首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Seven transmembrane segment (7TMS) receptors for chemokines and related molecules have been demonstrated to be essential, in addition to CD4, for HIV and SIV infection. The β-chemokine receptor CCR5 is the primary, perhaps sole, coreceptor for HIV-1 during the early and chronic phases of infection, and supports infection by most primary HIV-1 and many SIV isolates. Late-stage primary and laboratory-adapted HIV-1, HIV-2, and SIV isolates can use other 7TMS receptors. CXCR4 appears especially important in late-stage HIV infection; several related receptors can also be used. The specificity of SIV viruses is similar. Commonalities among these receptors, combined with analyses of mutated molecules, indicate that discrete, conformationally-dependent sites on the chemokine receptors determine their association with the third variable and conserved regions of viral envelope glycoproteins. These studies are useful for elucidating the mechanism and molecular determinants of HIV-1 entry, and of inhibitors to that entry.  相似文献   

2.
3.
HIV co-receptors as targets for antiviral therapy   总被引:2,自引:0,他引:2  
  相似文献   

4.
The chemokine receptor CCR5 plays a crucial role in transmission of HIV isolates, which predominate in the early and middle stages of infection, as well as those, which populate the brain and cause neuro-AIDS. CCR5 is therefore an attractive therapeutic target for design of entry inhibitors. Specific rapid filtration binding assays have been useful for almost 30 years both for drug discovery and understanding molecular mechanisms of drug action. Reported in 1986, prior to discovery of chemokine co-receptors and so thought to act at CD4, peptide T (DAPTA) appears to greatly reduce cellular viral reservoirs in both HAART experienced and treatment na?ve patients, without toxicities. We here report that DAPTA potently inhibits specific CD4-dependent binding of gp120 Bal (IC50=0.06 nM) and CM235 (IC50=0.32 nM) to CCR5. In co-immunoprecipitation studies, DAPTA (1 nM) blocks formation of the gp120/sCD4 complex with CCR5. Confocal microscopic studies of direct FITC-DAPTA binding to CCR5+, but not CCR5-, cells show that CCR5 is a DAPTA receptor. The capability of DAPTA to potently block gp120-CD4 binding to the major co-receptor CCR5 explains its molecular and therapeutic mechanism of action as a selective antiviral entry inhibitor for R5 tropic HIV-1 isolates.  相似文献   

5.
6.
The replication of several R5X4 strains is blocked by single CXCR4 inhibitors such as AMD3100 or T140 although the target cells express both CXCR4 and CCR5 in vitro. To identify which region(s) of the Env are involved in the increased sensitivity to CXCR4 inhibitors, we isolated a T140-escape mutant using R5X4 HIV-1 strain 89.6. An isolated mutant harbored a single amino acid substitution in the V3 region of the Env (arginine 308 to serine R308S). Luciferase-reporter HIV-1 pseudotyped with the mutant Env showed that the substitution conferred total resistance to CXCR4 antagonists but increased sensitivity to a CCR5 antagonist TAK-779 in the infection of the cells expressing both CCR5 and CXCR4. Analyses using the cells expressing a single coreceptor showed that the mutant Env predominantly and efficiently utilized CCR5 rather than CXCR4 while retaining R5X4 phenotype. These results indicated that the sensitivities of the R5X4 strain to coreceptor inhibitors were altered by a single amino acid substitution in the V3 region of gp120.  相似文献   

7.
Peptide T, which is derived from the V2 region of HIV-1, inhibits replication of R5 and dual-tropic (R5/X4) HIV-1 strains in monocyte-derived macrophages (MDMs), microglia, and primary CD4(+)T cells. Little to no inhibition by peptide T was observed with lab adapted X4 viruses such as IIIB, MN, or NL4-3 propagated in CD4(+) T cells or in the MAGI entry assay. The more clinically relevant R5/X4 early passage patient isolates were inhibited via either the X4 or R5 chemokine receptors, although inhibition was greater with R5 compared to X4 receptors. Virus inhibition ranged from 60 to 99%, depending on the assay, receptor target, viral isolate and amount of added virus. Peak inhibitory effects were detected at concentrations from 10(-12) to 10(-9) M. Peptide T acted to block viral entry as it inhibited in the MAGI cell assay and blocked infection in the luciferase reporter assay using HIV virions pseudotyped with ADA envelope. These results using early passage virus grown in primary cells, together with two different entry reporter assays, show that peptide T selectively inhibits HIV replication using chemokine receptor CCR5 compared to CXC4, explaining past inconsistencies of in vitro antiviral effects.  相似文献   

