首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonists that selectively target integrin alpha(v)beta(3) receptor and clear rapidly from the whole body. METHODS: Integrin alpha(v)beta(3) antagonists, 4-[2-(3,4,5,6-tetrahydropyrimidine-2-ylamino)ethyloxy]benzoyl-2-(S)-aminoethylsulfonyl-amino-beta-alanine (IA) and 4-[2-(3,4,5,6-tetrahydro-pyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonylamino-beta-alanine hydrochloride (IAC), a hydrophobic carbamate derivative of IA, were conjugated with 2-p-isothiocyanatobenzyl-DOTA at the amino terminus and labeled with (111)In. The (111)In labeled IA and IAC were subjected to in vitro receptor binding, biodistribution and imaging studies using nude mice bearing the receptor-positive M21 human melanoma xenografts. RESULTS: The (111)In-labeled IA (40%) and -IAC (72%) specifically bound in vitro to alpha(v)beta(3) (0.8 microM) at a molar excess. This receptor binding was completely blocked by a molar excess of cold IA to alpha(v)beta(3). The higher receptor-binding affinity of the (111)In-labeled IAC was reflected in higher tumor uptake and retention: 5.6+/-1.4 and 4.5+/-0.7 %ID/g vs. 3.8+/-0.9 and 2.0+/-0.3 %ID/g for the (111)In-labeled IA at 0.33 and 2 h. The tumor uptakes were inhibited by the co-injection of 200 microg of IA, indicating that the uptake was receptor mediated. These antagonists were excreted primarily via the renal system. The (111)In activity retained in the whole body was quite comparable between the (111)In-labeled IA (24% ID) and the (111)In-labeled IAC (33% ID) at 2 h. The higher peak tumor uptake and longer retention resulted in higher tumor-to-background ratios for the (111)In-labeled IAC at 2 h with 9.7, 2.3, 0.8, 1.9, 7.1, 2.2, 0.9, 3.7 and 9.9 for blood, liver, kidney, lung, heart, stomach, intestine, bone and muscle, respectively. The imaging studies with the (111)In-labeled IAC also clearly visualized the receptor-positive tumor at 4 h. CONCLUSIONS: The (111)In-labeled IAC showed an improve tumor targeting kinetics with rapid accumulation and prolonged retention in the alpha(v)beta(3) receptor-positive tumor. This together with the rapid whole-body clearance pharmacokinetics warrants further studies on this IAC analog for molecular imaging of tumor-induced angiogenic vessels and various malignant human tumors expressing the receptor.  相似文献   

2.
A common feature of solid tumors is the formation of new blood vessels (angiogenesis) within the tumor. A receptor called alpha(v)beta(3) is found on endothelial cells lining newly growing blood vessels at a higher density than on mature blood vessels. This receptor may provide a target for radioligands to permit imaging of a wide variety of solid tumors. The radioligands may range from macromolecules such as native ligands or monoclonal antibodies, to small proteins to very small peptides. The differing characteristics of these bio-molecules have an affect on target delivery and clearance time.  相似文献   

3.
Integrin alpha(v)beta(3) plays a critical role in tumor angiogenesis and metastasis. Suitably radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive imaging of alpha(v)beta(3) expression and targeted radionuclide therapy. In this study, we developed (64)Cu-labeled multimeric RGD peptides, E{E[c(RGDyK)](2)}(2) (RGD tetramer) and E(E{E[c(RGDyK)](2)}(2))(2) (RGD octamer), for PET imaging of tumor integrin alpha(v)beta(3) expression. METHODS: Both RGD tetramer and RGD octamer were synthesized with glutamate as the linker. After conjugation with 1,4,7,10-tetra-azacyclododecane-N,N',N',N'-tetraacetic acid (DOTA), the peptides were labeled with (64)Cu for biodistribution and small-animal PET imaging studies (U87MG human glioblastoma xenograft model and c-neu oncomouse model). A cell adhesion assay, a cell-binding assay, receptor blocking experiments, and immunohistochemistry were also performed to evaluate the alpha(v)beta(3)-binding affinity/specificity of the RGD peptide-based conjugates in vitro and in vivo. RESULTS: RGD octamer had significantly higher integrin alpha(v)beta(3)-binding affinity and specificity than RGD tetramer analog (inhibitory concentration of 50% was 10 nM for octamer vs. 35 nM for tetramer). (64)Cu-DOTA-RGD octamer had higher tumor uptake and longer tumor retention than (64)Cu-DOTA-RGD tetramer in both tumor models tested. The integrin alpha(v)beta(3) specificity of both tracers was confirmed by successful receptor-blocking experiments. The high uptake and slow clearance of (64)Cu-DOTA-RGD octamer in the kidneys was attributed mainly to the integrin positivity of the kidneys, significantly higher integrin alpha(v)beta(3)-binding affinity, and the larger molecular size of the octamer, as compared with the other RGD analogs. CONCLUSION: Polyvalency has a profound effect on the receptor-binding affinity and in vivo kinetics of radiolabeled RGD multimers. The information obtained here may guide the future development of RGD peptide-based imaging and internal radiotherapeutic agents targeting integrin alpha(v)beta(3).  相似文献   

