首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found that D-erythro-sphingosine, a metabolite arising during the de novo synthesis of cellular sphingolipids, activated TRPM3. Other transient receptor potential (TRP) channels tested [classic or canonical TRP (TRPC3, TRPC4, TRPC5), vanilloid-like TRP (TRPV4, TRPV5, TRPV6), and melastatin-like TRP (TRPM2)] did not significantly respond to application of sphingosine. Sphingosine-induced TRPM3 activation was not mediated by inhibition of protein kinase C, depletion of intracellular Ca2+ stores, and intracellular conversion of sphingosine to sphingosine-1-phosphate. Although sphingosine-1-phosphate and ceramides had no effect, two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N,N-dimethyl-D-erythro-sphingosine, also activated TRPM3. Sphingolipids, including sphingosine, are known to have inhibitory effects on a variety of ion channels. Thus, TRPM3 is the first ion channel activated by sphingolipids.  相似文献   

2.
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.  相似文献   

3.
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).  相似文献   

4.
The endothelium plays a crucial role in the regulation of vascular tone by releasing a number of vasodilator mediators, including nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor(s). The production of these mediators is typically initiated by an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) in endothelial cells. An essential component of this Ca(2+) signal is the entry of Ca(2+) from the extracellular space through plasma membrane Ca(2+)-permeable channels. Although the molecular identification of the potential Ca(2+) entry channel(s) responsible for the release of endothelial relaxing factors is still evolving, accumulating evidence indicates that the transient receptor potential (TRP) channels, a superfamily of Ca(2+)-permeable cation channels, serve as an important mechanism of Ca(2+) entry in endothelial cells and other nonexcitable cells. The activation of these channels has been implicated in diverse endothelial functions ranging from control of vascular tone and regulation of vascular permeability to angiogenesis and vascular remodeling. This review summarizes recent evidence concerning TRP channels and endothelium-dependent dilation in several systemic vascular beds. In particular, we highlight the emerging roles of several TRP channels from the canonical and vanilloid subfamilies, including TRPV4, TRPC4, and TRPC6, in vasodilatory responses to shear stress and receptor agonists and discuss potential signaling mechanisms linking the TRP channel activation and the initiation of endothelium-derived hyperpolarizing factor-mediated responses in endothelial cells.  相似文献   

5.
1 2-aminoethoxydiphenyl borate (2-APB) has been widely used to examine the roles of inositol 1,4,5-trisphosphate receptors (IP3Rs) and store-operated Ca2+ entry and is an emerging modulator of cationic channels encoded by transient receptor potential (TRP) genes. 2 Using Ca2+-indicator dye and patch-clamp recording we first examined the blocking effect of 2-APB on human TRPC5 channels expressed in HEK-293 cells. 3 The concentration-response curve has an IC50 of 20 microM and slope close to 1.0, suggesting one 2-APB molecule binds per channel. The blocking effect is not shared by other Ca2+ channel blockers including methoxyverapamil, nifedipine, N-propargylnitrendipine, or berberine. 4 In whole-cell and excised membrane patch recordings, 2-APB acts from the extracellular but not intracellular face of the membrane. 5 Block of TRPC5 by 2-APB is less at positive voltages, suggesting that it enters the electric field or acts by modulating channel gating. 6 2-APB also blocks TRPC6 and TRPM3 expressed in HEK-293 cells, but not TRPM2. 7 Block of TRP channels by 2-APB may be relevant to cell proliferation because 2-APB has a greater inhibitory effect on proliferation in cells overexpressing TRPC5. 8 Our data indicate a specific and functionally important binding site on TRPC5 that enables block by 2-APB. The site is only available via an extracellular route and the block shows mild voltage-dependence.  相似文献   

