首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.  相似文献   

2.
Targeting death-inducing receptors in cancer therapy   总被引:3,自引:0,他引:3  
Takeda K  Stagg J  Yagita H  Okumura K  Smyth MJ 《Oncogene》2007,26(25):3745-3757
Deregulated cell death pathways may lead to the development of cancer, and induction of tumor cell apoptosis is the basis of many cancer therapies. Knowledge accumulated concerning the molecular mechanisms of apoptotic cell death has aided the development of new therapeutic strategies to treat cancer. Signals through death receptors of the tumor necrosis factor (TNF) superfamily have been well elucidated, and death receptors are now one of the most attractive therapeutic targets in cancer. In particular, DR5 and DR4, death receptors of TNF-related apoptosis-inducing ligand (TRAIL or Apo2L), are interesting targets of antibody-based therapy, since TRAIL may also bind decoy receptors that may prevent TRAIL-mediated apoptosis, whereas TRAIL ligand itself selectively induces apoptosis in cancer cells. Here, we review the potential therapeutic utility of agonistic antibodies against DR5 and DR4 and discuss the possible extension of this single-antibody-based strategy when combined with additional modalities that either synergizes to cause enhanced apoptosis or further engage the cellular immune response. Rational design of antibody-based therapies combining the induction of tumor cell apoptosis and activation of tumor-specific adaptive immunity enables promotion of distinct steps of the antitumor immune response, thereby enhancing tumor-specific lymphocytes that can eradicate TRAIL/DR5-resistant mutating, large established and heterogeneous tumors in a manner that does not require the definition of individual tumor-specific antigens.  相似文献   

3.
Death receptors are important modulators of the extrinsic apoptotic pathway. Activating certain death receptors such as death receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (i.e., DR4 and DR5) selectively kills cancer cells via induction of apoptosis while sparing normal cells. Thus, soluble recombinant TRAIL and agonistic antibodies to DR4 or DR5 have progressed to phase I and phase II clinical trials. Many cancer therapeutic drugs including chemotherapeutic agents have been shown to induce the expression or redistribution at the cell surface of death receptors including TRAIL death receptors. In addition, chemotherapeutic agents have also been shown to enhance induction of apoptosis by TRAIL or agonistic antibodies or overcome cell resistance to TRAIL or agonistic antibodies. Targeted induction of apoptosis by activation of the death receptor-mediated extrinsic apoptotic pathway should be an ideal therapeutic strategy to eliminate cancer cells. Therefore, death receptors, particularly TRAIL death receptors, have emerged as an important cancer therapeutic target. This article will focus on reviewing and discussing the modulation of death receptors by cancer therapeutic agents and its implications in cancer therapy.  相似文献   

4.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate apoptosis through the activation of their death receptors. The ability of TRAIL to selectively induce apoptosis of transformed or tumor cells but not normal cells promotes the development of TRAIL-based cancer therapy. Accumulating preclinical studies demonstrate that the TRAIL ligand can effectively induce cancer cell apoptosis. Completed and ongoing Phases I and II clinical trials using TRAIL are showing clinically promising outcomes without significant toxicity. Importantly, TRAIL, DR4 and DR5 can all be induced by chemotherapeutics and/or radiation, which can sensitize cancer cells to TRAIL. Thus, understanding the regulation of the TRAIL apoptosis pathway can help develop more selective TRAIL-based agents for the treatment of human cancer.  相似文献   