8.
Inhibition of the human immunodeficiency virus type 1 (HIV-1) coreceptor is an encouraging new approach to pharmacotherapy against HIV. The HIV-1 strain makes use of either the CCR5 or the CXCR4 coreceptor to gain access into host CD4+ cells. Maraviroc, the first HIV-1 CCR5 coreceptor antagonist, blocks entry of HIV-1. This recently approved drug has demonstrated clinically significant decreases in plasma concentrations of HIV-1 RNA and increases in CD4+ cell counts; however, it is indicated only for use as salvage therapy. Drug resistance is a concern, as is selective pressure on viral coreceptor use, because viral coreceptor targets may switch as disease progresses. In addition, before maraviroc therapy can be started, costly assays are required to determine the host's viral coreceptor tropism. Emerging therapies targeting CXCR4, the other HIV coreceptor, have shown promise in decreasing plasma concentrations of HIV-1 RNA. Long-term studies with both targets are required to explore the critical issues of efficacy and immunologic safety, as the function of these coreceptors is linked to host chemokine pathways.  相似文献   

9.
The interaction between HIV gp120 and galactose-containing cell surface glycolipids such as GalCer or Gb(3) is known to facilitate HIV binding to both CD4(+) as well as CD4(-) cells. In an effort to develop small molecule HIV-1 entry inhibitors with improved solubility and efficacy, we have synthesized a series of C-glycoside analogs of GalCer and tested their anti HIV-1 activity. The analogs were tested for gp120 binding using a HIV-1 (IIIB) V3-loop specific peptide. Two of the six analogs that interfered with gp120 binding also inhibited HIV Env-mediated cell-to-cell fusion and viral entry in the absence of any significant cytotoxicity. Analogs with two side chains did not show inhibition of fusion and/or infection under identical conditions. The inhibition of virus infection seen by these compounds was not coreceptor dependent, as they inhibited CXCR4, CCR5 as well as dual tropic viruses. These compounds showed inhibition of HIV entry at early steps in viral infection since the compounds were inactive if added post viral entry. Temperature-arrested state experiments showed that the compounds act at the level of virus attachment to the cells likely at a pre-CD4 engagement step. These compounds also showed inhibition of VSV glycoprotein-pseudotyped virus. The results presented here show that the glycoside derivatives of GalCer with simple side chains may serve as a novel class of small molecule HIV-1 entry inhibitors that would be active against a number of HIV isolates as well as other enveloped viruses.  相似文献   

10.
Introduction: The discovery of CC-chemokine receptor 5 (CCR5) as a human immunodeficiency virus type 1 (HIV-1) coreceptor opened a new avenue to exploit CCR5 as a potential target for the intervention of HIV-1's cellular entry.

Areas covered: Various small-molecule CCR5 inhibitors were identified in the last decade; however, maraviroc (MVC) is the only CCR5 inhibitor currently used in the clinic. Concerns and challenges that exist for wider clinical use of CCR5 inhibitors are discussed.

Expert opinion: Although MVC-containing regimens have been recommended for treatment-naïve patients, MVC appears to have been used as one of drugs for salvage therapy rather than for treating drug-naïve patients. This is apparently due to MVC's twice-daily dosing schedule. Another significant disadvantage is that a costly tropism assay must be performed prior to MVC treatment. The access to inexpensive, sensitive, and rapid tropism tests should be made easily available. Only a few novel CCR5 inhibitors are presently in the pipeline. Development of potent and metabolically-stable novel CCR5 inhibitors allowing once-daily dosing regimens is needed. Development of CXCR4 inhibitors should greatly improve the treatment options available to patients infected with X4- and/or dual-tropic HIV-1 strains in combination with a CCR5 inhibitor.  相似文献   