4.
The association of the alpha(v)beta(3) integrin with tumor metastasis and tumor related angiogenesis has been suggested. Therefore, by imaging the alpha(v)beta(3) receptor with PET, information concerning the tumor status could be obtained. Cyclic peptides including the RGD sequence, were radiolabeled by direct electrophilic fluorination with [(18)F]AcOF. In tumor-bearing mice, the labeled peptides accumulated at the tumor with a high tumor to blood ratio. These findings suggest that an assessment of tumor characteristics may be obtained by using these (18)F-labeled peptides.  相似文献   

5.
Integrin alpha(v)beta(3) plays a critical role in tumor-induced angiogenesis and metastasis and has become a promising diagnostic indicator and therapeutic target for various solid tumors. Radiolabeled RGD peptides that are integrin specific can be used for noninvasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. METHODS: In this study we developed a tetrameric RGD peptide tracer (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) (DOTA is 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid) for PET imaging of integrin alpha(v)beta(3) expression in female athymic nude mice bearing the subcutaneous UG87MG glioma xenografts. RESULTS: The RGD tetramer showed significantly higher integrin binding affinity than the corresponding monomeric and dimeric RGD analogs, most likely due to a polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 +/- 0.01 %ID/g at 30 min and 0.21 +/- 0.01 %ID/g at 4 h after injection, respectively [%ID/g is percentage injected dose per gram]) and predominantly renal excretion. Tumor uptake was rapid and high, and the tumor washout was slow (9.93 +/- 1.05 %ID/g at 30 min after injection and 4.56 +/- 0.51 %ID/g at 24 h after injection). The metabolic stability of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70%, 58%, 51%, and 26%, respectively. Noninvasive microPET studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution results. Integrin alpha(v)beta(3) specificity was demonstrated by successful blocking of tumor uptake of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) in the presence of excess c(RGDyK) at 1 h after injection. The highest absorbed radiation doses determined for the human reference adult were received by the urinary bladder wall (0.262 mGy/MBq), kidneys (0.0296 mGy/MBq), and liver (0.0242 mGy/MBq). The average effective dose resulting from a single (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) injection was estimated to be 0.0164 mSv/MBq. CONCLUSION: The high integrin and avidity and favorable biokinetics make (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) a promising agent for peptide receptor radionuclide imaging and therapy of integrin-positive tumors.  相似文献   

