首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sphingolipid ceramide mediates a variety of stress responses, including vascular inflammation and thrombosis. Activated endothelial cells release Weibel-Palade bodies, granules containing von Willebrand factor (vWF) and P-selectin, which induce leukocyte rolling and platelet adhesion and aggregation. We hypothesized that ceramide induces vascular inflammation and thrombosis in part by triggering Weibel-Palade body exocytosis. We added ceramide to human aortic endothelial cells and assayed Weibel-Palade body exocytosis by measuring the concentration of vWF released into the media. Exogenous ceramide induces vWF release from endothelial cells in a dose-dependent manner. Activators of endogenous ceramide production, neutral sphingomyelinase, or tumor necrosis factor-alpha also induce Weibel-Palade body exocytosis. We next studied NO effects on ceramide-induced Weibel-Palade body exocytosis because NO can inhibit vascular inflammation. The NO donor S-nitroso-N-acetylpenicillamine decreases ceramide-induced vWF release in a dose-dependent manner, whereas the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester increases ceramide-induced vWF release. In summary, our findings show that endogenous ceramide triggers Weibel-Palade body exocytosis, and that endogenous NO inhibits ceramide-induced exocytosis. These data suggest a novel mechanism by which ceramide induces vascular inflammation and thrombosis.  相似文献   

2.
Vischer  UM; Jornot  L; Wollheim  CB; Theler  JM 《Blood》1995,85(11):3164-3172
Exocytosis from Weibel-Palade bodies, the secretory granules of vascular endothelial cells, causes the rapid release of von Willebrand factor (vWF), an adhesive glycoprotein involved in primary hemostasis, and cell surface expression of P-selectin, a membrane protein involved in neutrophil binding. Thus, exocytosis may represent a link between hemostasis and inflammation. We investigated the effect of reactive oxygen intermediates (ROIs) on vWF secretion. Incubation of cultured endothelial cells with xanthine oxidase (XO), which generates superoxide anions (O2-), induces a potent, rapid secretory response. However, vWF release was not observed in response to H2O2. Extracellular, subendothelial vWF deposits typically seen after exocytosis from Weibel-Palade bodies were observed after exposure to XO. XO caused a rapid, sustained increase in intracellular free calcium concentration ([Ca2+]i). vWF secretion was markedly inhibited by BAPTA- AM, a cell-permeant calcium chelator. Removal of extracellular calcium did not inhibit vWF release, although the sustained phase of the [Ca2+]i increase was suppressed. These results suggest that XO-induced vWF release is mediated by the initial increase in [Ca2+]i which is caused by calcium mobilization from intracellular stores rather than by calcium influx. Exocytosis from Weibel-Palade bodies may contribute to the pathogenic effect of ROIs in atherosclerosis and inflammation.  相似文献   

3.
Although it is known that factor VIII (FVIII) plasma levels increase rapidly in response to a number of stimuli, the biological stimuli behind this release is less clear. Previously, we showed that FVIII can traffic together with von Willebrand factor (vWF) into storage granules in a pituitary tumor cell line, AtT-20; however, AtT-20 cells could not be used to address the release or functional activity of released FVIII. To investigate the regulated secretion of stored FVIII, endothelial cells with intact agonist-stimulated release pathways were used. Human umbilical vein endothelial cells (HUVECs) were transduced with retroviral FVIII construct [hFVIII(V)] to create a FVIII/vWF storage pool. Immunofluorescent staining of transduced cells demonstrated FVIII in Weibel-Palade bodies. In contrast, the transduction of hFVIII(V) into HT-1080 and HepG2 cells displayed FVIII only in the cytoplasm. We studied the regulated release of both FVIII and vWF from endothelial cells after agonist-induced stimulation and demonstrated a parallel release of FVIII and vWF proteins. This released FVIII was functionally active. Hence, endothelial cells transduced with hFVIII(V) store FVIII together with vWF in Weibel-Palade bodies, creating a releasable storage pool of both proteins. Because FVIII secretion can be physiologically regulated by agonists in culture, this may explain the pharmacological agonist-induced release of FVIII by drugs such as desmopressin in vivo and suggests vascular endothelium as a reasonable target of gene therapy of hemophilia A.  相似文献   