6.
The vascular endothelial cell forms a semipermeable barrier between blood and interstitium. Inflammatory mediators such as thrombin and histamine induce vascular leakage defined as increased endothelial permeability to plasma proteins and other solutes. Increased endothelial permeability is the hallmark of inflammatory vascular edema. Inflammatory mediators that bind to heptahelical G protein-coupled receptors (GPCR) trigger increased endothelial permeability by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)). The rise in [Ca(2+)](i) activates key signaling pathways, which mediate cytoskeletal reorganization (through myosin light chain (MLC)-dependent contraction) and disassembly of VE-cadherin at the adherens junctions. The Ca(2+)-dependent protein kinase C (PKC) isoform, PKC-alpha, plays a critical role in initiating endothelial cell contraction and disassembly of VE-cadherin junctions. The increase in [Ca(2+)](i) induced by a variety of agonists is achieved by the generation of inositol 1,4,5-trisphosphate (IP3), activation of IP3 receptors (IP3R), release of stored intracellular Ca(2+), and Ca(2+) entry through plasma membrane channels. Recent findings demonstrate that IP3-sensitive Ca(2+) store depletion activates plasma membrane cation channels (i.e., store-operated cation channels (SOC) or Ca(2+) release activated channels) to cause Ca(2+) influx in endothelial cells. This mode of Ca(2+) influx is also known as capacitative Ca(2+) entry (CCE). Store-operated Ca(2+) influx signals increase in permeability and nitric oxide (NO) production and provokes changes in gene expression in endothelial cells. Recent studies have established that the Drosophila transient receptor potential (TRP) gene family of channels expressed in endothelial cells can function as SOC. Deletion of one of the TRP homologues, TRPC4, in mouse caused impairment in store-operated Ca(2+) current and Ca(2+) store release activated Ca(2+) influx in aortic and lung endothelial cells (LEC). In TRPC4 knockout (TRPC4(-/-)) mice, acetylcholine-induced endothelium-dependent smooth muscle relaxation was drastically reduced. In addition, TRPC4(-/-) mice LEC exhibited lack of actin stress fiber formation and cell retraction in response to thrombin activation of proteinase-activated receptor-1 (PAR-1) in endothelial cells. The increase in lung microvascular permeability in response to thrombin receptor activation was inhibited in TRPC4(-/-) mice. These results indicate that endothelial TRP channels such as TRPC1 and TRPC4 play an important role in signaling the increase in endothelial permeability.  相似文献   

7.
TRPC3 represents one of the first identified mammalian relatives of the Drosophila trp gene product. Despite intensive biochemical and biophysical characterization as well as numerous attempts to uncover its physiological role in native cell systems, this channel protein still represents one of the most enigmatic members of the transient receptor potential (TRP) superfamily. TRPC3 is significantly expressed in brain and heart and likely to play a role in both non-excitable as well as excitable cells, being potentially involved in a wide spectrum of Ca2+ signalling mechanisms. Its ability to associate with a variety of partner proteins apparently enables TRPC3 to form different cation channels in native cells. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators and cellular Ca2+ gradients as well as redox signals. The physiological/pathophysiological functions of this highly versatile cation channel protein are as yet barely delineated. Here we summarize current knowledge on properties and possible signalling functions of TRPC3 and discuss the potential biological relevance of this signalling molecule.  相似文献   

8.
Ion channels play a pivotal role in blood pressure regulation. Amongst them, much attention has been directed to dihydropyridine (DHP)-sensitive (L-type) voltage-dependent Ca(2+) channels (VDCCs) and iberiotoxin-sensitive Ca(2+)-dependent K(+) channels which are distributed over the whole vascular tree and contribute to vascular tone regulation. Recent advances in vascular electrophysiology have, however, added novel and interesting molecules to this repertoire. In small mesenteric arterioles, the predominant VDCC phenotype is not L-type but DHP-insensitive, high voltage-activated VDCCs that exhibit unique properties distinguishable from those of hitherto-known VDCCs. Surprisingly, mibefradil, a well-known T-type selective blocker potently inhibits these channels, and the use of this blocker has indicated that Ca(2+) entry through these channels may be one of the important determinants of peripheral vascular tone. Another new candidate likely involved in blood pressure control is the mammalian homologue of Drosophila transient receptor potential (TRP) protein, including TRPC4 and TRPC6. Experiments in genetically engineered TRPC4-deficient mice have suggested that expression of TRPC4 is indispensable for agonist-induced Ca(2+) entry in endothelial cells and production of nitric oxide and vasorelaxation. TRPC6 is likely to contribute to sustained Ca(2+) entry into vascular smooth muscle cells activated by stimulation of sympathetic nerves and elevation of intravascular pressure. Antisense oligonucleotide experiments have suggested that this protein is an essential component of alpha1-adrenoceptor activated and mechanosensitive cation channels in some vascular tissues. This review overviews what is known about the role of ionic channels in blood pressure control with main focus on the above-mentioned new molecules as promising targets for drug discovery and development.  相似文献   