6.
(18)F-Galacto-RGD is a new tracer for PET imaging of alpha v beta3, a receptor involved in a variety of pathologic processes including angiogenesis and metastasis. Our aim was to study the dosimetry of (18)F-galacto-RGD in humans. METHODS: Eighteen patients with various tumors (musculoskeletal tumors [n = 10], melanoma [n = 5], breast cancer [n = 2], or head and neck cancer [n = 1]) were examined. After injection of 133-200 MBq of (18)F-galacto-RGD, 3 consecutive emission scans from the thorax to the pelvis were acquired at 6.7 +/- 2.9, 35.6 +/- 7.6, and 70.4 +/- 12.2 min after injection. Blood samples (n = 4) for metabolite analysis were taken 10, 30, and 120 min after injection. The OLINDA 1.0 program was used to estimate the absorbed radiation dose. RESULTS: Reversed-phase high-performance liquid chromatography of serum revealed that more than 95% of tracer was intact up to 120 min after injection. (18)F-Galacto-RGD showed rapid clearance from the blood pool and primarily renal excretion. Background activity in lung and muscle tissue was low (percentage injected dose per liter at 71 min after injection, 0.56 +/- 0.15 and 0.69 +/- 0.25, respectively). The calculated effective dose was 18.7 +/- 2.4 microSv/MBq, and the highest absorbed radiation dose was in the bladder wall (0.22 +/- 0.03 mGy/MBq). CONCLUSION: (18)F-Galacto-RGD demonstrates high metabolic stability, a favorable biodistribution, and a low radiation dose. Consequently, this tracer can safely be used for noninvasive imaging of molecular processes involving the alpha v beta3 integrin and for the planning and monitoring of therapeutic approaches targeting alpha v beta3.  相似文献   

7.
Site-directed contrast enhancement of angiogenic vessels in vivo was demonstrated using antibody targeting of an MRI contrast agent to the alpha(v)beta(3) integrin, a molecular marker characteristic of angiogenic endothelium. The agent was tested in a rabbit corneal micropocket model, in which neovasculature is induced in the cornea using basic fibroblast growth factor. The targeted contrast agent consists of Gd-perfluorocarbon nanoparticles linked to alpha(v)beta(3) integrin antibody DM101. The animal group receiving the targeted contrast agent displayed a 25% increase in the average MR signal intensity after 90 min. Control groups in which the nanoparticles are either used alone, linked to an isotype-matched antibody, or linked to DM101 and administered following receptor blocking did not display MR contrast enhancement at similar dose levels. These findings indicate that the antibody-targeted agent enhances MR signal intensity in the capillary bed in a corneal micropocket model of angiogenesis, and is selectively retained within the angiogenic region via specific interaction with the alpha(v)beta(3) epitope.  相似文献   

8.
Targeted imaging requires site-specific accumulation of a contrast agent (CA), and the properties of that agent must be selected according to the abundance of the target to obtain a signal above the detection limit of the instrument. However, numerical estimates of receptors per cell are rarely found in the literature. Integrin receptors would be particularly promising targets because of their accessibility from the blood stream and expression on activated neovascular endothelial cells. We systematically estimated the number of integrin receptors of cell lines and primary cells by flow cytometry analysis. Since integrin receptors are heterodimeric molecules, and alpha(v) forms complexes with various beta subunits, the numbers of alpha(v) and beta(3) subunits are therefore dissimilar. The observed values are 3 . 10(3)-1.4 . 10(4)/cell for alpha(v), and 5.3 . 10(2)-1.1 . 10(4)/cell for beta(3). Despite the low number of exposed receptors, we show that up to single-cell MR visualization can be achieved with the use of iron oxide beads complexed with antibodies as CAs.  相似文献   

9.
肿瘤整合素αvβ3受体显像的研究现状   总被引:2,自引:0,他引:2  
整合素αvβ3受体在多种恶性肿瘤细胞表面有高水平的表达,尤其在恶性肿瘤组织新生血管内皮细胞膜,成熟血管内皮细胞和绝大多数正常器官系统则无表达或几乎不能被探及.含有RGD(精氨酸-甘氨酸-天冬氨酸)序列的小分子多肽是整合素αvβ3受体拮抗剂,对整合素αvβ3受体具有高度的选择性与亲和力,是一类具有潜在临床应用价值的肿瘤受体显像剂.  相似文献   

10.
Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. METHODS: N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. RESULTS: A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. CONCLUSION: This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.  相似文献   