11.
INTRODUCTION: The discovery of CC-chemokine receptor 5 (CCR5) as a human immunodeficiency virus type 1 (HIV-1) coreceptor opened a new avenue to exploit CCR5 as a potential target for the intervention of HIV-1's cellular entry. AREAS COVERED: Various small-molecule CCR5 inhibitors were identified in the last decade; however, maraviroc (MVC) is the only CCR5 inhibitor currently used in the clinic. Concerns and challenges that exist for wider clinical use of CCR5 inhibitors are discussed. EXPERT OPINION: Although MVC-containing regimens have been recommended for treatment-na?ve patients, MVC appears to have been used as one of drugs for salvage therapy rather than for treating drug-na?ve patients. This is apparently due to MVC's twice-daily dosing schedule. Another significant disadvantage is that a costly tropism assay must be performed prior to MVC treatment. The access to inexpensive, sensitive, and rapid tropism tests should be made easily available. Only a few novel CCR5 inhibitors are presently in the pipeline. Development of potent and metabolically-stable novel CCR5 inhibitors allowing once-daily dosing regimens is needed. Development of CXCR4 inhibitors should greatly improve the treatment options available to patients infected with X4- and/or dual-tropic HIV-1 strains in combination with a CCR5 inhibitor.  相似文献   

12.
Human immunodeficiency virus (HIV)-positive individuals frequently suffer from progressive encephelopathy, which is characterized by sensory neuropathy, sensory myelopathy, and dementia. Our group and others have reported the presence of highly macrophage-tropic R5 variants of HIV-1 in brain tissue of patients with neurological complications. These variants are able to exploit low amounts of CD4 and/or CCR5 for infection and potentially confer an expanded tropism for any cell types that express low CD4 and/or CCR5. In contrast to the brain-derived envelopes, we found that envelopes from lymph node tissue, blood, or semen were predominantly non-macrophage-tropic and required high amounts of CD4 for infection. Nevertheless, where tested, the non-macrophage-tropic envelopes conferred efficient replication in primary CD4+ T-cell cultures. Determinants of R5 macrophage tropism appear to involve changes in the CD4 binding site, although further unknown determinants are also involved. The variation of R5 envelopes also affects their sensitivity to inhibition by ligands and entry inhibitors that target CD4 and CCR5. In summary, HIV-1 R5 viruses vary extensively in macrophage tropism. In the brain, highly macrophage-tropic variants may represent neurotropic or neurovirulent viruses. In addition, variation in R5 macrophage tropism may also have implications (1) for transmission, depending on what role macrophages or cells that express low CD4 and/or CCR5 play in the establishment of infection in a new host, and (2) for pathogenesis and depletion of CD4+ T cells (i.e., do highly macrophage-tropic variants confer a broader tropism among CD4+ T-cell populations late in disease and contribute to their depletion?).  相似文献   

13.
Background: Several new strategies targeting HIV infection aim to inhibit virus entry by blocking the chemokine receptor CCR5 used by macrophage tropic strains associated with early infection. The current application uses virus-like particles as a support to present CCR5 peptide antigens. Objectives: The virus-like particle (VLP)–CCR5 composition aims to function as either a preventative and/or therapeutic vaccine inducing durable autoantibodies that can block CCR5 and prevent HIV entry or attenuate disease progression. Methods: The novelty of the current application lies in the chemical conjugation of circularised peptide antigens to VLPs, primarily the CCR5 N-terminal domain alone but also including the first extracellular loop (ECL-1). Immunised mice and rabbits generated antibodies that recognised native CCR5 and inhibited entry of pseudotype viruses bearing envelope glycoproteins from diverse primary strains in vitro. Results/conclusions: Further work is required to assess the in vivo therapeutic potential of these CCR5 compositions. As therapeutic vaccines and/or preventative vaccines, the potential for selecting CXCR4 tropic virus populations associated with disease progression will need to be considered in addition to the broader consequences of targeting a cellular antigen involved in innate immunity.  相似文献   