4.
von Willebrand factor (vWF), an adhesive glycoprotein involved in primary hemostasis, is stored and released from endothelial secretory granules called Weibel-Palade bodies. Regulated secretion occurs in reaction either to [Ca(2+)](i)-raising agents (histamine or thrombin) or to cAMP-raising agents (epinephrine, adenosine, or forskolin). We investigated the pattern of release and the cytoskeletal requirements for secretion in response to these 2 classes of agonists. Secretion induced by [Ca(2+)](i)-raising agents involves peripheral and central granules and is inhibited by colchicine-induced microtubule disruption. It is accompanied by Rho-dependent stress fiber formation and cell retraction. Secretion and remodeling occur in the same individual cells. However, secretion is potentiated by cytochalasin E and C3 toxin, indicating that stress fiber formation antagonizes vWF secretion. In contrast, vWF secretion induced by cAMP-raising agents involves the release of only peripheral granules (implying less vWF release on a per cell basis) and is not inhibited by microtubule disruption. cAMP-mediated secretion is accompanied by disruption of stress fibers, strengthening of the cortical actin rim, and preservation of cell-cell contacts. It is unaffected by cytochalasins or C3 toxin. In contrast to [Ca(2+)](i)-raising agents, cAMP-raising agents induce secretion without cell retraction/intercellular gap formation. Thus, they are likely to play a physiological role in the regulation of endothelial vWF secretion and, therefore, of plasma vWF levels.  相似文献   

5.
Desmopressin, (DDAVP; 1-desamino-8-D-arginine vasopressin) increases the release and activity of von Willebrand factor (vWF); however, its effects on the other major constituent of endothelial Weibel-Palade bodies, P-selectin, has not been investigated. DDAVP-induced P-selectin expression may explain DDAVP's efficacy in bleeding disorders in which vWF levels are normal. Therefore, the objective of this study is to assess the effect of DDAVP on P-selectin expression on endothelial cells of postcapillary venules in vivo and on human umbilical vein endothelium in vitro, and to determine whether DDAVP has direct effects on leukocyte behavior in postcapillary venules. DDAVP (0.1 and 1.0 microgram/mL) induced a significant but transient increase in P- selectin expression on human umbilical vein endothelial cells as well as on rat and human platelets. Immunohistochemical analysis of rat postcapillary venules showed that in contrast to saline, DDAVP injection (1 microgram/kg, intravenous) induced significant endothelial P-selectin expression. DDAVP administration also induced a rapid and significant increase in leukocyte rolling in rat mesenteric venules in vivo. This response was entirely dependent on P-selectin, as an anti-P- selectin antibody rapidly reversed the DDAVP-induced increase in leukocyte rolling. DDAVP induced leukocyte rolling in medium (20 to 40 microns) and large (> 40 microns), but not small (< 20 microns), postcapillary venules. In animals that were treated with DDAVP, there was a steady and significant increase in leukocyte adhesion. This study shows that DDAVP can directly induce P-selectin expression on endothelium in vitro and in vivo and that the latter response is capable of supporting prolonged leukocyte rolling in rat postcapillary venules.  相似文献   