9.
TRPC channels are ubiquitously expressed among cell types and mediate signals in response to phospholipase C (PLC)-coupled receptors. TRPC channels function as integrators of multiple signals resulting from receptor-induced PLC activation, which catalyzes the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 depletes Ca2+ stores and TRPC3 channels can be activated by store-depletion. InsP3 also activates the InsP3 receptor, which may undergo direct interactions with the TRPC3 channel, perhaps mediating store-dependence. The other PLC product, DAG, has a direct non-PKC-dependent activating role on TRPC3 channels likely by direct binding. DAG also has profound effects on the TRPC3 channel through PKC. Thus PKC is a powerful inhibitor of most TRPC channels and DAG is a dual regulator of the TRPC3 channel. PLC-mediated DAG results in rapid channel opening followed later by a slower DAG-induced PKC-mediated deactivation of the channel. The decreased level of PIP2 from PLC activation also has an important modifying action on TRPC3 channels. Thus, the TRPC3 channel and PLCgamma form an intermolecular PH domain that has high specificity for binding PIP2. This interaction allows the channel to be retained within the plasma membrane, a further operational control factor for TRPC3. As nonselective cation channels, TRPC channel opening results in the entry of both Na+ and Ca2+ ions. Thus, while they may mediate Ca2+ entry signals, TRPC channels are also powerful modifiers of membrane potential.  相似文献   

10.
The canonical transient receptor potential (TRPC) cation channels are mammalian homologs of the photoreceptor channel TRP in Drosophila melanogaster. All seven TRPCs (TRPC1 through TRPC7) can be activated through Gq/11 receptors or receptor tyrosine kinase (RTK) by mechanisms downstream of phospholipase C. The last decade saw a rapidly growing interest in understanding the role of TRPC channels in calcium entry pathways as well as in understanding the signal(s) responsible for TRPC activation. TRPC channels have been proposed to be activated by a variety of signals including store depletion, membrane lipids, and vesicular insertion into the plasma membrane. Here we discuss recent developments in the mode of activation as well as the pharmacological and electrophysiological properties of this important and ubiquitous family of cation channels.  相似文献   

11.
TRP channels, in particular the TRPC and TRPV subfamilies, have emerged as important constituents of the receptor-activated Ca2+ influx mechanism triggered by hormones, growth factors, and neurotransmitters through activation ofphospholipase C (PLC). Several TRPC channels are also activated by passive depletion of endoplasmic reticulum (ER) Ca2+. Although in several studies the native TRP channels faithfully reproduce the respective recombinant channels, more often the properties of Ca2+ entry and/or the store-operated current are strikingly different from that of the TRP channels expressed in the same cells. The present review aims to discuss this disparity in the context of interaction of TRPC channels with auxiliary proteins that may alter the permeation and regulation of TRPC channels.  相似文献   

12.
1. The influx of Ca2+, Mg2+ and Na+ and the efflux of K+ have central importance for the function and survival of vascular smooth muscle cells, but progress in understanding the influx/efflux pathways has been restricted by a lack of identification of the genes underlying many of the non-voltage-gated cationic channels. 2. The present review highlights evidence suggesting the genes are mammalian homologues of the Transient Receptor Potential (TRP) gene of the fruit-fly Drosophila. The weight of evidence supports roles for TRPC1, TRPP2/1 and TRPC6, but recent studies point also to TRPC3, TRPC4/5, TRPV2, TRPM4 and TRPM7. 3. Activity of these TRP channels is suggested to modulate contraction and sense changes in intracellular Ca2+ storage, G-protein-coupled receptor activation and osmotic stress. Roles in relation to myogenic tone, actions of vasoconstrictors substances, Mg2+ homeostasis and the vascular injury response are suggested. 4. Knowledge that TRP channels are relevant to vascular smooth muscle cells in both their contractile and proliferative phenotypes should pave the way for a better understanding of vascular biology and provide the basis for the discovery of a new set of therapeutic agents targeted to vascular disease.  相似文献   