11.
The cell adhesion molecule integrin alpha v beta 3 plays a key role in tumor angiogenesis and metastasis. A series of 18F-labeled RGD peptides have been developed for PET of integrin expression based on primary amine-reactive prosthetic groups. In this study we introduced a new method of labeling RGD peptides through a thiol-reactive synthon, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM). METHODS: 18F-FBEM was synthesized by coupling N-succinimidyl 4-18F-fluorobenzoate (18F-SFB) with N-(2-aminoethyl)maleimide. After high-pressure liquid chromatography purification, it was allowed to react with thiolated RGD peptides, and the resulting tracers were subjected to receptor-binding assay, in vivo metabolic stability assessment, biodistribution, and microPET studies in murine xenograft models. RESULTS: Conjugation of monomeric and dimeric sulfhydryl-RGD peptides with 18F-FBEM was achieved in high yields (85% +/- 5% nondecay-corrected on the basis of 18F-FBEM). The radiochemical purity of the 18F-labeled peptides was >98% and the specific activity was 100 approximately 150 TBq/mmol. Noninvasive microPET and direct tissue sampling experiments demonstrated that both 18F-FBEM-SRGD (RGD monomer) and 18F-FBEM-SRGD2 (RGD dimer) had integrin-specific tumor uptake in subcutaneous U87MG glioma and orthotopic MDA-MB-435 breast cancer xenografts. CONCLUSION: The new tracer 18F-FBEM-SRGD2 was synthesized with high specific activity via 18F-FBEM and the tracer exhibited high receptor-binding affinity, tumor-targeting efficacy, metabolic stability, as well as favorable in vivo pharmacokinetics. The new synthon 18F-FBEM developed in this study will also be useful for radiolabeling of other thiolated biomolecules.  相似文献   

12.
This study evaluated the sensitivity of a radiolabeled thymidine tracer for assessment of early tumor response and recurrence after irradiation. METHODS: SW707 human colon carcinoma implanted into nude mice was irradiated with 6 or 20 Gy. Tumor volume was determined for an interval of 14 d. At 4, 8 and 24 h and at 2, 3, 7, 10 and 14 d after irradiation, [14C]thymidine uptake into the tumor was determined with a liquid scintillation counter and the intratumoral distribution of [14C]thymidine was visualized and evaluated semiquantitatively by autoradiography using a phosphor imager. RESULTS: In both groups, tumor volume decreased until day 7 after irradiation; afterward, regrowth occurred in only the group that had received 6 Gy. A decrease in thymidine uptake was found as early as 8 h after irradiation. On day 3 after irradiation, thymidine uptake increased again in the 6-Gy group, before the increase in tumor volume, but remained unchanged in the 20-Gy group. Also on day 3, multiple foci of thymidine uptake suggesting proliferation preceding tumor recurrence were seen on autoradiographs from the 6-Gy group but not from the 20-Gy group. Histological findings correlated with the results of autoradiography. CONCLUSION: The results show that radiolabeled thymidine is a sensitive tracer for assessment of early tumor response and recurrence after irradiation. The rapid decrease in uptake, however, does not allow any prediction about tumor recurrence.  相似文献   

13.
The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide-containing ligand for (99m)Tc labeling as alpha(v)beta(3) integrin receptor-targeted imaging agent. BPy-RGD conjugate was successfully synthesized by coupling of 5-carboxylate-2,2'-bipyridine and c(RGDyK) peptide through EDC/SNHS in aqueous solution and was characterized by MADLI-TOF-MS (m/z=802.72, C(38)H(48)N(11)O(9)). (99m)Tc(CO)(3)-BPy-RGD was prepared by exchange reaction between [(99m)Tc(H(2)O)(3)(CO)(3)](+) and BPy-RGD. Final product was purified by HPLC and tested for octanol/water partition coefficient. Cell-binding assays of BPy-RGD and unmodified c(RGDyK) were tested in MDA-MB-435 cells ((125)I-echistatin as radioligand). Preliminary biodistribution of the (99m)Tc(I)-labeled radiotracer in orthotopic MDA-MB-435 breast tumor xenograft model was also evaluated. The BPy-RGD conjugate had good integrin-binding affinity (50% inhibitory concentration (IC(50))=92.51+/-22.69 nM), slightly lower than unmodified c(RGDyK) (IC(50)=59.07+/-11.03 nM). The hydrophilic radiotracer also had receptor-mediated activity accumulation in MDA-MB-435 tumor (1.45+/-0.25 percentage of injected dose per gram (%ID/g) at 1.5h postinjection (p.i.)), which is known to be integrin positive. After blocking with c(RGDyK), the tumor uptake was reduced from 0.71+/-0.01%ID/g to 0.33+/-0.18%ID/g at 4h p.i. (99m)Tc(I) tricarbonyl complex of cyclic RGD peptide is a promising strategy for integrin targeting. Further modification of the bipyridine-conjugated RGD peptide by using more potent RGD peptides and fine tuning of the tether group between the RGD moiety and (99m)Tc(CO)(3)(+) core to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.  相似文献   