5.
Pancreatic cancer cells are usually resistant to apoptosis mediated by tumor necrosis factor (TNF)-alpha or FasL, and their toxicity towards normal cells hampers their application for therapeutic use. TNF-related apoptosis-inducing ligand (TRAIL), a novel member of the TNF family, triggers apoptosis in a variety of malignant cells, but exhibits less cytotoxicity in normal cells. To investigate the therapeutic potential of TRAIL, we analyzed the expression of TRAIL and its apoptosis-inducing receptors (DR4 and DR5) in the normal and cancerous human pancreas, and the sensitivity of pancreatic cancer cells to TRAIL cytotoxicity. TRAIL, DR4 and DR5 mRNA levels were concomitantly increased in pancreatic cancers compared with normal controls (P<0.01), and there were positive correlations between the expression levels of TRAIL and DR4, TRAIL and DR5 and between DR4 and DR5 mRNA (r=0.85, r=0.87, r=0.91; P<0.01). Immunostaining revealed the presence of the corresponding proteins frequently within the same cancer cells. In five pancreatic cancer cell lines, TRAIL, DR4 and DR5 mRNA expression was detectable at various levels. However, independent of the presence of DR4 and DR5, TRAIL cytotoxicity assays revealed that pancreatic cancer cells showed a significantly lower sensitivity (LD(50)>85 ng/ml) to TRAIL treatment than Jurkat T lymphoma cells (LD(50)=7.2 ng/ml). These findings show that pancreatic cancers are insensitive towards TRAIL-mediated apoptosis despite expression of TRAIL and its receptors, suggesting the presence of mediators which inhibit the TRAIL cell-death-inducing pathway in pancreatic cancer cells.  相似文献   

6.
Tumor growth is often associated with insufficient apoptosis. The Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) and its proapoptotic receptors death receptor 4 (DR4) and DR5 agonistic monoclonal antibodies are being developed as targeted therapeutics because they kill cancer cells while sparing normal cells. A challenge to targeted therapeutics is the selection of patients who are most likely to benefit from targeted drugs because of the heterogeneity of cancer. Molecular imaging may be useful in targeted drug development by assessing the target expression and drug-target interaction, and for predicting therapeutic response. We hypothesized that the cell surface expression level of DR4/5 may predict the proapoptotic targeted therapeutic response if the signaling pathway downstream is intact. The goal of this proof-of-concept study was to develop a molecular imaging strategy to predict proapoptotic anti-cancer therapy response at an early stage of treatment. TRAIL and the DR5 agonistic monoclonal antibody HGS-ETR2 (Lexatumumab, TRM-2) were labeled with a near-infrared dye and these were used to image the TRAIL receptors on cultured TRAIL sensitive and TRAIL resistant human tumor cells as well as tumor xenografts. Imaging of cells and tumor-bearing animals was conducted with near infrared fluorescence imagers and apoptosis in cells was assessed by western blots of PARP-cleavage and flow cytometry of sub-G1 content. Apoptosis in tumors was evaluated by imaging near-infrared dye-labeled Annexin V and tumor tissue activated caspase-3 staining. Both in vitro and in vivo studies showed that imaging of death inducing ligand-receptor interaction was consistent with the apoptosis readout. Thus TRAIL sensitive tumors that express TRAIL receptors underwent cell death following treatment whereas tumors lacking TRAIL receptor expression were shown to be TRAIL resistant. In vivo molecular imaging of TRAIL receptor expression correlated with response to TRAIL therapy and an apoptotic response in vivo.  相似文献   

7.
Because tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells, it is being tested in cancer patients. Unfortunately, patients develop resistance to the cytokine, therefore, agents that can sensitize cells to TRAIL are urgently needed. In this study, we investigated whether dibenzylideneacetone (DBA) can sensitize cancer cells to TRAIL and potentiates TRAIL-induced apoptosis. As indicated by accumulation of the membrane phospholipid phosphatidylserine, DNA breaks, intracellular esterase activity, and activation of caspase-8, -9, and -3, we concluded that DBA potentiated TRAIL-induced apoptosis in colon cancer cells. DBA also converted TRAIL resistant-cells to TRAIL-sensitive. When examined for the mechanism, we found that DBA decreased the expression of antiapoptotic proteins and decoy receptor-2 and increased proapoptotic proteins. DBA also induced both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 by small interfering RNA (SiRNA) reduced the sensitizing effect of DBA on TRAIL-induced apoptosis. In addition, DBA increased the expression of CHOP proteins. Knockdown of CHOP by siRNA decreased the induction of DBA-induced DR5 expression and apoptosis. Induction of receptors by DBA, however, was p53-independent, as deletion of p53 had no effect on receptor induction. We observed that DBA-induced induction of DR5 and DR4 was mediated through generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of death receptors and suppression of cell survival proteins by DBA. Overall, our results show that DBA potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via activation of ROS and CHOP mediated pathways.  相似文献   