13.
TRPC (canonical transient receptor potential) channels are the closest mammalian homologs of Drosophila TRP and TRP-like channels. TRPCs are rather nonselective Ca2+ permeable cation channels and affect cell functions through their ability to mediate Ca2+ entry into cells and their action to collapse the plasma membrane potentials. In neurons the latter function leads to action potentials. The mammalian genome codes for seven TRPCs of which TRPC2 is the largest with the most restricted pattern of expression and has several alternatively spliced variants. Expressed in model cells, TRPC2 mediates both receptor- and store depletion-triggered Ca2+ entry. TRPC2 is unique among TRPCs in that its complete gene has been lost from the Old World monkey and human genomes, in which its remnants constitute a pseudogene. Physiological roles for TRPC2 have been studied in mature sperm and the vomeronasal sensory system. In sperm, TRPC2 is activated by the sperm's interaction with the oocyte's zona pellucida, leading to entry of Ca2+ and activation of the acrosome reaction. In the vomeronasal sensory organ (VNO), TRPC2 was found to constitute the transduction channel activated through signaling cascade initiated by the interaction of pheromones with V1R and V2R G protein-coupled receptors on the dendrites of the sensory neurons. V1Rs and V2Rs, the latter working in conjunction with class I MHC molecules, activate G(i)- and G(o)-type G proteins which in turn trigger activation of TRPC2, initiating an axon potential that travels to the axonal terminals. The signal is then projected to the glomeruli of the auxiliary olfactory bulb from where it is carried first to the amygdala and then to higher cortical cognition centers. Immunocytochemistry and gene deletion studies have shown that (1) the V2R-G(o)-MHCIb-beta2m pathway mediates male aggressive behavior in response to pheromones; (2) the V1R-G(i2) pathway mediates mating partner recognition, and (3) these differences have an anatomical correlate in that these functional components are located in anatomically distinct compartments of the VNO. Interestingly, these anatomically segregated signaling pathways use a common transduction channel, TRPC2.  相似文献   

14.
Ca2+ entry signals are crucial in the control of smooth muscle contraction. Smooth muscle cells are unusual in containing plasma membrane (PM) Ca2+ entry channels that respond to voltage changes, receptor activation and Ca2+ store depletion. Activation of these channel subtypes is highly coordinated. The TRPC6 channel, widely expressed in most smooth muscle cell types, is largely non-selective to cations and is activated by diacylglycerol arising from receptor-induced phosholipase C activation. Receptor activation results largely in Na+ ion movement through TRPC6 channels, depolarization and subsequent activation of voltage-dependent L-type Ca2+ channels. The TRPC6 channels also appear to be activated by mechanical stretch, resulting again in depolarization and L-type Ca2+ channel activation. Such a coupling may be crucial in mediating the myogenic tone response in vascular smooth muscle. The emptying of stores mediated by inositol 1,4,5-trisphosphate receptors triggers the endoplasmic reticulum (ER) Ca2+ sensing protein stromal-interacting molecule (STIM) 1 to translocate into defined ER-PM junctional areas in which coupling occurs to Orai proteins, which serve as highly Ca2+-selective low-conductance Ca2+ entry channels. These ER-PM junctional domains may serve as crucial sites of interaction and integration between the function of store-operated, receptor-operated and voltage-operated Ca2+ channels. The STIM, Orai and TRPC channels represent highly promising new pharmacological targets through which such control may be induced.  相似文献   