6.
Weibel-Palade bodies are endothelial cell-specific organelles, which contain von Willebrand factor (vWF), P-selectin, and several other proteins. Recently, we found that the small GTP-binding protein Ral is present in a subcellular fraction containing Weibel-Palade bodies. In the present study, we investigated whether Ral is involved in the regulated exocytosis of Weibel-Palade bodies. Activation of endothelial cells by thrombin resulted in transient cycling of Ral from its inactive GDP-bound to its active GTP-bound state, which coincided with release of vWF. Ral activation and exocytosis of Weibel-Palade bodies were inhibited by incubation with trifluoperazine, an inhibitor of calmodulin, before thrombin stimulation. Functional involvement of Ral in exocytosis was further investigated by the expression of constitutively active and dominant-negative Ral variants in primary endothelial cells. Introduction of active Ral G23V resulted in the disappearance of Weibel-Palade bodies from endothelial cells. In contrast, the expression of the dominant-negative Ral S28N did not affect the amount of Weibel-Palade bodies in transfected cells. These results indicate that Ral is involved in regulated exocytosis of Weibel-Palade bodies by endothelial cells.  相似文献   

7.
Summary Endotheial cells (EC) were isolated from the umbilical vein of a newborn girl with type I 'platelet low' von Willebrand disease (I vWD) and endothelial localization and release and the ability of subendothelial von Willebrand factor (vWF) to support platelet adhesion were compared with those of normal EC. vWF was detectable by immunofluorescence in Weibel-Palade bodies, but the number of Weibel-Palade bodies positive for vWF was lower than in control EC. Patient EC released into the medium significantly smaller amount of vWF, both constitutively and after their stimulation. The vWF content of the extracellular matrix of patient EC was 38% that of control EC matrix. Platelet adhesion studies were performed under flow conditions with umbilical arteries and EC matrices of cultured EC. Using normal citrated whole blood as perfusate, platelet adhesion was lower in the umbilical artery of the patient (9 ± 1% v 35 ± 4% for the control) and in her EC matrix (7 ± 1% v 21 ± 2% of control). When patient EC matrix was perfused with vWF-deficient reconstituted blood, adhesion was 17 ± 3% v 32 ± 3% for control EC matrix; preincubation of patient EC matrix with 1 U/ml vWF increased the adhesion to 30 ± 6%. These data establish that low contents of vWF in EC and subendothelium are important characteristics of type I vWD 'platelet low', and that such characteristics correlate with low platelet adhesion to the subendothelium.  相似文献   

8.
Endothelial cells were isolated from the umbilical vein of a patient with subtype IIB von Willebrand disease, and the biosynthesis and function of von Willebrand factor (vWF) synthesized by these cells were compared with those of vWF synthesized by endothelial cells from normal individuals. The patient's endothelial cells synthesized, stored, and secreted vWF indistinguishably from normal endothelial cells: it was synthesized as a prepolypeptide of Mr 270,000 and had a mature form of Mr 220,000; the full spectrum of multimers was found both inside the cells and in the culture medium; it was stored normally, in the Weibel-Palade bodies; and similar amounts of vWF were secreted into the medium and deposited in the extracellular matrix. In a perfusion set-up, the extracellular matrix from IIB cells supported platelet adhesion similarly to the matrix from normal cells. vWF secreted constitutively by IIB cells into the culture medium bound to platelets at concentrations of ristocetin lower than those necessary for vWF from normal cells. vWF stored in the Weibel-Palade bodies of type IIB cells was released upon stimulation with phorbol ester and bound almost completely to platelets even in the absence of ristocetin. Moreover, spontaneous platelet aggregation was induced by vWF synthesized by type IIB cells. These data support the hypothesis that the absence of highly multimeric forms of vWF in plasma of type IIB von Willebrand disease patients is due to specific removal of these multimers by platelets.  相似文献   

