首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have suggested that bipolar disorder may be associated with oxidative stress. Administration of d-amphetamine (AMPH) has been put forward as an animal model of mania, and has shown to increase oxidative stress parameters in the rat brain. Thus, we have used the gastrin-releasing peptide receptor antagonist [D-Tpi6Leu13psi (CH2NH)-Leu14] bombesin (RC-3095) as a pharmacological tool to investigate the role of bombesin-like peptides in the redox balance in the hippocampus and cortex of rats treated with AMPH. Rats were given a single 10 ml/kg intraperitoneal (i.p.) injection of saline (SAL) or RC-3095 (0.1, 1.0 or 10.0 mg/kg) followed by an i.p. injection of SAL or amphetamine (AMPH 2.0 mg/kg) 30 min later. Locomotor activity was evaluated 2 h after the last drug injection. The thiobarbituric acid reactive substances (TBARS), protein carbonyl formation, superoxide dismutase and catalase (CAT) activity were measured in hippocampus, striatum and cortex as markers of oxidative stress. The results show that RC-3095 blocks AMPH-induced hyperlocomotion. Moreover, specific doses of RC-3095 alone increased the levels of oxidative stress in the dorsal hippocampus and cortex. However, when AMPH was subsequently administrated, RC-3095 decreased TBARS and protein carbonyls formation and increased the superoxide dismutase and CAT activity in the hippocampus, striatum and cortex. The effects of GRPR antagonist seemed to be region and dose specific. In conclusion, the results suggest that GRPR antagonists might display antioxidant properties in the brain.  相似文献   

2.
Molecular accounts of memory consolidation suggest that new learning generates persistent synaptic modifications through activation of an extensive set of neuronal receptors and intracellular signal transduction pathways, accompanied by RNA and protein synthesis. This traditional cellular consolidation theory has been challenged by evidence that reactivation of a previously consolidated memory might render this memory again susceptible to disruption by amnesic treatments, a process generally referred to as reconsolidation. Current evidence indicates that reconsolidation can be disrupted by administration of a variety of pharmacological agents after memory reactivation. Previous studies have indicated that the gastrin-releasing preferring type of bombesin receptor (GRPR) and the N-methyl-D-aspartate glutamate receptor (NMDAR) in the rat hippocampus are involved in consolidation of inhibitory avoidance (IA), a fear-related memory task. We show here that blockade of hippocampal GRPRs or NMDARs after memory reactivation temporarily disrupts memory retention. Post-retrieval intra-hippocampal infusion of the GRPR antagonist RC-3095 or the NMDAR antagonist aminophosphonopentanoic acid (AP5) produced an impairment of IA performance tested 2 days after training in rats. However, this impairment was transient and recovered to levels of control rats in a subsequent test 3 days after training. The drug effects were only present after memory reactivation and not in its absence. These findings provide evidence that GRPR or NMDAR inactivation after retrieval can impair fear memory.  相似文献   

3.
4.
Several receptor and intracellular signalling systems in the basolateral amygdala (BLA) regulate memory formation. In the present study, we show that bombesin/gastrin-releasing peptide (GRP) receptors in the BLA are involved in the consolidation of affectively motivated memory. Adult male rats were trained in a single-trial step-down inhibitory avoidance task and tested for retention 24 h later. Post-training systemic injection of the bombesin/GRP receptor antagonist (D-Tpi6, Leu13 psi[CH2NH]-Leu14) bombesin (6-14) (RC-3095) impaired memory retention. In rats implanted under thionembutal anaesthesia with guide cannulae aimed at the BLA, post-training bilateral infusion of RC-3095 into the BLA dose-dependently impaired retention. Pre-training unilateral muscimol inactivation of the BLA blocked the memory-impairing effect of post-training systemic administration of RC-3095. The results suggest that bombesin/GRP receptors in the BLA are involved in the consolidation of aversive memory, and the BLA mediates the memory-impairing effect of systemic bombesin/GRP receptor blockade.  相似文献   

5.
6.
7.
目的观察戊四氮点燃癫癎大鼠空间学习记忆功能变化及海马NMDA2型受体(NR2)B亚单位(NR2B)表达,探讨二者的关系及PTZ致癎大鼠认知障碍发生的分子机制。方法采用戊四氮(PTZ)慢性癫癎(CE)模型,Y-迷宫对两组大鼠进行行为学检测,免疫组织化学方法观察两组大鼠海马CA3区NR2B表达的变化,反转录多聚酶链反应(RT-PCR)方法检测大鼠海马NR2B mRNA的表达。结果癫癎组大鼠空间学习记忆能力受损;其海马CA3区NR2B阳性细胞较对照组明显减少(P<0.01),同时伴有海马NR2B mRNA表达下降(P<0.01)。结论戊四氮点燃癫癎大鼠空间学习记忆受损可能与海马神经元NR2B的表达减少有关。  相似文献   

