首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders.

Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy.

Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.  相似文献   


2.
Introduction: Selective serotonin reuptake inhibitors (SSRIs) are the most effective and most used antidepressant drugs. Acting by inhibiting serotonin (5-HT) transporter, SSRIs display a typical 3–4-week delay in their therapeutic effects, with nearly 40% of depressed patients remaining treatment-resistant. Recent evidence suggests complex interplay between 5-HT receptors and key proteins of 5-HT metabolism in molecular mechanisms of such delay and resistance to SSRIs.

Area covered: This paper concentrates on the interplay between 5-HT receptors in the delay of therapeutic effect of SSRIs, and the interaction between tryptophan hydroxylase 2 and 5-HT transporter in the SSRI resistance. Specifically, it discusses: (1) the data on the association between antidepressant drug efficacy and genetically defined characteristics of key proteins in the 5-HT signaling (TPH2, MAOA, SERT and 5-HT1A receptor), (2) the effect of dimerization of 5-HT7 and 5-HT1A receptors on the internalization and functioning of 5-HT1A presynaptic receptors, (3) the role of Tph2 deficiency in the resistance to SSRIs treatment. We shift the emphasis from individual proteins to their interactions in explaining antidepressant action of SSRI.

Expert opinion: These interactions should be considered when developing more effective antidepressant drugs as well as for predicting and improving the efficacy of antidepressant therapies.  相似文献   


3.
4.
Introduction: In the last decade, concerns have been raised around the use of erythropoiesis-stimulating agents (ESAs) and intravenous iron in chronic kidney disease (CKD) patients, especially when given at high doses. Moreover, treatment with ESA is expensive.

Areas covered: We searched PubMed for original articles, reviews, and editorials having as a topic anemia, CKD, hypoxia inducible factor, hepcidin, iron, and hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI). HIF-PHI are a new class of small molecules activating HIF-alfa isoforms (the main mediators of the effects of hypoxia on the body). This causes the secretion of endogenous erythropoietin and increased iron availability. Differing from ESA, HIF-PHI are administered orally. Preliminary data from phase-II clinical studies have shown their efficacy and safety in the short term.

Expert Opinion: HIF-PHI are a new promising class of drugs. The results of large, phase-III clinical studies are awaited to prove their efficacy and safety on cardiovascular events and cancer development in the long term. Their capability of penetrating the ESA market in the future will be influenced also by their selling price. The oral administration of HIF-PHI will be weighed to the ‘intra-lines’ infusion of ESA in hemodialysis or to the infrequent subcutaneous injections of long-acting ESA.  相似文献   


5.
Introduction: Monoamine oxidase (MAO) inhibitors, after the initial ‘golden age’, are currently used as third-line antidepressants (selective MAO-A inhibitors) or clinically enrolled as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). However, the research within this field is always increasing due to their pivotal role in modulating synaptic functions and monoamines metabolism.

Areas covered: In this paper, MAO inhibitors (2015–2017) are disclosed ordering all the patents according to their chemical scaffold. Structure-activity relationships (SARs) are extrapolated for the most investigated chemotypes (coumarins, pyrazole/oxazepinones, (hetero)arylamides). 108 Compounds are divided into two main groups: newly synthesized molecules and naturally-occurring metabolites. Finally, new therapeutic options are outlined to ensure a more complete view on the potential of these inhibitors.

Expert opinion: New proposed MAO inhibitors are endowed with a marked isoform selectivity, with innovative therapeutic potential toward other targets (gliomas, inflammation, muscle dystrophies, migraine, chronic pain, pseudobulbar affect), and with a promising ability to address multi-faceted pathologies such as Alzheimer’s disease. The increasing number of patents is analyzed collecting data from 2002 to 2017.  相似文献   


6.
Introduction: HSP90 molecular chaperones (i.e., HSP90α, HSP90β, GRP94 and TRAP1) are potential therapeutic targets to design novel anticancer agents. However, despite numerous designed HSP90 inhibitors, most of them have failed due to unfavorable toxicity profiles and lack of specificity toward different HSP90 paralogs. Indeed, a major limitation in this field is the high structural homology between different HSP90 chaperones, which significantly limits our capacity to design paralog-specific inhibitors.

Area covered: This review examines the relevance of TRAP1 in tumor development and progression, with an emphasis on its oncogenic/oncosuppressive role in specific human malignancies and its multifaceted and context-dependent functions in cancer cells. Herein, we discuss the rationale for considering TRAP1 as a potential molecular target and the strategies used to date, to achieve its compartmentalized inhibition directly in mitochondria.

