首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One hundred and forty male and 140 female rats were divided into 1 control and 3 test groups of 35 rats each, per sex, and exposed by whole-body inhalation to test compound at target concentrations of 0, 1 mg/m3 (1700 fibers/cm3, 123 WHO fibers/cm3), 10 mg/m3 (5900 fibers/cm3, 952 WHO fibers/cm3), and 100 mg/m3 (112,700 fibers/cm3, 7440 WHO fibers/cm3) for 6 h/day, 5 days/wk for 13 wk. Ten rats from each group were killed after 13 wk of exposure and 13 wk of recovery, respectively, for histopathological evaluation. The other 15 rats from each group were killed to study lung clearance after 91 days of exposure, and approximately 1.5 and 3 mo of recovery following the end of the 13 wk of exposure. The mean fiber length of the chamber atmosphere was 2.8, 2.7, and 2.8 µm, while the mean fiber width was 0.48, 0.48, and 0.45 µm for the 1-, 10-, and 100-mg/m3 chambers, respectively. In the 1-mg/m3 (123 WHO fibers/cm3) exposure group, inhaled particles were mostly retained in a few fiberladen alveolar macrophages (AMs) within the alveoli adjacent to alveolar ducts without any adverse tissue response throughout 13 wk of exposure and following 13 wk of recovery. This exposure concentration was considered to be a no-observable-adverse-effect level (NOAEL), since the alveoli containing fiber-laden AMs preserved normal structure. After 13 wk of exposure to 10 mg/m3 (952 WHO fibers/cm3), fiber-laden AMs were mainly retained at the alveoli adjacent to the alveolar ducts. Infrequently, slight fibrotic thickening was observed in the alveolar ducts and adjoining alveoli, with proliferating fibroblasts and hyperplastic Type II pneumocytes, and microgranulomas. Occasionally, trace amounts of collagenous material were deposited in the thickened alveolar ducts and adjoining alveolar walls. In addition, minimal alveolar bronchiolarization was occasionally found in the alveoli adjacent to the terminal bronchioles. The peribronchial lymphoid tissue and thymic lymph nodes contained migrated fiber-laden AMs. After 13 wk of recovery, fiber-laden AMs had mostly disappeared from alveoli located in the peripheral acini, but they localized in the alveolar ducts region, suggesting there was active lung clearance of fibers by the AMs via airways. Thickened alveolar ducts and adjacent alveoli were decreased in thickness, a reversible change manifested by reduction of proliferating Type II pneumocytes and fibroblasts. Collagenized fibrosis was slightly more pronounced in the thickened alveolar ducts and adjoining alveoli. The lung response following 13 wk of exposure to 100 mg/m3 (7440 WHO fibers/cm3) and after 13 wk of recovery was similar to those findings of the 952 WHO fibers/cm3 group but more pronounced, demonstrating a clear concentration-related response. Alveolar ducts and adjoining alveolar walls in the central acini were irregularly thickened with more frequent evidence of minimal collagenized fibrosis. The lung burden and clearance of fibers were estimated by measuring the total content of titanium (Ti) in the lungs, but high variability of Ti content in control and exposed groups prevented meaningful lung clearance analysis.  相似文献   

2.
A chronic inhalation toxicity/carcinogenicity study of potassium octatitanate fibers (TISMO) was conducted in male Fischer 344 rats. Groups of 135 rats were exposed via whole-body inhalation to 0, 20, 60, or 200 WHO fibers/cc of TISMO, 6 h/day, 5 days/w for 24 mo. Six of 30 subgroup rats were killed after 3, 6, 12, 18, and 24 mo of exposure for lung burden evaluations. Another 30 subgroup rats were removed from the exposure chambers after 6 mo of exposure, placed in clean air, and from this group 6 rats were killed at 3, 6, 9, 12, and 18 mo later to study lung clearance. The remaining 75 rats in each group were subjected to 24 mo of exposure for chronic toxicity and carcinogenicity study. Rats exposed to HEPA-filtered air (chamber control) were used as a negative control in each study. The lung burden results indicated that a time point of equilibrium between lung burden and lung clearance at 20 WHO fibers/cc exposure was attained after approximately 18 mo of exposure. There was no difference in the number of WHO fiber from the lungs between 18 and 24 mo at 20 WHO fibers/cc exposure. But disproportional rapid increase in lung burden at 200 WHO fibers/cc exposure appeared to be saturation of lung clearance mechanism resulting from lung overloading. At 200 WHO fibers/cc exposure, approximately 22.9 and 70.5 million WHO fibers were retained in the lung after 3 and 6 mo of exposure, respectively, but lungs revealed normal in appearance. However, alveolar walls enclosing aggregated TISMO-laden alveolar macrophages (AMs) showed fibrotic thickening and approximately 197.3 million WHO fibers were retained in the lungs after 18 mo of exposure. Inhaled fibers were rapidly cleared during 3- and 6-mo recovery periods, and thereafter gradually progressive fiber reduction was observed throughout 18 mo of recovery. The number of WHO fibers decreased by approximately 72%, 74%, and 79% in the 200, 60, and 20 WHO fibers/cc groups, respectively, at the end of the 18-mo recovery period following 6 mo of exposure. Although inhaled TISMO fibers in the 20 WHO fibers/cc exposure group were phagocytized by alveolar macrophages (AMs) the lung morphology appeared normal throughout 24 mo of exposure. At 60 WHO fibers/cc exposure, a slight dose- and time-dependent increase in TISMO-laden AMs was observed throughout 3, 6, and 12 mo of exposure and some alveoli containing aggregated TISMO-laden AMs showed alveolar wall thickening at 18 mo of exposure and minimal alveolar fibrosis at 24 mo of exposure. The exposure concentration is interpreted as a borderline effect level. At 200 WHO fibers/cc exposure, lungs preserved normal architecture at 3 and 6 mo of exposure. Some alveolar walls enclosing aggregates of TISMO-laden AMs were slightly thickened after 12 mo of exposure and revealed slight alveolar fibrosis after 18 and 24 mo of exposure. Neither exposure related-pulmonary neoplasm nor mesothelioma was observed in 24 mo of exposure. The 20 WHO fibers/cc exposure concentration is considered to be a no-observable-adverse-effect level (NOAEL). TISMO exposure limits of 1 WHO fiber/cc would not impose a significant health hazard to humans in the workplace based on the animal experiments and medical surveys on workers.  相似文献   