15.
The store-operated Ca2+ entry (SOCE) pathway has aroused much interest recently not only because of its unusual nature as retrograde signaling, but also due to its wide occurrence and its possible role in physiological and pathophysiological situations. A number of synthetic or naturally occurring drugs recently used to block this Ca2+ entry pathway are briefly reviewed. Although important and interesting information has been obtained using these putative SOCE blockers described in this review, they indeed have sites of action other than the SOCE channels, and caution must be exercised in using them as putative tools to study SOCE. For instance, the highly variable potency of some synthetic blockers (SK&F 96365 and LOE 908) to inhibit SOCE has provided indirect evidence for the heterogeneous nature of the SOCE channels, an observation consistent with the differential Mn2+ permeability through SOCE in various cell types. The use of SK&F 96365 at relatively high concentrations has unexpectedly revealed its potential as an opener of a novel cation entry pathway. The ability of LU52396 to discriminate the SOCE channel in its closed/open states may be useful in the analysis of the kinetics of SOCE channel activation/inactivation. The possible presence of both agonistic and antagonistic saponins derived from ginseng plants for the study of SOCE deserves more rigorous experimental investigations, which may lay new ground for the development of new types of Ca2+ antagonists (and/or agonists) from the natural resources.  相似文献   

16.
Although the molecular identity of capacitative Ca(2+) entry (CCE) channels remains elusive, transient receptor potential channel (TRPC) family members 3, 6, and 7, which are activated by diacylglycerol (DAG), have been put forward as possible candidates. Because human embryonic kidney (HEK) 293 cells endogenously express these TRP subunits, this cell line is suitable for investigating whether DAG-activated TRP subunits form part of the putative multimeric assemblies that mediate CCE. Adenylyl cyclase type 8 (AC8) is activated by CCE in nonexcitable cells but is not responsive to other forms of Ca(2+) entry, such as ionophore- or arachidonate-activated entry through the plasma membrane. In this study, we exploited this unique dependence of AC8 on CCE to determine whether the DAG analog, 1-oleyl-2-acetyl-sn-glycerol (OAG), activates the same subset of Ca(2+) channels as store depletion, which triggers CCE. In populations of HEK 293 cells, OAG evoked a faster and greater influx of Ca(2+) than CCE. Both pathways of Ca(2+) entry could be triggered simultaneously in the same batch of cells, with additive effects. It is striking that OAG-mediated Ca(2+) entry, unlike CCE, did not stimulate AC8 activity in populations of cells. In single cells, OAG evoked a highly heterogeneous response, whereas CCE occurred as a smooth and sustained increase in [Ca(2+)](i). Taken together, our results indicate that, in HEK 293 cells, OAG-activated Ca(2+) entry is distinct from CCE. The inability of the OAG-activated Ca(2+) entry pathway to regulate AC8 further reinforces the absolute dependence of this enzyme on CCE.  相似文献   

17.

BACKGROUND AND PURPOSE

Transient receptor potential canonical 5 (TRPC5) channels are widely expressed, including in the CNS, where they potentiate fear responses. They also contribute to other non-selective cation channels that are stimulated by G-protein-coupled receptor agonists and lipid and redox factors. Steroids are known to modulate fear and anxiety states, and we therefore investigated whether TRPC5 exhibited sensitivity to steroids.

EXPERIMENTAL APPROACH

Human TRPC5 channels were conditionally expressed in HEK293 cells and studied using intracellular Ca2+ measurement, whole-cell voltage-clamp and excised patch techniques. For comparison, control experiments were performed with cells lacking TRPC5 channels or expressing another TRP channel, TRPM2. Native TRPC channel activity was recorded from vascular smooth muscle cells.

KEY RESULTS

Extracellular application of pregnenolone sulphate, pregnanolone sulphate, pregnanolone, progesterone or dihydrotestosterone inhibited TRPC5 activity within 1–2 min. Dehydroepiandrosterone sulphate or 17β-oestradiol had weak inhibitory effects. Pregnenolone, and allopregnanolone, a progesterone metabolite and stereo-isomer of pregnanolone, all had no effects. Progesterone was the most potent of the steroids, especially against TRPC5 channel activity evoked by sphingosine-1-phosphate. In outside-out patch recordings, bath-applied progesterone and dihydrotestosterone had strong and reversible effects, suggesting relatively direct mechanisms of action. Progesterone inhibited native TRPC5-containing channel activity, evoked by oxidized phospholipid.