Expert opinion: TRAP1 targeting may represent a promising strategy for cancer therapy, based on the increasing and compelling evidence supporting TRAP1 involvement in human carcinogenesis. However, considering the complexity of TRAP1 biology, future strategies of drug discovery need to improve selectivity and specificity toward TRAP1 respect to other HSP90 paralogs. The characterization of specific human malignancies suitable for TRAP1 targeting is also mandatory.  相似文献   


7.
Introduction: Activation of the phosphatidylinositol-3 kinase (PI3K) pathway is a critical step in oncogenesis and plays a role in the development of treatment resistance for both estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) positive breast cancers. Hence, there have been efforts to therapeutically inhibit this pathway.

Areas covered: Several inhibitors of PI3K are now progressing through clinical trials with varying degrees of efficacy and toxicity to date. Numerous unresolved questions remain concerning the optimal isoform selectivity of PI3K inhibitors and use of predictive biomarkers. This review examines the most important PI3K inhibitors in ER positive breast cancer to date, with a particular focus on their role in overcoming endocrine therapy resistance and the possible use of PIK3CA mutations as a predictive biomarker.

Expert opinion: We discuss some of the emerging challenges and questions encountered during the development of PI3K inhibitors from preclinical to phase III studies, including other novel biomarkers and future combinations to overcome endocrine resistance.  相似文献   


8.
Introduction: A new pharmacological class, Janus kinases (JAK) inhibitors, has been shown to be effective and safe for the treatment of inflammatory bowel diseases (IBDs). The aim of this review is to provide an overview of the JAK inhibitors currently under investigation in phase I and II clinical trials for patients with Crohn’s disease and ulcerative colitis and the possible future perspectives for the treatment of IBD patients with this class of drugs.

Areas covered: This review describes the JAK–STAT pathway and analyzes the efficacy and safety of new small molecules such as filgotinib, upadacitinib, TD-1473, peficitinib, and Pf-06651600/Pf-06700841, showing data from phase I and II trials.

Expert Opinion: JAK inhibitors, if approved by the regulatory authorities, could represent a novel and intriguing drug class. In the next years, the approach to patients with IBD will become increasingly personalized.  相似文献   


9.
Introduction: It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer’s Achilles heel.

Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed.

Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.  相似文献   


10.
Introduction: Neurotransmission by biogenic monoamines is important for brain function. Biogenic amine turnover employs the enzymes catechol-O-methyltransferase and monoamine oxidase in neuronal and glial cells. Inhibition of these enzymes elevates biogenic amine levels in the synaptic cleft. Subtype selectivity of inhibition is lost during long-term use of ‘selective’ monoamine oxidase inhibitors.

Areas covered: This narrative review discusses use of monoamine oxidase inhibitors in the context with chronic neurodegeneration.

Expert opinion: Antidepressant drugs increase synaptic concentrations of biogenic amines. In the aging brain, then one of the two enzymes involved in degrading synaptic amines, catechol-O-methyl transferase, increasingly catalyzes methylation processes. Therefore, metabolism by monoamine oxidase plays an incremental, predominant role in biogenic amine turnover, leading to greater oxidative stress. In patients with chronic neurodegenerative disorders, symptoms, such as depression and apathy, are often treated with drugs that elevate biogenic amine levels. This therapeutic strategy increases biogenic amine turnover, thereby generating neurotoxic aldehydes and enhanced oxidative stress, each of which influence and accelerate the course of neurodegeneration. We propose that antidepressant therapy should be initiated first with monoamine oxidase inhibitors only. If adequate clinical response is not achieved, only then they should be supplemented with a further antidepressant.  相似文献   


11.
Introduction: There are considerable interests in the development of novel small-molecule CD73 inhibitors for the treatment of cancers, autoimmune diseases, precancerous syndromes, and other diseases associated with CD73 activity.

Areas covered: The application claims novel substituted benzothiadiazine derivatives as CD73 inhibitors for the treatment of cancer, precancerous syndromes, AIDS, autoimmune diseases, infections, atherosclerosis, and ischemia-reperfusion injury. Many of the exemplified compounds have pIC50 values between 5 to 8.4 against CD73.