3.
A chronic inhalation toxicity/carcinogenicity study of potassium octatitanate fibers (TISMO) was conducted in male Fischer 344 rats. Groups of 135 rats were exposed via whole-body inhalation to 0, 20, 60, or 200 WHO fibers/cc of TISMO, 6 h/day, 5 days/w for 24 mo. Six of 30 subgroup rats were killed after 3, 6, 12, 18, and 24 mo of exposure for lung burden evaluations. Another 30 subgroup rats were removed from the exposure chambers after 6 mo of exposure, placed in clean air, and from this group 6 rats were killed at 3, 6, 9, 12, and 18 mo later to study lung clearance. The remaining 75 rats in each group were subjected to 24 mo of exposure for chronic toxicity and carcinogenicity study. Rats exposed to HEPA-filtered air (chamber control) were used as a negative control in each study. The lung burden results indicated that a time point of equilibrium between lung burden and lung clearance at 20 WHO fibers/cc exposure was attained after approximately 18 mo of exposure. There was no difference in the number of WHO fiber from the lungs between 18 and 24 mo at 20 WHO fibers/cc exposure. But disproportional rapid increase in lung burden at 200 WHO fibers/cc exposure appeared to be saturation of lung clearance mechanism resulting from lung overloading. At 200 WHO fibers/cc exposure, approximately 22.9 and 70.5 million WHO fibers were retained in the lung after 3 and 6 mo of exposure, respectively, but lungs revealed normal in appearance. However, alveolar walls enclosing aggregated TISMO-laden alveolar macrophages (AMs) showed fibrotic thickening and approximately 197.3 million WHO fibers were retained in the lungs after 18 mo of exposure. Inhaled fibers were rapidly cleared during 3- and 6-mo recovery periods, and thereafter gradually progressive fiber reduction was observed throughout 18 mo of recovery. The number of WHO fibers decreased by approximately 72%, 74%, and 79% in the 200, 60, and 20 WHO fibers/cc groups, respectively, at the end of the 18-mo recovery period following 6 mo of exposure. Although inhaled TISMO fibers in the 20 WHO fibers/cc exposure group were phagocytized by alveolar macrophages (AMs) the lung morphology appeared normal throughout 24 mo of exposure. At 60 WHO fibers/cc exposure, a slight dose- and time-dependent increase in TISMO-laden AMs was observed throughout 3, 6, and 12 mo of exposure and some alveoli containing aggregated TISMO-laden AMs showed alveolar wall thickening at 18 mo of exposure and minimal alveolar fibrosis at 24 mo of exposure. The exposure concentration is interpreted as a borderline effect level. At 200 WHO fibers/cc exposure, lungs preserved normal architecture at 3 and 6 mo of exposure. Some alveolar walls enclosing aggregates of TISMO-laden AMs were slightly thickened after 12 mo of exposure and revealed slight alveolar fibrosis after 18 and 24 mo of exposure. Neither exposure related-pulmonary neoplasm nor mesothelioma was observed in 24 mo of exposure. The 20 WHO fibers/cc exposure concentration is considered to be a no-observable-adverse-effect level (NOAEL). TISMO exposure limits of 1 WHO fiber/cc would not impose a significant health hazard to humans in the workplace based on the animal experiments and medical surveys on workers.  相似文献   