9.
The clinical manifestations of Rocky Mountain spotted fever (RMSF) result from Rickettsia rickettsii (R rickettsii) infection of endothelial cells and are mediated by pathologic changes localized to the vessel, including in situ thrombosis and tissue ischemia. This study uses in vitro infection of cultured human umbilical vein endothelial cells with R rickettsii to test the hypothesis that such infection induces von Willebrand factor (vWF) release from Weibel-Palade bodies, a process that could contribute to thrombotic changes. At 24 hours postinfection, there was an increase in metabolically prelabeled large multimers of vWF in the culture medium, with a concomitant decrease of these forms in the cell lysate samples. This release reaction was specific for the large multimer pool of vWF, localized to Weibel-Palade bodies, because no change in the distribution of dimeric forms between cells and culture medium was detected. Double-label immunofluorescence staining showed an inverse correlation between the number of R rickettsii and the number of Weibel-Palade bodies in infected cells. Cell lysis was minimal at 24 hours postinfection, as no detectable intracellular precursor forms (molecular weight 260,000) of vWF were released into the culture medium, there was no decrease in cell viability as measured by trypan blue exclusion, and no increase in 51Cr-release into the culture medium was observed when compared with uninfected controls. Release was likely a direct effect of the intracellular presence of the organism, rather than due to a noxious soluble factor such as endotoxin, because culture medium conditioned by infected endothelial cells was ineffective at inducing release in uninfected endothelial cell cultures. In summary, in vitro infection of endothelial cells by R rickettsii induces release of Weibel-Palade body contents, a process that may contribute to the pathogenesis of RMSF.  相似文献   

10.
Objective: To obtain cultures of rodent brain microvascular endothelium (BMEC) that retain endothelial cell-specific markers and functions for two purposes: investigating whether these cultures contain endothelial cell-specific storage granules or Weibel-Palade bodies and have the ability to rapidly bind neutrophils upon cytokine induction; and setting the groundwork for future studies examining endothelium derived from mice strains with targeted deficiencies in endothelial adhesion molecules. Methods: Capillaries were obtained by collagenase/dispase digestion and subsequent density centrifugation of either rodent brain or meninges. The yield was then plated onto fibronectin-coated dishes. For some studies, pure murine endothelial cultures were obtained by flow-cytometric sorting, using uptake of fluorescently labeled diI-acetylated low-density lipoprotein as a marker for endothelium. Endothelial cell-specific markers were analyzed via immunofluorescence, immunoprecipitation and light microscopy. Cytokine-induced neutrophil adhesion and associated upregulation of leukocyte adhesion molecules were measured as described previously for human umbilical vein endothelial cells. Results: BMEC possess numerous von Willebrand factor–containing Weibel-Palade bodies and synthesize and secrete all multimeric forms of von Willebrand factor. They take up diI-acetylated low-density lipoproteins, contain platelet-endothelial cell adhesion molecules and form capillary-like structures on three-dimensional extracellular matrix substrates. Sorted murine brain microvascular endothelial cells treated with IL-1β or TNF-α for 4 h show an increase in surface expression of the cytokine-inducible leukocyte adhesion molecules E-selectin, VCAM-1, and ICAM-1, and they support rapid neutrophil adhesion, which is, on average, three times greater than that of nonstimulated cells. Conclusions: The brain microvascular endothelial cultures described here exhibit many of the markers of endothelial cells including the presence of Weibel-Palade bodies. The localization of von Willebrand factor almost exclusively to Weibel-Palade bodies indicates that murine cerebral endothelium has evolved an efficient mechanism for storage of this platelet adhesion protein, which plays an important role in hemostasis. In addition, this is the first demonstration of rapid neutrophil adhesion to murine brain microvascular endothelial cells. Finally, the reproducible culture and the characterization of murine BMEC makes feasible future studies on endothelium isolated from gene-targeted mice.  相似文献   