Expert Opinion: These benzothiadiazine derivatives provide good leads for the discovery of potent CD73 inhibitors for the treatment of cancer and other diseases mediated by adenosine and its action on adenosine receptors.  相似文献   


12.
Introduction: Expanded access is the use of an investigational product by patients with serious medical conditions without participation in a clinical trial. It is a complicated process involving the collaboration of many parties and pharmaceutical companies. Ongoing efforts focus on accelerating expanded access procedures in the best interest of patients with cancer.

Areas covered: We review the regulatory and ethical challenges encountered in efforts to optimize expanded access.

Expert opinion: In the era of personalized medicine, patients may benefit from novel therapeutic agents that demonstrate encouraging results in early studies. However, drug approval is a lengthy and cumbersome procedure that might exceed the time frame of a life-threatening disease. Expanded access provides options to patients with unmet needs. It may provide informative safety and efficacy data to the manufacturers and the scientific and regulatory organizations.

Ongoing efforts are being made by global governmental and scientific committees, regulatory agencies, and patient organizations to address the ethical and regulatory issues and to optimize the expanded access process. Their goal is to expand access to promising novel drugs for individual patients and to accelerate the necessary procedures while preserving patient safety.  相似文献   


13.
Introduction: The efficacy of the prototypical phosphatidylinositol-3-kinase (PI3K) inhibitor idelalisib for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphoma (iNHL) has led to development of multiple compounds targeting this pathway.

Areas Covered: We review the hypothesized therapeutic mechanisms of PI3K inhibitors, including abrogation of B cell receptor signaling, blockade of microenvironmental pro-survival signals, and enhancement of anti-tumor immunity. We examine toxicities of idelalisib, including bacterial infections (possibly secondary to drug-induced neutropenia), opportunistic infections (possibly attributable to on-target inhibition of T cell function), and organ toxicities such as transaminitis and enterocolitis (possibly autoimmune, secondary to on-target inhibition of p110δ in regulatory T cells). We evaluate PI3K inhibitors that have entered trials for the treatment of lymphoma, focusing on agents with selectivity for PI3Kα and PI3Kδ.

Expert Opinion: PI3K inhibitors, particularly those that target p110δ, have robust efficacy in the treatment of CLL and iNHL. However, idelalisib has infectious and autoimmune toxicities that limit its use. Outside of trials, idelalisib should be restricted to CLL patients with progression on ibrutinib or iNHL patients with progression on two prior therapies. Whether newer PI3K inhibitors will demonstrate differentiated toxicity profiles in comparable patient populations while retaining efficacy remains to be seen.  相似文献   


14.
Objectives: Breast cancer is the most commonly diagnosed cancer, and it is a leading cause of cancer-related deaths in females worldwide. Triple-negative breast cancer (TNBC) constitutes 15% of breast cancer and shows distinct metastasis profiles with poor prognosis. Strong PD-L1 expression has been observed in some tumors, supporting their escape from immune surveillance. Targeting PD-L1 could be a promising therapeutic approach in breast cancer patients. We investigated potential molecular mechanisms for constitutive expression of PD-L1 by inhibiting upstream STAT1 and STAT3 signals.

Methods: PD-L1 expression in three breast cancer cell lines was measured using quantitative PCR and western blotting. Activation of STAT1 and STAT3 was blocked using pharmacological inhibitors and siRNA. The mechanism underlying the constitutive expression of PD-L1 was investigated using ChIP and co-immunoprecipitation assays.

Results: We found that individual inhibition of STAT1 and STAT3 activation partially downregulated PD-L1, while combined inhibition completely downregulated PD-L1 expression. Moreover, our results suggest that pSTAT1-pSTAT3 dimerize in cytosol and translocate to the nucleus, where they bind to PD-L1 promoter and induce PD-L1 expression.

Conclusion: These findings provide a rationale for combined targeting of STAT1 and STAT3 for the development of immune-based cancer therapies for down regulation of PD-L1 expression.  相似文献   


15.
Introduction: Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a eukaryotic serine-threonine protein kinase belonging to the CMGC group. DYRK1A hyperactivity appears to contribute to the development of a number of human malignancies and to cognitive deficits observed in Down syndrome and Alzheimer’s disease. As a result, the DYRK1A kinase represents an attractive target for the synthesis and optimization of pharmacological inhibitors of potential therapeutic interest.

Like most tyrosine kinase inhibitors developed up to the market, DYRK1A inhibitors are essentially acting by competing with ATP for binding at the catalytic site of the kinase.

Areas covered: This paper reviews patent activity associated with the discovery of synthetic novel heterocyclic molecules inhibiting the catalytic activity of DYRK1A.