4.
《Inhalation toxicology》2013,25(1):56-68
Since fibrous particles such as asbestos and some man-made fibers (MMF) have been known to produce carcinogenic or fibrogenic effects, disk-shaped potassium octatitanate (POT) particles (trade name: Terracess TF) were manufactured as nonfibrous particles. A 90-day inhalation toxicity study of Terracess TF was performed to evaluate comparative inhalation toxicity of the disk shape with a fibrous shape that was previously evaluated. Four groups of 20 male and 15 female rats each were exposed to Terracess TF aerosols at concentrations of 0, 2, 10, or 50?mg/m3 for 90 days. Ten male and 10 female rats per group were sacrificed at 90 days of exposure. After 90 days of exposure, 5 male rats per group were sacrificed at 3 wk of recovery period and 4–5 male rats per group or 5 female rats per group were sacrificed at 15?wk of recovery for lung clearance and histopathology. The mass median aerodynamic equivalent diameter (MMAED) of the aerosols of test materials ranged from 2.5 to 2.9?μm. There were no test-substance-related adverse effects on clinical observations. At the end of the 90-day exposure, a slight increase in lung-to-body weight ratios was observed at 50?mg/m3 in male but not in female rats. However, lung weights were within normal limits after 3- or 15-wk recovery periods. Microscopically, inhaled Terracess TF particles were mostly phagocytized by free alveolar macrophages (AMs) in the alveolar airspaces and alveolar walls maintained normal structure at 2 and 10?mg/m3. At 50?mg/m3, some alveoli were distended and filled with aggregates of particle-laden AMs. The alveolar walls showed slight type II pneumocyte hyperplasia, but neither proliferative inflammation nor alveolar fibrosis was present at 50?mg/m3. The clearance half-times for Terracess TF were estimated to be in the order of 6 to 9?mo for the 50-mg/m3 group and 2 to 3?mo for the 10- and 2-mg/m3 groups. The lung responses and lung clearance rate were comparable to those of “nuisance” type dusts at these concentrations. Based on interpretation that aggregated particle-laden AMs in alveoli was considered to be an early histopathological sign of lung overloading, an effect level was considered to be 50?mg/m3 and no-observed-adverse-effect level (NOAEL) was 10?mg/m3. This experiment clearly demonstrated that particle morphology was considered to be an important factor to determine inhaled particle toxicity.  相似文献   

5.
Pulmonary response to inhaled Kevlar aramid synthetic fibers in rats   总被引:1,自引:0,他引:1  
Groups of male rats were exposed to specially prepared ultrafine Kevlar pulp fibers (du Pont's registered trademark for certain aramid fibers) at atmospheric concentrations of either 0.1, 0.5, 3.0, or 18 mg/m3 for 2 weeks. Rats were killed at 0 and 2 weeks and 3 and 6 months postexposure (PE) except the rats exposed to 18 mg/m3, which were killed 0, 4, and 14 days and 1, 3, and 6 months PE. Another group of male rats was exposed to 18 mg/m3 (respirable dust approximately 2.5 mg/m3) of commercial Kevlar fibers for 2 weeks and were killed at 0 and 2 weeks and 3 and 6 months PE. Inhaled ultrafine Kevlar fibers were mostly phagocytized by alveolar macrophages (dust cells) in the alveolar ducts and adjoining alveoli after exposure to either 0.1 or 0.5 micrograms/m3. Most dust cells had disappeared and lungs showed a normal appearance throughout 6 months PE. The pulmonary response almost satisfied the biological criteria for a nuisance dust. Rats exposed to 3 mg/m3 ultrafine Kevlar fibers revealed occasional patchy thickening of alveolar ducts with dust cells and inflammatory cells but with no collagen fibers deposited throughout 6 months PE. After exposure to 18 mg/m3 ultrafine Kevlar, the respiratory bronchioles, alveolar ducts, and adjoining alveoli showed granulomatous lesions with dust cells by 2 weeks PE. The granulomatous lesions converted to patchy fibrotic thickening with dust cells after 1 month PE. The fibrotic lesions were markedly reduced in cellularity, size, and numbers from 3 to 6 months PE but revealed networks of reticulum fibers with slight collagen fiber deposition.  相似文献   

6.
Rats were exposed to TiO2 by inhalation exposure to concentrations of 0, 10, 50, and 250 mg/m3 for 6 hr/day, 5 days/week for 2 years. There were no abnormal clinical signs, body weight changes, or excess mortality in any exposed group. Exposed groups showed slight increases in the incidence of pneumonia, tracheitis, and rhinitis with squamous metaplasia in the anterior nasal cavity. The pulmonary response at 10 mg/m3 satisfied the biological criteria for a "nuisance dust." The lung reaction was characterized by dust-laden macrophage (dust cell) infiltration in the alveolar ducts and adjoining alveoli with hyperplasia of Type II pneumocytes. Rats at 50 and 250 mg/m3 exposure concentrations revealed a dose-dependent dust cell accumulation, a foamy macrophage response, Type II pneumocyte hyperplasia, alveolar proteinosis, alveolar bronchiolarization, cholesterol granulomas, focal pleurisy, and dust deposition in the tracheobronchial lymph nodes. Minute collagenized fibrosis occurred in the alveolar walls enclosing large dust cell aggregates. The pulmonary lesions with massive dust accumulation appeared to be the result of an overwhelmed lung clearance mechanism at 250 mg/m3 exposure. Bronchioloalveolar adenomas and cystic keratinizing squamous cell carcinomas occurred at 250 mg/m3 exposure, while no compound-related lung tumors were found in rats exposed to either 10 or 50 mg/m3. In addition to excessive dust loading in the lungs of rats exposed chronically at 250 mg/m3, the lung tumors were different from common human lung cancers in terms of tumor type, anatomic location, tumorigenesis, and were devoid of tumor metastasis. Therefore, the biological relevance of these lung tumors and other pulmonary lesions for man is negligible.  相似文献   