8.
The possibility of a functional interaction between the amygdala and the ventral hippocampus on learning of a conditioned avoidance response when both brain structures are chemically stimulated with histamine was studied in rats. Adult male rats were stereotaxically implanted under ether anaesthesia with guide cannulae into the baso-lateral amygdala and the ventral hippocampus. Seventy-two hours after the implant, rats were microinjected with: 1 microl saline solution into both structures (SAL+SAL group); 9 or 90 nmol doses of histamine into both structures (HA+HA groups); 9 or 90 nmol histamine into the hippocampus and saline into the amygdala (HA+SAL groups); saline into the hippocampus and 9 or 90 nmol histamine into the amygdala (SAL+HA groups). Five minutes following the injection, rats were subjected to a learning task in eight consecutive trials, consisting of avoiding an electric shock applied to the feet of the animal when an ultrasonic tone of 40 kHz is on for 30 s. Results show that histamine applied in any dose into both amygdala and hippocampus was able to significantly increase the escape latency and impair the efficacy of learning. Chemical stimulation with histamine of only hippocampus or amygdala affected selectively the escape latency. Results suggest that there is a functional interaction between histamine-sensitive neurons of the amygdala and hippocampus during processing of a learning task.  相似文献   

9.
Adverse experiences early in life may have profound influences on brain development, for example, determining alterations in response to psychostimulant drugs, an increased risk of developing a substance abuse disorder, and individual differences in the vulnerability to neuropsychiatric disorders later in life. Here, we investigated the effects of exposure to an early adverse life event, maternal deprivation, combined with repeated d-amphetamine (AMPH) administration in adulthood, on recognition memory and brain-derived neurotrophic factor (BDNF) levels in rats’ brain and serum. Rats were exposed to one of the following maternal rearing conditions from postnatal days 1 to 14: non-deprived (ND) or deprived (D). In adulthood, both groups received injections of saline (SAL) or AMPH (2.0 mg/kg, i.p.) for 7 days. In Experiment I (performed 24 h after the last AMPH injection), AMPH induced long-term memory (LTM) impairments in ND and D groups. The D + AMPH group also presented short-term memory (STM) impairments, indicating that the effects of AMPH on memory were more pronounced when the animals where maternally deprived. The group exposed to D + SAL (SAL) showed only LTM impairments. In Experiment II (performed 8 days after the last injection), AMPH detrimental effects on memory persisted in ND and D groups. BDNF levels were decreased in the hippocampus of D + SAL rats. In conclusion, AMPH produces severe and persistent recognition memory impairments that were more pronounced when the animals were maternally deprived, suggesting that an early adverse life event may increase the vulnerability of cognitive function to exposure to a psychostimulant later in life.  相似文献   

10.

Purpose

Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists.

Methods

D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting.

Results

NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number.

Conclusion

Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.
  相似文献   

11.
Administration of noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist phencyclidine to rats on postnatal days 7, 9, and 11 induces apoptosis in prefrontal cortex and hippocampus. In adulthood, these animals display cognitive impairment of working memory, reversal learning and attention that are similar to clinical observations in schizophrenia. In this study, expression of different NMDAR subunits, the postsynaptic mGlu5 receptor and the connecting NMDAR-mGluR5 intracellular postsynaptic density proteins have been measured in adult rats after treatment with phencyclidine on postnatal days 7, 9, and 11. We found that these animals exhibited elevated expression in medial prefrontal cortex of the NR2A and NR2B NMDA receptor subunits in adulthood. These results indicate how behavioral changes in a developmental model for cognitive dysfunction involve changes to specific molecular subsets of the cortical glutamate system.  相似文献   

12.
Brief N-methyl-D-aspartate (NMDA) receptor blockade in neonatal rats has been reported to increase neuronal apoptosis. We replicated this finding using MK-801 (0.5 mg/kg) administered twice on postnatal day 7, and then studied the long-term consequences. In adulthood, treated rats showed reduced volume and neuronal number within the hippocampus, and altered hippocampal NMDA receptor (NR1 subunit) expression. Synaptophysin mRNA was decreased in the thalamus (laterodorsal nucleus). Adult MK-801-treated females had prepulse inhibition deficits and increased locomotor activity. The data show that a transient and limited glutamatergic intervention during development can have chronic behavioural, structural and molecular effects. The effects are reminiscent of alterations reported in schizophrenia and, as such, are consistent with hypotheses advocating a role for NMDA receptor hypofunction, and aberrant apoptosis, in the neurodevelopmental pathogenesis of the disorder.  相似文献   

13.
14.
15.
BACKGROUND: The neural consequences of early-life exposure to methylphenidate (MPH; Ritalin) are of great interest given the widespread, and sometimes inappropriate, use in children. Here we examine the impact of juvenile MPH exposure on adult hippocampal neurogenesis. METHODS: Rats received MPH (2.0 mg/kg, intraperitoneal, twice daily) or saline (SAL) during preadolescence (postnatal days 20-35). Hippocampal cell proliferation (Experiment 1), neurogenesis (Experiment 2), and stress-induced changes in cell proliferation (Experiment 3) were assessed at several developmental stages including adulthood. RESULTS: Juvenile exposure to MPH did not alter proliferation at any developmental time point relative to control rats; however, exposure to MPH significantly decreased the long-term survival of newborn cells in adult rats, particularly in the temporal hippocampus. Although MPH-treated rats had higher levels of corticosterone after restraint stress, they did not show the expected greater decrease in hippocampal cell proliferation relative to control animals. CONCLUSIONS: Early-life exposure to MPH inhibits the survival of adult-generated neurons in the temporal hippocampus and may reduce progenitor sensitivity to corticosterone-induced decreases in proliferation. These findings suggest that decreased adult neurogenesis is an enduring consequence of early-life exposure to MPH and are discussed for their relevance to humans.  相似文献   