Expert opinion: Despite the important role of DYRK1A in biological processes and the growing interest in the design of new therapeutic drugs, there are only few patented synthetic DYRK1A inhibitors and most of them were and are still developed by academic research groups, sometimes with industrial partners.  相似文献   


16.
Introduction: The B-cell receptor (BCR) pathway is a crucial aspect of mature lymphocytes and is maintained in B-cell neoplasms. Many small module inhibitors targeting kinases within the BCR pathway are approved, with others in development, offering alternative treatment options to standard chemoimmunotherapy.

Areas covered: This review covers both approved inhibitors and investigational inhibitors of spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK), and phosphoinositide-3-kinase (PI3K) in the treatment of B-cell lymphomas. To collect relevant articles, a literature search was completed through the use of PubMed and abstracts from ASH and ASCO national meetings. Search terms including non-Hodgkin lymphoma, and BCR inhibitors, as well as the individual drug names, were utilized. The majority of included studies are dated from 2012 to March 2018.

Expert opinion: BCR pathway inhibitors, such as ibrutinib and idelalisib, are novel treatments for non-Hodgkin lymphomas. While providing alternative treatment options to those with high-risk disease, poor functional status, and relapsed disease, outside of chronic lymphocytic leukemia (CLL), they have been limited to the relapsed/refractory setting. Their mechanisms of action, off/on-target effects, and resistance patterns create unique therapeutic dilemmas. It is our opinion that more specific inhibitors, as well as combination therapy, will define the future for BCR inhibitors.  相似文献   


17.
Introduction: The review deals with inflammation in heart failure (HF). Many data show that systemic inflammation is frequent in HF and implicate that inflammation contributes to damage and dysfunction of the cardiovascular system.

Areas Covered: Experimental data have been mainly obtained in acute laboratory animal models. It is questionable whether animals’ data can be translated into clinical settings with patients with chronic HF who have concomitant pathologies.

The idea of a common inflammatory pathway that characterizes all different forms of clinical HF is unrealistic. It seems realistic that inflammation differs in non-cardiac and cardiac diseases.

Research therapeutic options address the use of inhibitors of cytokines, of agents antagonizing oxidative stress, of MMP and of PI3K signaling pathways.

Expert Opinion: Considering the many unknowns in our knowledge it is not surprising that early trials aimed to antagonize inflammation in HF have been disappointing. We are far away from having solid therapeutic schedules to use immunomodulation in all subtypes of HF. However, modern trials on HF due to virus infections have proven that immunomodulation is therapeutically effective.

We should wisely use the known facts and accept that we have many unknowns. By appropriate selection of the subtypes of HF we may be able to find the appropriate therapy against inflammation in HF.  相似文献   


18.
Objective: The purpose of this experimental study was to investigate the role of vitamin supplements (Ocuvite, Vitalux Omega, and Nutrof Total) as possible inhibitors of the onset of age-related macular degeneration (AMD).

Materials and methods: The anti-aggregating effect of each vitamin was determined against four accumulative factors namely, platelet activating factor (PAF), adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), and arachidonic acid (AA) in the platelet rich plasma (PRP) of healthy volunteers.

Results: Ocuvite, Vitalux Omega, and Nutrof Total were more potent inhibitors against PAF and ADP compared to TRAP and AA. Among the three vitamins, Nutrof Total displayed more potent inhibitions against TRAP and AA, while against PAF and ADP all the three vitamins revealed similar IC50 values.

Conclusions: The vitamins Ocuvite, Vitalux Omega, and Nutrof Total have anti-aggregating effects and therefore can be used against AMD in healthy volunteers.  相似文献   


19.
Introduction: Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35–70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available.

Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review.

Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.  相似文献   


20.
Introduction: Neuroblastoma is the most common solid extracranial tumor of childhood. Outcome for children with high-risk neuroblastoma remains suboptimal. More than half of children diagnosed with high-risk neuroblastoma either do not respond to conventional therapies or relapse after treatment with dismal prognosis.

Areas covered: This paper presents a short review of the state of the art in the current treatment of high-risk neuroblastoma. An updated review of new targeted therapies in this group of patients is also presented.

Expert opinion: In order to improve prognosis for high-risk patients there is an urgent need to better understand spatial and temporal heterogeneity and obtain new predictive preclinical models in neuroblastoma. Combination strategies with conventional chemotherapy and/or other targeted therapies may overcome current ALK inhibitors resistance. Improvement of international and transatlantic cooperation to speed clinical trials accrual is needed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号