7.
Fiberglass (FG) is the largest category of man-made mineral fibers (MMVFs). Many types of FG are manufactured for specific uses-building insulation, air handling, filtration, and sound absorption. In the United States, > 95% of FG produced is for building insulation. Several inhalation studies in rodents of FG building insulation have shown no indication of pulmonary fibrosis or carcinogenic activity. However, because of increasing use and potential for widespread human exposure, a chronic toxicity/carcinogenicity inhalation study of a typical building insulation FG (MMVF 10a) was conducted in hamsters, which were shown to be highly sensitive to the induction of mesotheliomas with another MMVF. A special-application FG (MMVF 33) and amosite asbestos were used for comparative purposes. Groups of 140 weanling male Syrian golden hamsters were exposed via nose-only inhalation for 6 h/day, 5 days/wk for 78 wk to either filtered air (chamber controls) or MMVF 10a, MMVF 33, or amosite asbestos at 250-300 WHO fibers/cm3 with two additional amosite asbestos groups at 25 and 125 WHO fibers/cm3. They were then held unexposed for 6 wk until 10-20% survival. After 13, 26, 52, and 78 wk, various pulmonary parameters and lung fiber burdens were evaluated. Groups hamsters were removed from exposure at 13 and 52 wk and were held until 78 wk (recovery groups). Initial lung deposition of long fibers (> 20 mum in length) after a single 6-h exposure was similar for all 3 fibers exposed to 250-300 fibers/cm3. MMVF 10a lungs showed inflammation (which regressed in recovery hamsters) but no pulmonary or pleural fibrosis or neoplasms. MMVF 33 induced more severe inflammation and mild interstitial and pleural fibrosis by 26 wk that progressed in severity until 52 wk, after which it plateaued. While the inflammatory lesions regressed in the recovery animals, pulmonary or pleural fibrosis did not. A single multicentric mesothelioma was observed at 32 wk. No neoplasms were found in the remainder of the study. Amosite asbestos produced dose-related inflammation and pulmonary and pleural fibrosis as early as 13 wk in all 3 exposure levels. The lesions progressed during the course of the study, and at 78 wk severe pulmonary fibrosis with large areas of consolidation was observed in the highest 2 exposure groups. Progressive pleural fibrosis with mesothelial hypertrophy and hyperplasia was present in the thoracic wall and diaphragm in most animals and increased with time in the recovery hamsters. While no pulmonary neoplasms were observed in the amosite exposed hamsters, a large number of mesotheliomas were found; 25 fibers/cm3, 3.6%; 125 fibers/cm3, 25.9%; and 250 fibers/cm3, 19.5%. For the 3 fiber types, the severity of the lung and pleural lesions generally paralleled the cumulative fiber burden, especially those >20 mum length, in the lung, thoracic wall, and diaphragm. They also inversely paralleled the in vitro dissolution rates; that is, the faster the dissolution, the lower were the cumulative lung burdens and the less severe the effects.  相似文献   

8.
Inhalation toxicology studies with chrysotile asbestos have in the past been performed at exceedingly high doses without consideration of fiber number or dimensions. As such, the exposures have exceeded lung overload levels, making quantitative assessment of these studies difficult if not impossible. To assess the cellular and pathological response in the rat lung to a well-characterized aerosol of chrysotile asbestos, a 90-day subchronic inhalation toxicology study was performed using a commercial Brazilian chrysotile (CA 300). The protocol was based on that established by the European Commission for the evaluation of synthetic vitreous fibers. The study was also designed to assess the potential for reversibility of any such changes and to permit association of responses with fiber dose in the lung and the influence of fiber length. Wistar male rats were randomly assigned to an air control group and to 2 CA 300 exposure groups at mean fiber aerosol concentrations of 76 fibers L > 20 microm/cm3 (3413 total fibers/cm3; 536 WHO fibers/cm3) or 207 fibers L > 20 microm/cm3 (8941 total fibers/cm3; 1429 WHO fibers/cm3). The animals were exposed using a flow-past, nose-only exposure system for 5 days/wk, 6 h/day, during 13 consecutive weeks (65 exposures), followed by a subsequent nonexposure period lasting for 92 days. Animals were sacrificed after cessation of exposure and after 50 and 92 days of nonexposure recovery. At each sacrifice, subgroups of rats were assessed for the determination of the lung burden; histopathological examination; cell proliferation response; bronchoalveolar lavage with the determination of inflammatory cells; clinical biochemistry; and for analysis by confocal microscopy. Through 90 days of exposure and 92 days of recovery, chrysotile at a mean exposure of 76 fibers L > 20 microm/cm3 (3413 total fibers/cm3) resulted in no fibrosis (Wagner score 1.8 to 2.6) at any time point. The long chrysotile fibers were observed to break apart into small particles and smaller fibers. In vitro modeling has indicated that these particles are essentially amorphous silica. At an exposure concentration of 207 fibers L > 20 microm/cm3 (8941 total fibers/cm3) slight fibrosis was observed. In comparison with other studies, chrysotile produced less inflammatory response than the biosoluble synthetic vitreous fiber CMS. As predicted by the recent biopersistence studies on chrysotile, this study clearly shows that at that at an exposure concentration 5000 times greater than the U.S. threshold limit value of 0.1 f(WHO)/cm3, chrysotile produces no significant pathological response.  相似文献   