CONCLUSIONS AND IMPLICATIONS

Our data suggest that TRPC5 channels are susceptible to relatively direct and rapid stereo-selective steroid modulation, leading to channel inhibition. The study adds to growing appreciation of TRP channels as non-genomic steroid sensors.  相似文献   

18.
It has been reported that activation of metabotropic glutamate receptor 1 (mGluR1) can mediate endocannabinoid-induced short-term depression of synaptic transmission in cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse. mGluR1 has signaling pathways involved in intracellular calcium increase which may contribute to endocannabinoid release. Two major mGluR1-evoked calcium signaling pathways are known: (1) slow-kinetic inward current carried by transient receptor potential canonical (TRPC) channel which is permeable to Ca(2+); (2) IP(3)-induced calcium release from intracellular calcium store. However, it is unclear how much each calcium source contributes to endocannabinoid signaling. Here, we investigated whether calcium influx through mGluR1-evoked TRPC channel contributes to endocannabinoid signaling in cerebellar Purkinje cells. At first, we applied SKF96365 to inhibit TRPC, which blocked endocannabinoid-induced short-term depression completely. However, an alternative TRP channel inhibitor, BTP2 did not affect endocannabinoid-induced short-term depression although it blocked mGluR1-evoked TRPC currents. Endocannabinoid signaling occurred normally even though the TRPC current was mostly blocked by BTP2. Our data imply that TRPC current does not play an important role in endocannabinoid signaling. We also suggest precaution in applying SKF96365 to inhibit TRP channels and propose BTP2 as an alternative TRPC inhibitor.  相似文献   

19.
The full-length transient receptor (TRPC)1 polypeptide is composed of about 790 amino acids, and several splice variants are known. The predicted structure and topology is of an integral membrane protein composed of six transmembrane domains, and a cytoplasmic C- and N-terminal domain. The N-terminal domain includes three ankyrin repeat motifs. Antibodies which recognise TRPC1 have been developed, but it has been difficult to obtain antibodies which have high affinity and specificity for TRPC1. This has made studies of the cellular functions of TRPC1 somewhat difficult. The TRPC1 protein is widely expressed in different types of animal cells, and within a given cell is found at the plasma membrane and at intracellular sites. TRPC1 interacts with calmodulin, caveolin-1, the InsP3 receptor, Homer, phospholipase C and several other proteins. Investigations of the biological roles and mechanisms of action of TRPC1 have employed ectopic (over-expression or heterologous expression) of the polypeptide in addition to studies of endogenous TRPC1. Both approaches have encountered difficulties. TRPC1 forms heterotetramers with other TRPC polypeptides resulting in cation channels which are non-selective. TRPC1 may be: a component of the pore of store-operated Ca2+ channels (SOCs); a subsidiary protein in the pathway of activation of SOCs; activated by interaction with InsP3R; and/or activated by stretch. Further experiments are required to resolve the exact roles and mechanisms of activation of TRPC1. Cation entry through the TRPC1 channel is feed-back inhibited by Ca2+ through interaction with calmodulin, and is inhibited by Gd3+, La3+, SKF96365 and 2-APB, and by antibodies targeted to the external mouth of the TRPC1 pore. Activation of TRPC1 leads to the entry to the cytoplasmic space of substantial amounts of Na+ as well as Ca2+. A requirement for TRPC1 is implicated in numerous downstream cellular pathways. The most clearly described roles are in the regulation of growth cone turning in neurons. It is concluded that TRPC1 is a most interesting protein because of the apparent wide variety of its roles and functions and the challenges posed to those attempting to elucidate its primary intracellular functions and mechanisms of action.  相似文献   

20.
Trebak M 《Drug discovery today》2006,11(19-20):924-930
The canonical transient receptor potential (TRPC) channels constitute one of the three major families within the large transient receptor potential (TRP) superfamily. TRPC channels are the closest mammalian homologues of Drosophila TRP, the light-activated channel in Drosophila photoreceptor cells. All TRPC channels (TRPC1-7) are activated via phospholipase-C-coupled receptors and were, therefore, proposed to encode elusive native receptor-activated cation channels in many cell types. A physiological role has been established for all of the known TRPC channels, including the control of vascular tone (TRPC1, TRPC4 and TRPC6) or lymphocyte activation, which is essential for immune competence (TRPC1 and TRPC3). The emergence of TRPC channels in controlling a variety of biological functions offers new and promising targets for drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号