11.
Tissue-type plasminogen activator (t-PA) is acutely released by endothelial cells. Although its endothelial storage compartment is still not well defined, t-PA release is often accompanied by release of von Willebrand factor (vWf), a protein stored in Weibel-Palade bodies. We investigated, therefore, whether t-PA is stored in these secretory organelles. Under basal culture conditions, a minority of human umbilical vein endothelial cells (HUVEC) exhibited immunofluorescent staining for t-PA, which was observed only in Weibel-Palade bodies. To increase t-PA expression, HUVEC were infected with a t-PA recombinant adenovirus (AdCMVt-PA). Overexpressed t-PA was detected in Weibel-Palade bodies and acutely released together with endogenous vWf by thrombin or calcium ionophore stimulation. In contrast, plasminogen activator inhibitor type 1 and urokinase were not detected in Weibel-Palade bodies after adenovirus-mediated overexpression. Infection of HUVEC with proinsulin recombinant adenovirus resulted in the storage of insulin in Weibel-Palade bodies, indicating that these organelles can also store nonendothelial proteins that show regulated secretion. Infection of AtT-20 pituitary cells, a cell type with regulated secretion, with AdCMVt-PA resulted in the localization of t-PA in adrenocorticotropic hormone-containing granules, indicating that t-PA can be diverted to secretory granules independently of vWf. Coinfection of AtT-20 cells with AdCMVt-PA and proinsulin recombinant adenovirus resulted in the colocalization of t-PA and insulin in the same granules. Taken together, these results suggest that HUVEC have protein sorting mechanisms similar to those of other regulated secretory cells. Although the results did not exclude an alternative storage site for t-PA in HUVEC, they established that t-PA can be stored in Weibel-Palade bodies. This finding may explain the acute coordinate secretion of t-PA and vWf.  相似文献   

12.
Three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors protect the vasculature from inflammation and atherosclerosis by cholesterol dependent and cholesterol independent mechanisms. We hypothesized that HMG-CoA reductase inhibitors decrease exocytosis of Weibel-Palade bodies, endothelial cell granules whose contents promote thrombosis and vascular inflammation. We pretreated human aortic endothelial cells with simvastatin for 24 hours, then stimulated the cells with thrombin, and measured the amount of vWF released into the media. We then measured the effect of simvastatin on myocardial infarction in mice. Simvastatin decreased thrombin-stimulated Weibel-Palade body exocytosis by 89%. Simvastatin inhibited exocytosis in part by increasing synthesis of nitric oxide (NO), which S-nitrosylated N-ethylmaleimide sensitive factor (NSF), a critical regulator of exocytosis. Simvastatin treatment attenuated myocardial infarct size by 58% in wild-type but not eNOS knockout mice. Furthermore, simvastatin decreased endothelial exocytosis and neutrophil infiltration into ischemic-reperfused myocardium, which was mediated in part by P-selectin contained in Weibel-Palade bodies. However, simvastatin did not affect exocytosis and inflammation in myocardial infarcts of eNOS knockout mice. Inhibition of endothelial exocytosis is a novel mechanism by which HMG-CoA reductase inhibitors may reduce vascular inflammation, inhibit thrombosis, and protect the ischemic myocardium. These findings may explain part of the pleiotropic effects of statin therapy for patients with cardiovascular disease.  相似文献   

13.
Primary cultured human endothelial cells derived from umbilical cord vein were exposed during the growth of the culture to medium containing nicotine at various concentrations (0.5-200 micrograms/ml). Patterns of cellular fibronectin and factor VIII/vWF were compared to control by immunofluorescence technique. The levels of glycoproteins released in the culture medium were quantified by ELISA method. Treated cells showed an important decrease in fibronectin content with fragmentation of the fibronectin pericellular filaments, whereas the levels of secreted fibronectin were reduced in a dose-dependent manner. This reduction of fibronectin availability was correlated with an elongation of cell shape as revealed with phase contrast microscopy. By immunofluorescence, factor VIII/vWF cytoplasmic granules appeared drastically reduced whereas the secretion of the protein was significantly increased. As shown by electron microscopy, there was a concomitant reduction in the number and size of Weibel-Palade bodies. These studies indicate that nicotine modifies fibronectin and factor VIII/vWF distributions but in different ways.  相似文献   