9.
In previous investigations a reference test sample of prepared ceramic fibers called RCF1 induced lung tumors in a 2-yr inhalation study in rats. It was hypothesized that nonfibrous particles in RCF1 may have played a significant role. The objective of the present study was to compare lung retention and biological effects of another sample of ceramic fibers, called RCF1a, to the original RCF1. The main difference between these 2 samples was the content of nonfibrous particles: 25% of the mass of RCF1 versus 2% for RCF1a. These nonfibrous particles were chemically identical to the fibers. Female Wistar rats were exposed 6 h/day, 5 days/wk for 3 wk to either RCF1a or RCF1 fiber aerosol at a concentration of about 125 fibers (> 20 µm long)/ml. Because of differences in the nonfibrous particle contents, the average gravimetric aerosol concentration differed between the two samples (RCF1, 51.2 mg/m 3; RCF1a, 25.8 mg/m 3) . The post-treatment observation period was 12 mo. Biological effects measured include the clearance function of alveolar macrophages (clearance of fibers and tracer particles), and inflammation and its persistence during the recovery period. Alveolar clearance of tracer particles (46 Sc 2 O 3) was barely retarded after RCF1a exposure (80 days clearance half time compared to 60 days in controls). After RCF1 exposure, however, a severe retardation of clearance was observed (1200 vs. 66 days). In both groups, differential cell counts on pulmonary lavage showed a significant increase of polymorphonuclear leukocytes (PMNs) (about 15%) and lymphocytes 3 days after the end of exposure. The PMN influx persisted longer after exposure to RCF1 than RCF1a. The conclusion of the study is that the particle fraction of RCF1 significantly enhanced any adverse effects. This clearly demonstrates the importance of the physical characteristics of the test material for the degree of toxic effects to be expected. The presence of nonfibrous particulates can enhance the effects on the lung of a mixture of fibrous and nonfibrous particulates following exposure.  相似文献   

10.
To study the effects of a low concentration exposure on the retention and clearance of submicron particles from the lungs, we exposed male Fisher 344 rats to diesel exhaust diluted to 50 micrograms diesel exhaust particles (DP)/m3, 20 h/d, 7 d/wk for 52 wk. Lung burdens (amount of DP in lungs) and the alveolar macrophage burdens were measured up to 52 wk postexposure. By 1 yr postexposure at least 80% of the DP was eliminated from the lungs and similarly cleared from the lavaged pool of macrophages. The DP remaining in the lungs was observed in alveolar, parabronchial and paravascular maculae. In contrast to previous high concentration exposure studies, only trace amounts of particles were observed in the mediastinal lymph nodes. To study the concentration dependence of particle retention, rats were exposed to equivalent exposures of 18 d x mg DP/m3 delivered at 5700 micrograms/m3 for 3 d, 1600 micrograms/m3 for 12 d, 250 micrograms/m3 for 72 d, or 50 micrograms/m3 for 365 d. Higher lung and macrophage burdens were initially achieved with the brief, high concentration exposures. During the postexposure period, animals exposed to the higher concentrations cleared more of the lung burden. Exposure to lower concentrations resulted in higher long-term lung burdens. These results are consistent with a model of lung clearance in which the macrophage burden and the duration of exposure are both important to the formation of the maculae. In a brief high concentration exposure, the macrophage burden rises rapidly, but then declines rapidly. However, in longer low concentration exposures, the macrophage burden will not reach the same peak, but stays at intermediate levels during the exposure and stimulates a steady development of the lung maculae from particle-laden macrophages leaving the active pool of pulmonary phagocytes.  相似文献   

11.
To evaluate the safety of rock wool (RW), an asbestos substitute, we examined the biopersistence of RW fibers in rat lungs based on the changes of fiber number and fiber size (length and diameter) by a nose-only inhalation exposure study. Twenty-four male Fischer 344 rats were exposed to RW fibers at a concentration of 30 mg/m(3) continuously for 3 h daily for 5 consecutive days. Six rats each were sacrificed shortly and at 1, 2, and 4 wk after exposure, and their lung tissues were ashed by a low-temperature plasma asher. Then the fiber numbers and fiber sizes in lungs were determined using a phase-contrast microscope and computed image analyzer. During the study period, the arithmetic mean (SD) values of fiber and weight concentrations were 78.5 (35.7) fibers/cm(3), and 29.9 (28.3) mg/m(3), respectively. The fiber number in lungs 4 wk after exposure significantly decreased from the baseline value (shortly after exposure) (p < .05). The half-life of fibers calculated from the approximate curve was 28 days for all fibers and 16 days for fibers with L > 20 microm, and the rate of decrease in fiber number was 46.3% at 4 wk after exposure (shortly-after group = 100%). Likewise, both length and diameter significantly decreased at 4 wk after exposure (p < .05), probably because fibers were phagosytosed and digested by alveolar macrophages, discharged to outside of the body by mucociliary movement, or dissolved by body fluid. It will be necessary in the future to further confirm the safety of RW fibers by assessing the biopersistence of fibers in the lungs and their pathological effects in our ongoing study performed in accordance with the guidelines established in the "Methods for Determination of Hazardous Properties for Human Health of Man Made Mineral Fibers" (EC protocol).  相似文献   