14.
趋化因子受体CCR5是细胞膜表面G蛋白偶联受体中的一员.HIV-1在体内与细胞融合时需要CCR5作为辅助受体介导.因此,CCR5可作为抗HIV-1药物的筛选靶点,目前已筛选出多种CCR5抑制剂.但随着CCR5抑制剂的使用,HIV-1对于这些抑制剂的抗性也逐渐产生,而抗性的产生机制还不明确.本文主要介绍CCR5介导HIV-1与细胞融合的机制及HIV-1对CCR5抑制剂的抗性产生机制.  相似文献   

15.
The HIV entry inhibitors revisited   总被引:2,自引:0,他引:2  
  相似文献   

16.
The V3-loop region in the envelope protein gp120 of HIV is critical for viral infection, but its interaction with the target cells is not clear. Using synthetic peptides, representing linear V3 sequences as reagents, we obtained evidence to show inhibition of infection by both T-cell- and macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1) (X4 and R5, respectively), without interfering with gp120-CD4 interaction, by the V3 peptides through binding to host cell membrane glycosphingolipids (GSL). Synthetic peptides mimicking the central 15-21 amino acid sequence of the V3-loop region in both X4 and R5 strains of HIV-1 competed with and blocked the entry of both types of HIV isolates. These HIV-inhibitory V3 peptides exhibited specific binding to target cells that was not competed by antibodies to either the primary receptor CD4 or the co-receptors CXCR-4 and CCR5. However, R15K, the V3 peptide from HIV-1 IIIB gp120 exhibited specific binding to three distinct cell surface GSL: GM3, Gb3, and GalCer. Further, R15K inhibited GSL binding of gp120 from both HIV-1 IIIB (X4, Gb3-binding strain) and HIV-1 89.6 (X4R5, GM3-binding strain). Together, these results suggest a critical V3-mediated post-CD4-binding event involving cell surface GSL binding represented by the HIV-inhibitory V3 peptides, that is common for the entry of diverse HIV-1 strains and may be targeted for the development of novel HIV therapeutics aimed at blocking viral entry.  相似文献   

17.
18.
To identify monoclonal antibodies (mAbs) with high potency and novel recognition sites, more than 25,000 of mouse hybridomas were screened and 4 novel anti-human CCR5 mAbs ROAb12, ROAb13, ROAb14, and ROAb18 showing potent activity in cell-cell fusion (CCF) assay were identified. These mAbs demonstrated potent antiviral activities in both single-cycle HIV infection (IC(50) range: 0.16-4.3 microg/ml) and PBMC viral replication (IC(50) range: 0.02-0.04 microg/ml) assays. These potent antiviral effects were donor-independent. All 4 mAbs were also highly potent in the PhenoSense assay against 29 HIV isolates covering clade A through G. In all antiviral assays, these mAbs showed potency superior to the previously reported mAb 2D7 in side-by-side comparison studies. All 4 mAbs were also fully active against viruses resistant to HIV fusion inhibitor enfuvirtide and CCR5 antagonist maraviroc. Although ROAb12, ROAb14, and ROAb18 inhibited RANTES, MIP1alpha and MIP1beta binding and cell activation, the other novel mAb ROAb13 was inactive in inhibiting cell activation by these three ligands. Furthermore, highly synergistic antiviral effects were found between mAb ROAb13 and 2D7 or ROAb12. In addition, none of these mAbs showed agonist activity or caused internalization of the CCR5 receptor.  相似文献   

19.
Antagonists of the chemokine receptor, CCR5, may provide important new drugs for the treatment of HIV-1. In this study we have examined the mechanism of action of two functional antagonists of the chemokine receptor CCR5 (UK-396,794, UK-438,235) in signalling and internalisation assays using CHO cells expressing CCR5. Both compounds were potent inverse agonists versus agonist-independent [(35)S]GTPgammaS binding to membranes of CHO cells expressing CCR5. Both compounds also acted as allosteric inhibitors of CCL5 (RANTES) and CCL8 (MCP-2)-stimulated [(35)S]GTPgammaS binding to CHO-CCR5 membranes, reducing the potency and maximal effects of the two chemokines. The data are consistent with effects of the allosteric inhibitors on both the binding and signalling of the chemokines. Both compounds inhibited CCR5 internalisation triggered by chemokines. When CHO-CCR5 cells were treated with either of the two compounds for prolonged periods of time (24 h) an increase (approximately 15%) in cell surface CCR5 was detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号