14.
With the use of intravital microscopy, a new type of platelet-endothelial interaction in mouse mesenteric venules at low shear (80-100 seconds(-1)) is described. Stimulation of these vessels with calcium ionophore A23187, a known secretagogue of Weibel-Palade bodies, induced immediate platelet adhesion (within 15 seconds) and translocation without the formation of aggregates. This stop-and-go process reached a maximum in approximately 1 minute, when approximately 25 000 platelets adhered/mm(2).s, and then adhesion progressively decreased. This adhesion process was dependent on von Willebrand factor (vWF) and independent of P-selectin. Immunohistologic analysis showed that the venules were not denuded with A23187 treatment, suggesting that platelets adhered to vWF secreted on the luminal face of the endothelial cells. Histamine treatment induced a similar adhesion phenomenon. Platelet adhesion was not abolished in beta3-deficient mice or when the platelets were treated with inhibitory antibodies to PECAM-1 or PSGL-1, indicating that these molecules are not required for platelet-endothelium interaction at low shear. The adhesion was mediated by platelet glycoprotein Ibalpha (GPIbalpha) because the adhesion of murine platelets expressing exclusively the human GPIbalpha could be prevented by a pretreatment with mocarhagin, a snake venom protease that cleaves human GPIbalpha. The results indicate that vWF released from Weibel-Palade bodies can dramatically increase the concentration of platelets along the vessel wall through an interaction with GPIbalpha. It is proposed that this process may rapidly recruit platelets to sites of injury or inflammation in veins.  相似文献   

15.
Molecular and cellular biology of von Willebrand factor   总被引:9,自引:0,他引:9  
von Willebrand factor (VWF) is a plasma protein that performs 2 main functions in hemostasis: it mediates platelet adhesion to the injured vessel wall, and it carries and protects coagulation factor VIII. VWF is synthesized through a multistep process in endothelial cells and megakaryocytes as a very large polymer composed of identical disulfide-linked 250-kd subunits. In endothelial cells, VWF not only directs the formation of its own storage granules, the Weibel-Palade bodies, but it also acts as a chaperone molecule to direct other proteins, such as P-selectin, into these granules. Upon stimulation of the endothelium, the Weibel-Palade bodies will be translocated to the plasma membrane, and their contents will be secreted into the plasma milieu. The expression of VWF can be regulated at different levels by a number of genetic and environmental factors, resulting in control of its activity. New roles for VWF, especially in inflammatory processes, have recently been suggested, indicating that some aspects of this well-studied protein remain to be investigated.  相似文献   

16.
Vischer  UM; Wagner  DD 《Blood》1994,83(12):3536-3544
We investigated the intracellular site of pro-von Willebrand factor (pro-vWF) cleavage and multimerization, as well as the fate of the propolypeptide (von Willebrand antigen II) after cleavage. Analysis of subcellular fractions of endothelial cells metabolically labeled with sulfate showed that both cleavage and covalent multimerization occur after sulfation and precede the formation of Weibel-Palade bodies. Because sulfation is a processing step localized to the trans-Golgi network (TGN), our results indicate that multimerization and prosequence cleavage also occur in this organelle. After cleavage, the propolypeptide remains noncovalently associated with the mature vWF subunit. This association is promoted by a high calcium concentration and an acidic pH (conditions thought to prevail in the TGN) and explains the 1:1 stoichiometry of the propolypeptide and mature vWF found in Weibel-Palade bodies. The propolypeptide remains an integral part of the large multimeric vWF aggregates in the Weibel-Palade body until secretion. When secretion occurs under slightly acidic conditions, such as may be found in poorly perfused wounds, the propolypeptide remains associated with the endothelial surface-bound vWF, and may thus participate in the wound healing process.  相似文献   