14.
目的 采用99Tcm-3聚乙二醇4-RGD2(3P-RGD2)评估小细胞肺癌和肺腺癌细胞荷瘤鼠动物模型中整合素αvβ3表达水平.方法 按试剂盒说明书制备99Tcm-3P-RGD2.选取H446人小细胞肺癌细胞进行受体竞争抑制实验,检测3P-RGD2与整合素αvβ3的特异亲和性.通过细胞摄取实验检测H446和A549人肺腺癌细胞对99Tcm-3P-RGD2的摄取情况,以流式细胞术和免疫荧光染色测定2种细胞中整合素αvβ3的表达.观察99Tcm-3P-RGD2在H446和A549肺癌荷裸鼠模型(各6只)的microSPECT/CT显像情况.显像后断颈处死裸鼠,取部分肿瘤组织制备单细胞悬液,以流式细胞术检测细胞整合素αvβ3表达;部分组织制成切片,以免疫组织化学法检测肿瘤组织整合素αvβ3的表达.采用配对t检验对实验数据进行统计学分析.结果 99Tcm-3P-RGD2标记率为(97.0±2.0)%,4h时后放化纯仍高达95%.3P-RGD2与整合素αvβ3特异性结合的半数抑制浓度(IC5o)为8.759 nmol/L.H446细胞对99Tcm-3P-RGD2的亲和性高于A549细胞,摄取率均于120 min达峰值,分别为(5.75±0.50)%和(3.35±0.28)%(t=9.324,P<0.05).H446和A549肺癌细胞均表达整合素αvβ3,且H446高于A549[(18.01±2.83)%和(5.77±0.64)%,t=7.488,P<0.05].免疫荧光染色示H446细胞整合素信号明显高于A549细胞.MicroSPECT/CT显像示注射99Tcm-3P-RGD2后3 h T/NT达最大值,H446荷瘤鼠T/NT比值为6.39±1.29,高于A549荷瘤鼠(3.62±0.33,t=6.869,P<0.05).H446和A549肿瘤组织经流式细胞术检测,整合素αvβ3表达水平分别为(22.89±3.63)%和(10.23±1.94)%(t=13.967,P<0.05).免疫组织化学检测结果示H446和A549肿瘤组织和新生血管内皮细胞均有整合素αvβ3表达.结论 99Tcm-3P-RGD2可用于整合素αvβ3阳性肺癌的显像,并可无创评估不同肺癌组织整合素αvβ3的表达水平.  相似文献   

15.
Human epithelial mucin, MUC1, is commonly overexpressed in adenocarcinoma that includes more than 80% of breast cancers. The PR81 is a murine anti-MUC1 monoclonal antibody (MAb) that was prepared against the human breast cancer. We developed an indirect method for labeling of this antibody with (99m)Tc in order to use the new preparation in immunoscintigraphy studies of BALB/c mice bearing breast tumors. The (99m)Tc-PR81 complex was prepared using the HYNIC as a chelator and tricine as a coligand. The labeling efficiency determined by instant thin-layer chromatography (ITLC) was 89.2%+/-4.7%, and radiocolloides measured by cellulose nitrate electrophoresis were 3.4%+/-0.9%. The in vitro stability of labeled product was determined at room temperature by ITLC and in human serum by gel filtration chromatography - 88.3%+/-4.6% and 79.8%+/-5.7% over 24 h, respectively. The integrity of labeled MAb was checked by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis, and no significant fragmentation was seen. The results of cell binding studies showed that both labeled and unlabeled PR81 were able to compete for binding to MCF 7 cells. Biodistribution studies performed in female BALB/c mice with breast tumor xenografts at 4, 16 and 24 h after the (99m)Tc-HYNIC-PR81 injection demonstrated a specific localization of the compound at the site of tumors and minimum accumulation in non target organs. The tumor imaging was performed in BALB/c mice with breast xenograft tumors at 4, 8, 12, 16, 20, 24, 28, 32 and 36 h after the complex injection. The tumors were visualized with high sensitivity after 8 h. The findings showed that the new radiopharmaceutical is a promising candidate for radioimmunoscintigraphy of the human breast cancer.  相似文献   