12.
In this study the effects of inhalatory exposure to coal fly ash on lung pathology and the immune system in rats were examined. Rats were exposed to 0, 10, 30, or 100 mg/m 3 coal fly ash (6 h/day, 5 days/ wk) for 4 wk, or to 0 and 100 mg/ m 3 for 1 wk, and for 1 wk followed by a recovery in clean air of 3 wk. A concentration-related increase in lung weight was found starting from 30 mg/ m3 coal fly ash. After exposure to 100 mg/m 3, a time-related deposition of free particles in the lungs was observed as well as a timerelated number of coal fly ash particles phagocytized in alveolar macrophages. Histological examination revealed increased cellularity in alveolar septa, consisting mainly of mononuclear cell infiltrate, proliferated type II cells, and a slight fibrotic reaction. After a recovery period of 3 wk the histological picture was identical to that after 1 wk of exposure, indicating no significant recovery. No toxicological significant changes were found in the hematological, clinical chemistry, or urine parameters. Effects both on nonspecific defense mechanisms and on specific immune responses were noted. With regard to the immune function in the draining lymph nodes of the lung, a significantly increased number of both T and B lymphocytes was observed. The ratio of both cell types was not changed in either of the groups. In serum of exposed rats a significant increase of up to 150% of the immunoglobulin A (IgA) content was found. The number and phagocytic capacity of macrophages were significantly increased, while the killing of Listeria bacteria per cell ex vivo/in vitro remained unchanged. Natural killer (NK) activity in pulmonary cell suspensions was slightly stimulated in rats exposed for 4 wk to 10 and 30 mg/m 3, whereas an exposure to 100 mg/m 3 resulted in a slight decrease; however, both changes were not significant. In conclusion, the alterations in lung histopathology and immunity, observed in a dose and exposure time relation at concentrations up to and including 100 mg/m 3 coal fly ash, may be considered an adverse response of the host to inhalation of particulate matter. Whether these observed alterations may effect the host resistance must be learned from infection studies.  相似文献   

13.
Rats were exposed to TiCl4 hydrolysis products by inhalation exposure at aerosol concentrations of 0, 0.1, 1.0, and 10 mg/m3 for 6 hr/day, 5 days/week for 2 years. There were no abnormal clinical signs, body weight changes, or excess mortality in any exposed groups. No pathological changes other than a mild rhinitis were observed at 0.1 mg/m3. At 1.0 mg/m3, the incidence of mild rhinitis and tracheitis was increased. The lungs showed a minute dust-laden macrophage (dust cell) reaction with slight Type II pneumocyte hyperplasia in alveoli adjacent to the alveolar ducts. The pulmonary response at the 1.0 mg/m3 satisfied the biological criteria for a nuisance dust. At 10 mg/m3, extrapulmonary particle deposition occurred in the tracheobronchial lymph nodes, liver, and spleen without any tissue response. An increased incidence of rhinitis, tracheitis, and dust cell response with Type II pneumocyte hyperplasia, alveolar bronchiolarization, foamy dust cell accumulation, alveolar proteinosis, cholesterol granuloma, and focal pleurisy was also observed. The pulmonary lesions developed in the alveolar duct region where dust cells had accumulated and had provoked a chronic tissue response. In addition, a few well-differentiated, cystic keratinizing squamous carcinomas were developed from alveoli showing bronchiolarization with squamous metaplasia in the alveolar duct region. No tumor metastasis was found in other organs. The lung tumors were a unique type of experimentally induced tumor and have not been seen usually in man or animals. Therefore, the relevance to man of this type of lung tumor is highly questionable.  相似文献   

14.
Proliferation of lung and airway cells induced by nitrogen dioxide   总被引:1,自引:0,他引:1  
Proliferation of lung cells of Chinese hamsters was examined in several regions of the lung parenchyma and ciliated airway epithelium after a 24-h exposure to 28.2 mg/m3 (15 ppm) nitrogen dioxide (NO2). Label was retained 3 wk after the injection of [3H]thymidine, and autoradiographic methods were used to localize the site of retention. By 24 h after administration of [3H]thymidine, parenchymal areas, exclusive of airways, showed an increased labeling index, indicative of cell death and replacement. This increase in the number of labeled cells persisted for 3 wk. Type II cells were labeled twice as frequently in regions of the terminal bronchiole than in other alveolar areas. Type II cell cycle time was reduced from 26 to 3 d after NO2 exposure. Alveolar macrophages were significantly labeled in the alveolar areas during the thymidine pulse at the end of the exposure episode and retained label for 3 wk. Airway epithelia showed no labeling in the trachea and progressively greater labeling in increasingly small er airways. Epithelial cells lining the small airways and alveoli showed greater susceptibility to NO2 injury than cells lining the bronchi or trachea. Nonciliated or basal cells serve as a precursor of ciliated cells in the epithelium of small airways (0.35 mm) and bronchi.  相似文献   