17.
Circulating endothelial precursor cells (CEP) are interesting candidates for the treatment of ischemic diseases and for tumor targeting/imaging. We isolated a homogeneous population of CEP from CD34(+)/CD133(-) cells of peripheral blood that can be expanded easily on collagen-type-I coated plastic. CEP displayed a phenotype of mature endothelial cells (vWF, CD31, CD34, VEGF-R2, CD105, CD146) similar to that of cord-blood CEP and umbilical vein endothelial cells. They bound UEA-1 lectin, incorporated acetylated LDL and formed tube-like structures with capillary lumens in vitro. Weibel-Palade bodies were observed by electron microscopy. After 40-60 cell population doublings, CEP cultures underwent a terminal growth arrest, had shorter telomeres, up-regulated cell cycle inhibitory proteins, such as p21(CIP1) and stained positive for senescence-associated-beta galactosidase. During the whole expansion period CEP retained their endothelial phenotype and a normal karyotype. CEP had the capacity to home to ischemic tissue in vivo after systemic injection in nude rats. The convenient expandability, the homogenous phenotype, the functional cellular senescence program, the regular karyotype and the homing capacity to ischemic myocardium suggest autologous CEP cultures as a safe and promising tool for cell-based therapeutic approaches in targeting ischemic tissue and tumors.  相似文献   

18.
We designed a model system to study the role of von Willebrand factor (vWF) in the sorting of P-selectin and the biogenesis of Weibel-Palade body (WPB)-like organelles. For that purpose, a human epithelial cell line (T24) that synthesizes P-selectin mRNA, but which is devoid of vWF mRNA synthesis and storage organelles, was transfected with full-length vWF cDNA or a deletion mutant thereof. Stable transfectants of T24 with full-length vWF cDNA revealed the generation of WPB-like organelles as demonstrated by colocalization of vWF and P-selectin with double-labeling immunofluorescence. In contrast, T24 cells transfected with vWF delD'D3 cDNA, encoding a mutant that is unable to form vWF multimers, displayed only perinuclear vWF staining, whereas no indication was found for the presence of WPB-like organelles. The contents of the organelles in full-length vWF cDNA-transfected T24 cells were released on activation of the protein kinase C pathway, similar to the situation with genuine endothelial cells. The expression of vWF did not affect the biosynthesis of P-selectin, as deduced from the observation that untransfected and vWF cDNA-transfected T24 cells contained the same amount of P-selectin mRNA. We propose that the biosynthesis of multimeric vWF directs the generation of WPB-like organelles, as evidenced by the sequestering and anchoring of P-selectin into these storage granules.  相似文献   

19.
Plasma P-selectin is increased in thrombotic consumptive platelet disorders   总被引:19,自引:4,他引:19  
P-selectin is a 140-kD protein found in the alpha-granules of platelets and the Weibel-Palade bodies of endothelial cells that on cell activation is expressed on the cell surface and also secreted into the plasma. The secreted form of P-selectin, like plasma P-selectin, differed from platelet membrane P-selectin in that its molecular mass was approximately 3 kD lower under reducing conditions. Both the secreted and plasma forms of P-selectin contained cytoplasmic sequence as determined by Western blot analysis with an affinity-purified rabbit anti-P-selectin cytoplasmic peptide antibody. We have measured plasma P- selectin and beta-thromboglobulin (beta TG) concurrently in (1) patients with consumptive thrombotic disorders, including disseminated intravascular coagulation (DIC), heparin-induced thrombocytopenia (HIT), and thrombotic thrombocytopenic purpura (TTP)/haemolytic uremic syndrome (HUS); (2) patients with idiopathic thrombocytopenic purpura (ITP); and (3) healthy controls. Patients with DIC, HIT, and TTP/HUS, but not ITP, had significantly elevated plasma P-selectin and beta TG levels when compared with their age-matched healthy controls. The increased plasma P-selectin and beta TG in patients with thrombotic disorders were likely to be the result of in vivo platelet and endothelial cell damage or activation. We also found that avoidance of veno-occlusion and other tedious measures customarily taken during blood collection and sample preparation to prevent in vitro platelet activation did not affect plasma P-selectin assay results. In addition, plasma P-selectin levels were not influenced by the presence of renal failure or heparin administration. These results indicate that plasma P- selectin may be a useful new marker for thrombotic diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号