16.
Ma YY  Guo CY  Yu P  Lee DY  Han JS  Cui CL 《Experimental neurology》2006,200(2):343-355
It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.  相似文献   

17.
Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8–12. Behavioral tests were performed on PND 60–65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.  相似文献   

18.
NMDA receptor activation produces a characteristic pattern of neuronal firing in magnocellular neuroendocrine cells (MNCs) of the supraoptic nucleus of the hypothalamus (SON) which has been associated with greater hormone release in vivo and in vitro. In addition, i.c.v. administered NMDA receptor blockers suppress the dehydration-induced rise in plasma vasopressin and drinking. To investigate the role of NMDA receptor subunits in the neuroendocrine functions of the magnocellular neuroendocrine cells of the hypothalamus, we examined the effects of osmotic stimulation on the protein expression of the NMDA receptor subunits, NR1 and NR2B, important in binding glycine and glutamate, respectively. Homogenates of SON, paraventricular nucleus of the hypothalamus (PVN), cortex and lateral hypothalamus from control rats and rats given 2% saline water to drink for 4-10 days were subjected to SDS-PAGE and Western blot analysis. This saline water drinking regimen produced a significant rise in plasma osmolality levels. NR1 and NR2B immunoreactivity was detected in SON, PVN, lateral hypothalamus and cortex but not in liver homogenates using subunit-specific polyclonal antibodies and quantified using computer-assisted densitometry. Mean NR2B immunoreactivity was significantly lower in SON (29%) and PVN homogenates (23%) from saline-treated rats than in those from control rats. In addition, the effect of dehydration on NR2B was regionally specific since no significant changes in NR2B expression were observed in homogenates of cortex and lateral hypothalamus. Rehydration allowed recovery of plasma osmolality as well as NR2B protein levels in the SON. These results suggest that changes in NMDA receptor subunit expression contribute to the plasticity manifested by in magnocellular neuroendocrine cells in response to osmotic activation of the hypothalamo-neurohypophysial system. In addition, our results indicate that NMDA receptors on SON and PVN MNCs may contribute to neuroendocrinological functions associated with body fluid homeostasis.  相似文献   

19.
A priming‐challenge schedule of nicotine treatment causes long‐lasting potentiation (LLP), a form of synaptic plasticity closely associated with the norepinephrine (NE) neurotransmitter system, at the medial perforant path (MPP)‐dentate gyrus (DG) synapse in the rat hippocampus. Previous reports revealed that nicotine activates the locus coeruleus (LC) noradrenergic (NAergic) system and this mechanism may underlie its beta‐adrenoceptor sensitive LLP effects. Clozapine, an atypical antipsychotic, is also known to activate the LC. Interactions between nicotine and clozapine are of interest because of the prevalence of smoking in patients with schizophrenia and increasing interest in the use of nicotinic receptor ligands as cognitive enhancers. Rats were subchronically primed with nicotine, clozapine or saline. Twenty‐one to twenty‐eight days later, the effects of the nicotine, clozapine or saline challenge on the evoked field excitatory postsynaptic potentials (fEPSP) at the MPP‐DG monosynaptic pathway were recorded as a measure of LLP. We confirmed the hypothesis that a challenge dose of either nicotine or clozapine induces LLP exclusively in nicotine‐ and clozapine‐primed rats, and not in saline‐primed rats, thus indicating a cross‐priming effect. Moreover, unilateral suppression of LC using lidocaine abolished the LLP induced by nicotine in clozapine‐primed rats. Furthermore, systemic treatment with clonidine (an α2 adrenoceptor agonist that reduces NAergic activity via autoreceptors) prior to the challenge doses blocked the nicotine/clozapine‐induced LLP in nicotine‐ and clozapine‐primed rats. These findings may add to understanding of the cognitive enhancing effects of nicotine. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
M Kakeyama  H Sone  C Tohyama 《Neuroreport》2001,12(18):4009-4012
Since dioxin and related compounds are suspected of affecting permanently the brain function of offspring of human and experimental animals, effects of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of rat NMDA receptor NR2A and NR2B subunit mRNA were examined. The mRNA quantification by competitive RT-PCR clearly revealed that TCDD inhibited NR2B mRNA expression and enhanced NR2A mRNA expression in the neocortex and hippocampus on postnatal day (PND) 49, whereas these changes in mRNA expression were not found on PND 5. The results demonstrate for the first time that the perinatal exposure to TCDD can alter the molecular basis of brain of offspring in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号