15.
Abstract Refractory ceramic fibers (RCF) are man-made vitreous fibers used primarily in industrial high-temperature applications, especially for insulation of furnaces and kilns. Because of their increasing use and potential for human exposure an in an effort to define the dose-response, as a follow up to a maximum tolerated dose [30 mg/m(3)] study in rats (Mast et al., 1995), a multiple dose chronic toxicity/carcinogenicity inhalation study was conducted in Fischer 344 (F344) rats. Four groups of 140 weanling male F344 rats were exposed via noseonly inhalation to either HEPA-filtered air (chamber controls) or 3, 9, or 16 mg/m(3)(approximately 36, 91, and 162 fibers/cm(3)) of kaolin-based "size-selected" RCF fibers (approximately 1 μm in diameter and approximately 20 μm in length) for 6 h/day, 5 days/wk for 24 mo. They were then held unexposed until approximately 20% survival and sacrificed (30 mo). Croups of 3-6 animals were sacrificed at 3, 6, 12, 18, and 24 mo to follow the progression of pulmonary lesions and to determine fiber lung burdens. Additional groups of 3-6 rats were removed from exposure at 3, 6, 12, and 18 mo and were held until sacrificed at 24 mo (recovery groups) for similar determinations. A dose-related increase in fiber lung burden was observed. Lung burdens at 24 mo ranged from 5.6 × 10(4) to 27.8 × 10(4) fibers/mg dry lung tissue. Significant increases in lung weights and lung to body weight ratios were seen in the high-dose group. Treatment-related lesions were restricted to the lungs. To some extent, all doses of RCF resulted in minimal to mild macrophage infiltration, bronchiolization of proximal alveoli, and microgranuloma formation by 12 mo of exposure. Interstitial fibrosis was observed at 12 mo in the 9 and 16 mg/m(3) groups but not in the low-dose group at any time point. A minimal amount of focal pleural fibrosis was first observed at 12 mo in the 9 and 76 mg/m(3) dose groups and progressed to a mild severity in the high-dose group by the end of the study. The incidence of pulmonary neoplasm's was well within the range typically reported in the male F344 rat. Neoplasm's (bronchoalveolar adenomas and carcinomas) were observed in all groups 10 mg/m(3) (air control), 1 of 129 (0.8%); 3 mg/m(3), 2 of 123 (1.6%); 9 mg/m(3), 5 of 127 (3.9%); 16 mg/m(3), 2 of 124 (1.6%)]. A single pleural mesothelioma was observed in an animal exposed to 9 mg/m(3) of kaolin RCF. The results of this study suggest that the dose response for primary lung neoplasms is steep, while that for mesothelioma may not be.  相似文献   

16.
In order to investigate occupational diseases related to welding fume exposure, such as nasal septum perforation, pneumoconiosis and manganese intoxication, we built a welding fume exposure system that included a welding fume generator, exposure chamber and fume collector. The fume concentrations in the exposure chamber were monitored every 15 min during a 2-h exposure. Fume (mg/m(3)) concentrations of major metals, including Fe, Mn, Cr, and Ni were found to be consistently maintained. An acute inhalation toxicity study was conducted by exposing male Sprague-Dawley rats to the welding fumes generated in this apparatus by stainless steel arc welding. The rats were exposed in the inhalation chamber to a welding fume with a concentration of 62 mg/m(3) total suspended particulates for 4 h. Animals were sacrificed at 4 h and at 1, 3, 7, 10, and 14 days after exposure. Histopathological examinations were conducted on the animals' upper respiratory tracts, including the nasal pathway and the conducting airway, and on the gas exchange region including the alveolar ducts, alveolar sacs, and alveoli. Diameters of fume particles varied from 0.02 to 0.81 microm and were distributed log normally, with a mean diameter of 0.1 microm and geometric standard deviation of 1.42. Rats exposed to the welding fume for 4 h did not show any significant respiratory system toxicity. The mean particle diameter of 0.1 microm resulted in little adsorption of the welding fume particles in the upper respiratory tract. Particle adsorption took place principally in the lower respiratory tracts, including bronchioles, alveolar ducts, alveolar sacs, and alveoli.  相似文献   