8.
Cell surface Death Receptor signaling in normal and cancer cells   总被引:22,自引:0,他引:22  
The extrinsic cell death pathway is initiated upon ligand-receptor interactions at the cell surface including FAS ligand-FAS/APO1, TNF-TNF receptors, and TRAIL-TRAIL receptors. Abnormalities of various components of these pathways have been identified in human cancer including loss of FAS expression, deletion or loss of TRAIL receptor DR4, mutation of TRAIL receptor DR5, overexpression of TRAIL decoy TRID or overexpression of Fas decoy, as well as overexpression of the caspase activation inhibitor, FLIP. Death ligands have been explored as potential therapeutics in cancer therapy with some limitations in the case of FAS and TNF due to toxicities. TRAIL remains promising as a therapeutic and has potential for combination with chemo- or radio-therapy. The death receptor signaling pathways include cross-talk with the mitochondrial pathway and can in some cases be influenced by mitochondrial membrane potential changes or NF-kappaB. FLIP and BCL-XL expression may reduce sensitivity of cancer cells to combination therapies.  相似文献   

9.
Multiple clinical trials are ongoing to evaluate the potential antitumor activity of human TNF variants, Fas ligand (FasL), TNF-related apoptosis inducing ligand (TRAIL) and its agonistic antibodies. These drug products act through the death receptors (DRs) TNF receptor 1 (TNFR1), Fas/CD95, DR4 (TRAIL-R1) and/or DR5 (TRAIL-R2), respectively. Therefore, characterization of the level and localization of DR expression in cancer cells is important for DR-targeted therapy. In this study, we examined the subcellular distribution of the four DRs in a panel of 10 human breast cancer cell lines by western blots and flow cytometry and 50 human breast tumors by immunohistochemistry. Despite their total protein expressions, the DRs were found to be absent on the surface of some cell lines. Consistent with this result, all four DRs were found to be mostly expressed in the cytoplasm and/or the nucleus of primary breast tumors (n=50). We further determined the growth inhibition activity (GI50) of the death ligands, recombinant human TNFα, FasL and TRAIL, and found a correlation with the subcellular localization of the corresponding DRs. These results demonstrate an aberrant expression of the death receptors in breast cancer cells, and suggest that the lack of surface DRs appears to be predictive of tumor resistance to DR-targeted therapies.  相似文献   

10.
Wang S 《Oncogene》2008,27(48):6207-6215
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has been shown to induce apoptosis in cancer cells but not normal cells. TRAIL triggers apoptosis through binding to its receptors DR4 and KILLER/DR5. Chemo or radiotherapy induces apoptosis through activation of p53 in response to cellular damage, whereas TRAIL induces apoptosis independent of p53. Mutations or deletions of p53 occurred in more than half of human tumors confer resistance to chemo-radiotherapy. Treatment of TRAIL-resistant tumors with agents targeting death receptors, intrinsic Bcl-2 family members, inhibitor of apoptosis proteins or PI3K/Akt pathway restores the sensitivity to TRAIL-induced apoptosis. Combination of rhTRAIL or the agonist antibody for TRAIL receptor with conventional chemotherapeutic agents results in enhanced efficacy in preventing tumor progression and metastasis. Therefore, the rational design of TRAIL-based therapy combining with other modality that either synergizes to apoptosis induction or overcomes the resistance represents a challenging strategy to achieve the systemic tumor targeting and augment the antitumor activity of cancer therapeutics.  相似文献   