16.
整合素主要介导细胞与细胞、细胞与细胞外基质(ECM)之间的相互黏附,对细胞的黏附、增殖、分化、转移、凋亡起到重要的调控作用,在肿瘤的侵袭转移中发挥重要作用.成熟血管内皮细胞和绝大多数正常器官系统中,整合素αvβ3受体表达缺乏或几乎不能被探及,但其在新生血管内皮细胞中有强烈表达,精氨酸-甘氨酸-天冬氨酸(RGD)肽是整合素αvβ3受体的特异性识别位点,因此,将放射性核素标记到含有RGD序列的肽类化合物上,用于整合素αvβ3受体显像,对于肿瘤早期和高特异性定位、定量诊断及治疗都具有重要意义.近年来国内外对RGD肽的标记方法和αvβ3受体显像进行了研究.  相似文献   

17.
Several radiopharmaceuticals are currently used for diagnosis of inflammatory and infectious diseases in patients. Most inflammatory and infectious processes can be visualized with radiolabeled autologous leukocytes, currently considered to be the most appropriate radiopharmaceutical for this purpose. This agent is very well capable to delineate most inflammatory and infectious foci in a relatively short time after injection. The time-consuming and intricate labeling procedure and the handling of potentially contaminated blood, however cause that there is a great interest in the development of new radiopharmaceuticals comprising the same imaging qualities but without these disadvantages. Besides radiolabeled leukocytes several other radiopharmaceuticals, such as (67)Ga-citrate, radiolabeled anti-granulocyte antibodies and FDG are used to image infection and inflammation. These agents accumulate in infectious and inflammatory lesions in a non-specific manner or have suboptimal diagnostic characteristics. Nowadays, there is a great interest in the development of radiolabeled chemotactic and chemokinetic cytokines that accumulate and are retained in infectious and inflammatory foci by specific interaction with infiltrated inflammatory cells. In this review we describe the specific characteristics of the chemotactic and chemokinetic compounds that are currently studied as potential radiopharmaceutical to visualize infectious and inflammatory foci. The characteristics of a series of cytokines (IL-1, IL-2), chemokines (IL-8, PF-4, MCP-1, NAP-2), complement factors (C5a, C5adR), chemotactic peptides (fMLF) and other chemotactic factors (LTB4) are described. The potentials of these compounds to serve as an imaging agent are discussed.  相似文献   

18.
Disintegrins, which contain an Arg-Gly-Asp sequence in their binding domains are antagonists of integrins such as alphavbeta3. The purpose of this study was to compare a range of disintegrins with different integrin selectivities for their binding behavior in vitro to vascular endothelial cells bearing alphavbeta3 and to cultured tumor cells which express alphavbeta3. METHODS: Five disintegrins (bitistatin, kistrin, flavoridin, VLO4 and echistatin) and a cyclic pentapeptide, c[RGDyK], were radiolabeled with (99m)Tc and tested for binding to cells in vitro. RESULTS: (99m)Tc-Kistrin, flavoridin and VLO4 had the highest binding, (99m)Tc-echistatin had moderate binding, and (99m)Tc-bitistatin and (99m)Tc-c[RGDyK] had low binding to cells. The observed binding was attributed to alphavbeta3 to various extents: echistatin, bitistatin>kistrin>flavoridin>VLO4. Cancer cells internalized bound disintegrins after binding, but endothelial cells did not. After binding to endothelial cells, (99m)Tc-kistrin was not displaced by competing peptide or plasma proteins. CONCLUSIONS: These data suggest that radiolabeled kistrin, flavoridin and VLO4 may have advantages over labeled bitistatin and small cyclic peptides for targeting alphavbeta3 in vivo. Since receptor-bound radioligand is not internalized by endothelial cells, disintegrins may provide an advantage for targeting alphavbeta3 on vasculature because they bind strongly to surface receptors and are not readily displaced.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号