailable agonists and antagonists to interrogate this ion channel in vivo.  相似文献   

14.
Although activation of G protein-coupled inward rectifying K+ (GIRK) channels by Gi/Go-coupled receptors has been shown to be important in postsynaptic inhibition in the central nervous system, there is also evidence to suggest that inhibition of GIRK channels by Gq-coupled receptors is involved in postsynaptic excitation. In the present study we addressed whether the Gq-coupled receptors of the bombesin family can couple to GIRK channels and examined the mechanism by which this process occurs. Different combinations of GIRK channel subunits (Kir3.1, Kir3.2, and Kir3.4) and bombesin receptors (BB1 and BB2) were expressed in Xenopus oocytes. In all combinations tested GIRK currents were reversibly inhibited upon application of the bombesin-related peptides, neuromedin B or gastrin-releasing peptide in a concentration-dependent manner. Incubation of oocytes in the phospholipase C inhibitor U73122 or the protein kinase C (PKC) inhibitors chelerythrine and staurosporine significantly reduced the inhibition of GIRK currents by neuromedin B, whereas the Ca2+ chelator, BAPTA-AM had no effect. The involvement of PKC was further demonstrated by direct inhibition of GIRK currents by the phorbol esters, phorbol-12,13-dibutyrate and phorbol-12-myristate-13-acetate. In contrast, the inactive phorbol ester 4alpha-phorbol and protein kinase A activators, forskolin and 8-bromo cAMP did not inhibit GIRK currents. At the single-channel level, direct activation of PKC using phorbol ester phorbol-12, 13-dibutyrate caused a dramatic reduction in open probability of GIRK channels due to an increase in duration of the interburst interval.  相似文献   

15.
Despite its expression in different cell types, transient receptor potential V2 (TRPV2) is still the most cryptic members of the TRPV channel family. 2-Aminoethoxydiphenyl borate (2APB) has been shown to be a common activator of TRPV1, TRPV2, and TRPV3, but 2APB-triggered TRPV2 activation remains to be thoroughly characterized. In this study, we have developed an assay based on cell lines stably expressing mouse TRPV2 channels and intracellular calcium measurements to perform a pharmacological profiling of the channel. Phenyl borate derivatives were found to activate mouse TRPV2 with similar potencies and thus were used to screen a panel of channel blockers. Besides the classic TRP inhibitors ruthenium red (RR) and 1-(beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SKF96365), two potassium channel blockers, tetraethylammonium (TEA) and 4-aminopyridine, and an inhibitor of capacitative calcium entry, 1-(2-(trifluoromethyl) phenyl) imidazole (TRIM), were found to inhibit TRPV2 activation by 100 microM 2APB. Activation by 300 microM 2APB, however, could only be inhibited by RR and TRIM. Electrophysiological recordings demonstrated that TEA inhibition was use-dependent, suggesting that high concentrations of 2APB might induce a progressive conformational change of the channel. Comparison of TRPV2 orthologs revealed that the human channel was insensitive to 2APB. Analysis of chimeric constructs of mouse and human TRPV2 channels showed that the molecular determinants of 2APB sensitivity could be localized to the intracellular amino and carboxyl domains. Finally, using lentiviral-driven expression, we demonstrate that hTRPV2 exerts a dominant-negative effect on 2APB activation of native rodent TRPV2 channels and thus may provide an interesting tool to investigate cellular functions of TRPV2 channels.  相似文献   

16.
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.  相似文献   

17.
Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca2+]i elevation occurred only at high concentrations (> or = 100 microM). This response was substantially decreased in a Ca2+-free medium. Vanilloids displayed similar patterns of Ca2+ response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca2+ response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blocker of receptor-gated and store-operated Ca2+ (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP3) receptor and Ca2+ influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca2+ channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na+-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca2+-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin (> or = 100 microM) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca2+ entry (SOCE). In the absence of external Ca2+, the robust Ca2+ entry after subsequent addition of Ca2+ was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.  相似文献   

18.
The effects of cannabinoid receptor ligands including 2-arachidonoylglycerol, R-methanandamide, Delta9-THC (Delta9-tetrahydrocannabinol), WIN 55,212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], CP 55,940 ([1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol]) and a series of fatty acids on depolarization-induced Ca2+ effluxes mediated by voltage-dependent Ca2+ channels were investigated comparatively in transverse tubule membrane vesicles from rabbit skeletal muscle. Vesicles were loaded with 45Ca2+ and membrane potentials were generated by establishing potassium gradients across the vesicle using the ionophore valinomycin. Endocannabinoids, 2-arachidonoylglycerol and R-methanandamide (all 10 microM), inhibited depolarization-induced Ca2+ effluxes and specific binding of [3H]PN 200-110 (isradipine) to transverse tubule membranes. On the other hand, synthetic cannabinoids, including CP 55,940, WIN 55,212-2, and Delta9-THC (all 10 microM), were ineffective. Additional experiments using endocannabinoid metabolites suggested that whereas ethanolamine and glycerol were ineffective, arachidonic acid inhibited Ca2+ effluxes and specific binding of [3H]PN 200-110. Further studies indicated that only those fatty acids containing two or more double bonds were effective in inhibiting depolarization-induced Ca2+ effluxes and specific binding of [3H]PN 200-110. These results indicate that endocannabinoids, but not synthetic cannabinoids, directly inhibit the function of voltage-dependent calcium channels (VDCCs) and modulate the specific binding of calcium channel ligands of the dihydropyridine (DHP) class.  相似文献   

19.
1 Mammalian transient receptor potential (TRP) channels include the nonselective cation channel TRPV1, which is activated by a range of stimuli including low pH, vanilloids and heat. Previously, selective mutagenesis experiments identified an intracellular residue (S512Y) critical to discriminating between pH and vanilloid (capsaicin) gating of the rat TRPV1 receptor. 2 In this study, switching the equivalent residue in the human TRPV1 (which has some significant differences with the rat TRPV1) also rendered this channel relatively insensitive to activation by capsaicin and proved critical in determining the receptor's sensitivity to the putative endovanilloid N-arachidonoyl-dopamine (NADA), suggesting a similar mode of activation for these two agonists. 3 Potency of pH gating was reduced; however, voltage-dependent outward rectification properties of the pH-dependent current and gating by heat and pH sensitisation of the S512Y heat response remained unaffected. 4 Surprisingly, residual capsaicin gating was detected and could be sensitised by pH even in the presence of a competitive antagonist. Taken together, these findings indicate that effective functional interaction of capsaicin with the S512Y channel still occurred, although the vanilloid-dependent gating per se was severely compromised. 5 This observation provides additional evidence for capsaicin interacting at multiple sites, distinct from the S512 residue located close to the intracellular face of the pore.  相似文献   

20.
TRPV通道属于瞬时受体电位(transient receptor potential,TRP)通道,含有TRPV1、TRPV2、TRPV3、TR-PV4、TRPV5和TRPV6等多种亚型,它们参与机体痛觉、味觉、体温等多种生理机能的调控.近期研究发现TRPV1和TRPV4通道可能参与缺血/氧处理诱导的心肌与血管保护.TRPV1通道的作用机制可能与降钙素基因相关肽(CGRP)及P物质的释放、花生四烯酸脂氧合酶(ALOX)的表达增多有关;TRPV4通道介导的血管保护机制可能与NO和EDHF介导的内皮源性舒张有关.本文将对TRPV1和TRPV4通道在不同形式缺血/氧处理诱导下的心血管保护机制进行综述,以期为心肌缺血的治疗提供新方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号