11.
Tumor necrosis factor-related apoptosis-inducing-ligand (TRAIL/Apo-2 ligand) induces apoptosis in the majority of cancer cells without appreciable effect in normal cells. Here, we report the effects of TRAIL on apoptosis in several human breast cancer cell lines, primary memory epithelial cells, and immortalized nontransformed cell lines, and we examine whether chemotherapeutic agents augment TRAIL-induced cytotoxicity in breast cancer cells in vitro and in vivo. TRAIL induced apoptosis with different sensitivities, and the majority of cancer cell lines were resistant to TRAIL. The chemotherapeutic drugs (paclitaxel, vincristine, vinblastine, etoposide, camptothecin, and Adriamycin) induced death receptors (DRs) TRAIL receptor 1/DR4 and TRAIL receptor 2/DR5, and successive treatment with TRAIL resulted in apoptosis of both TRAIL-sensitive and -resistant cells. Actinomycin D sensitized TRAIL-resistant cells through up-regulation of caspases (caspase-3, -9, and -8). TRAIL induces apoptosis in Adriamycin-resistant MCF7 cells already expressing high levels of death receptors DR4 and DR5. The pretreatment of breast cancer cells with chemotherapeutic drugs followed by TRAIL reversed their resistance by triggering caspase-3, -9, and -8 activation. The sequential treatment of nude mice with chemotherapeutic drugs followed by TRAIL induced caspase-3 activity and apoptosis in xenografted tumors. Complete eradication of established tumors and survival of mice were achieved without detectable toxicity. Thus, the sequential administration of chemotherapeutic drugs followed by TRAIL may be used as a new therapeutic approach for cancer therapy.  相似文献   

12.
Suliman A  Lam A  Datta R  Srivastava RK 《Oncogene》2001,20(17):2122-2133
Tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines that promotes apoptosis. TRAIL induces apoptosis via death receptors (DR4 and DR5) in a wide variety of tumor cells but not in normal cells. The objectives of this study are to investigate the intracellular mechanisms by which TRAIL induces apoptosis. The death receptor Fas, upon ligand binding, trimerizes and recruits the adaptor protein FADD through the cytoplasmic death domain of Fas. FADD then binds and activates procaspase-8. It is unclear whether FADD is required for TRAIL-induced apoptosis. Here we show that the signaling complex of DR4/DR5 is assembled in response to TRAIL binding. FADD and caspase-8, but not caspase-10, are recruited to the receptor, and cells deficient in either FADD or caspase-8 blocked TRAIL-induced apoptosis. In addition, TRAIL initiates the activation of caspases, the loss of mitochondrial transmembrane potential (Deltapsi(m)), the cleavage of BID, and the redistribution of mitochondrial cytochrome c. Treatment of Jurkat cells with cyclosporin A delayed TRAIL-induced Deltapsi(m), caspase-3 activation and apoptosis. Similarly, Overexpression of Bcl-2 or Bcl-X(L) delayed, but did not inhibit, TRAIL-induced Deltapsi(m) and apoptosis. In contrast, XIAP, cowpox virus CrmA and baculovirus p35 inhibited TRAIL-induced apoptosis. These data suggest that death receptors (DR4 and DR5) and Fas receptors induced apoptosis through identical signaling pathway, and TRAIL-induced apoptosis via both mitochondrial-dependent and -independent pathways.  相似文献   

13.
Tumor necrosis-factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF-superfamily that selectively induces apoptosis through death receptors (DRs) 4 and/or 5 in cancer cells. These receptors are expressed on the cancer cell surface, without affecting normal cells. Unfortunately, many clinical studies have shown that cancer cells acquire TRAIL-resistance and finally avoid TRAIL-induced apoptosis. The detailed mechanisms of this resistance are not well understood. In the current study, we established a TRAIL-resistant human colon cancer DLD-1 cell line to clarify the mechanisms of TRAIL-resistance and developed agents to cancel its machinery. Also, we found that cancer stem-like cells from breast epithelial proliferating MCF10A cells were also sensitive to TRAIL-induced apoptosis. The enforced expression of DR5 in both TRAIL-resistant cells partially recovered the sensitivity to the TRAIL ligand, which was judged by the activation of caspase-8. As a result, we newly found that the mechanisms of TRAIL-resistance comprised co-existence of a decrease in the expression level of DR5 along with malfunction of its recruitment to the cell surface, as evidenced by Western blot and immunocytological analysis, respectively. Interestingly, α-mangostin, which is a xanthone derivative, canceled the resistance by increasing the expression level of DR5 through down-regulation of miR-133b and effectively induced the translocation of DR5 to the cancer cell surface membrane in TRAIL-resistant DLD-1 cells. These findings indicate that α-mangostin functioned as a sensitizer of TRAIL-induced apoptosis and may thus serve as a possible adjuvant compound for cytokine therapy to conquer TRAIL-resistance.  相似文献   

14.
The family of tumor necrosis factor related apoptosis inducing ligand (TRAIL) receptors, including the pro-apoptotic DR4 and p53-regulated KILLER/DR5, as well as the decoys TRID and TRUNDD, are all located on human chromosome 8p21-22. This region of the genome is frequently altered in head and neck cancer. We previously reported that KILLER/DR5 can be mutationally inactivated in head and neck cancer. Here, we report that the FaDu nasopharyngeal cancer cell line contains an abnormal chromosome 8p21-22 region. In addition, there appears to be a homozygous deletion involving DR4 but not KILLER/DR5 in FaDu cells. The homozygous loss within the DR4 gene encompasses its death domain, which is required for apoptotic signaling. The deletion of DR4 in FaDu cells is associated with resistance to the cytotoxic effects of TRAIL. Re-introduction of wild-type DR4 leads to apoptosis and restores TRAIL sensitivity of FaDu cells. These observations suggest that the death inducing DR4 receptor gene may be a rare target for inactivation in human cancer and that DR4 loss may contribute to resistance to TRAIL therapy.  相似文献   

15.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo 2L) is a novel cytotoxic ligand belonging to TNF superfamily. Among TRAIL receptors, death receptor 4 (DR4) and DR5 containing death domain (DD) in their cytoplasmic region mediate apoptosis-signaling upon TRAIL binding, while decoy receptor 1 (DcR1) and DcR2 with a truncated or non-functional DD play "decoy" role. The interaction of TRAIL and TRAIL receptors plays important roles both in immunoregulation and immune pathogenesis of some diseases. In this study, we raised hybridomas secreting monoclonal antibodies against TRAIL (FMU1.1, 1.2, 1.3), DR4 (FMU1.4), DR5 (FMU1.5, 1.6), DcR1 (FMU1.7) and DcR2 (FMU1.8, 1.9). These MAbs could be used for fluorescent staining and flow cytometry (FCM) analysis as well as immunohistochemistry (IHC). Moreover, FMU1.1, 1.3, 1.4 and 1.5 could be used as coating antibodies paring corresponding polyclonal antibodies to develop sandwich ELISAs to quantitate the soluble TRAIL (sTRAIL), sDR4 or sDR5 in serum samples respectively. In addition, cross-linking of DR4/DR5 by FMU1.4 or FMU1.5 MAbs could induce apoptosis of some DR4/DR5-expressing tumor cells. Thus, this set of monoclonal antibodies against TRAIL or TRAIL receptors may be useful in expression phenotypic and functional study of TRAIL and TRAIL receptors.  相似文献   

16.
Tumor necrosis factor receptor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis primarily in cancer cells with little or no effect on normal cells; therefore, it has the potential for use in cancer therapy. TRAIL binding to death receptors DR4 and DR5 triggers the death-inducing signal complex formation and activation of procaspase-8, which in turn activates caspase-3, leading to cell death. Like FasL, TRAIL can trigger type 1 (caspase-8 --> caspase-3) or type 2 (caspase-8 --> Bid cleavage --> capsase-9 --> caspase-3) apoptotic pathways depending on the cell type. Some cancers are resistant to TRAIL treatment because most molecules in the TRAIL signaling pathway, including FLIPs and IAPs, can contribute to resistance. In addition, we have identified an essential role for splice variants of the IG20 gene in TRAIL resistance.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). Members of this family share diverse biological effects, including induction of apoptosis and/or promotion of cell survival. Identification of TRAIL has generated considerable enthusiasm for its ability to induce apoptotic cell death in a variety of tumor cells, by engaging the death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, while sparing most normal cells. Beside its anticancer activity, several studies have suggested a role for endogenously expressed TRAIL in hemopoiesis. In this review, we summarize the knowledge about the different lineage-specific roles of TRAIL and its receptors in hemopoiesis regulation. Moreover, the complex interplay among the signaling pathways triggered by TRAIL/TRAIL-receptors in myeloid cells is discussed in some detail.  相似文献   

18.
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号