17.
With the initial understanding of the relationship of asbestos to disease, little information was available on whether the two different groups of minerals that are called asbestos were of similar or different potency in causing disease. Asbestos was often described as a durable fiber that if inhaled would remain in the lung and cause disease. It has been only more recently, with the development of a standardized protocol for evaluating the biopersistence of mineral fibers in the lung, that the clearance kinetics of the serpentine chrysotile have been shown to be dramatically different from those of amphibole asbestos, with chrysotile clearing rapidly from the lung. In addition, recent epidemiology studies also differentiate chrysotile from amphibole asbestos. The biopersistence studies mentioned have indicated that chrysotile from Canada and California clear rapidly from the lung once inhaled. However, variations in chrysotile mineralogy have been reported depending upon the region. This is most likely associated with variations in the forces which created the chrysotile fibers centuries ago. In the present study, the dynamics and rate of clearance of chrysotile from the Cana Brava mine in central Brazil was evaluated in a comparable inhalation biopersistence study in the rat. For synthetic vitreous fibers, the biopersistence of the fibers longer than 20 microm has been found to be directly related to their potential to cause disease. This study was designed to determine lung clearance (biopersistence) and translocation and distribution within the lung. As the long fibers have been shown to have the greatest potential for pathogenicity, the chrysotile samples were specifically chosen to have more than 450 fibers/cm(3) longer than 20 microm in length present in the exposure aerosol. For the fiber clearance study (lung digestions), at 1 day, 2 days, 7 days, 2 wk, 1 mo, 3 mo, 6 mo, and 12 mo following a 5-day (6 h/day) inhalation exposure, the lungs from groups of animals were digested by low-temperature plasma ashing and subsequently analyzed by transmission electron microscopy (at the GSA Corp.) for total chrysotile fiber number in the lungs and chrysotile fiber size (length and diameter) distribution in the lungs. This lung digestion procedure digests the entire lung with no possibility of identifying where in the lung the fibers are located. A fiber distribution study (with confocal microscopy) was included in order to identify where in the lung the fibers were located. At 2 days, 2 wk, 3 mo, 6 mo, and 12 mo postexposure, the lungs from groups of animals were analyzed by confocal microscopy to determine the anatomic fate, orientation, and distribution of the retained chrysotile fibrils deposited on airways and those fibers translocated to the broncho-associated lymphoid tissue (BALT) subjacent to bronchioles in rat lungs. While the translocation of fibers to the BALT and lymphatic tissue is considered important as in cases of human's with asbestos-related disease, there has been no report in the literature of pathological changes in the BALT and lymphatic tissue stemming from asbestos. Thus, if the fibers are removed to these tissues, they are effectively neutralized in the lung. Chrysotile was found to be rapidly removed from the lung. Fibers longer than 20 microm were cleared with a half-time of 1.3 days, most likely by dissolution and breakage into shorter fibers. Shorter fibers were also rapidly cleared from the lung with fibers 5-20 microm clearing even more rapidly (T1/2 = 2.4 days) than those < 5 microm in length (T1/2 weighted = 23. days). Breaking of the longer fibers would be expected to increase the short fiber pool and therefore could account for this difference in clearance rates. The short fibers were never found clumped together but appeared as separate, fine fibrils, occasionally unwound at one end. Short free fibers appeared in the corners of alveolar septa, and fibers or their fragments were found within alveolar macrophages. The same was true of fibers in lymphatics, as they appeared free or within phagocytic lymphocytes. These results support the evidence presented by McDonald and McDonald (1997) that the chrysotile fibers are rapidly cleared from the lung in marked contrast to amphibole fibers which persist.  相似文献   

18.
With the initial understanding of the relationship of asbestos to disease, little information was available on whether the two different groups of minerals that are called asbestos were of similar or different potency in causing disease. Asbestos was often described as a durable fiber that if inhaled would remain in the lung and cause disease. It has been only more recently, with the development of a standardized protocol for evaluating the biopersistence of mineral fibers in the lung, that the clearance kinetics of the serpentine chrysotile have been shown to be dramatically different from those of amphibole asbestos, with chrysotile clearing rapidly from the lung. In addition, recent epidemiology studies also differentiate chrysotile from amphibole asbestos. The biopersistence studies mentioned have indicated that chrysotile from Canada and California clear rapidly from the lung once inhaled. However, variations in chrysotile mineralogy have been reported depending upon the region. This is most likely associated with variations in the forces which created the chrysotile fibers centuries ago. In the present study, the dynamics and rate of clearance of chrysotile from the Cana Brava mine in central Brazil was evaluated in a comparable inhalation biopersistence study in the rat. For synthetic vitreous fibers, the biopersistence of the fibers longer than 20 μ m has been found to be directly related to their potential to cause disease. This study was designed to determine lung clearance (biopersistence) and translocation and distribution within the lung. As the long fibers have been shown to have the greatest potential for pathogenicity, the chrysotile samples were specifically chosen to have more than 450 fibers/cm3 longer than 20 μ m in length present in the exposure aerosol. For the fiber clearance study (lung digestions), at 1 day, 2 days, 7 days, 2 wk, 1 mo, 3 mo, 6 mo, and 12 mo following a 5-day (6 h/day) inhalation exposure, the lungs from groups of animals were digested by low-temperature plasma ashing and subsequently analyzed by transmission electron microscopy (at the GSA Corp.) for total chrysotile fiber number in the lungs and chrysotile fiber size (length and diameter) distribution in the lungs. This lung digestion procedure digests the entire lung with no possibility of identifying where in the lung the fibers are located. A fiber distribution study (with confocal microscopy) was included in order to identify where in the lung the fibers were located. At 2 days, 2 wk, 3 mo, 6 mo, and 12 mo postexposure, the lungs from groups of animals were analyzed by confocal microscopy to determine the anatomic fate, orientation, and distribution of the retained chrysotile fibrils deposited on airways and those fibers translocated to the broncho-associated lymphoid tissue (BALT) subjacent to bronchioles in rat lungs. While the translocation of fibers to the BALT and lymphatic tissue is considered important as in cases of human's with asbestos-related disease, there has been no report in the literature of pathological changes in the BALT and lymphatic tissue stemming from asbestos. Thus, if the fibers are removed to these tissues, they are effectively neutralized in the lung. Chrysotile was found to be rapidly removed from the lung. Fibers longer than 20 μ m were cleared with a half-time of 1.3 days, most likely by dissolution and breakage into shorter fibers. Shorter fibers were also rapidly cleared from the lung with fibers 5–20 μ m clearing even more rapidly (T1/2 = 2.4 days) than those < 5μ m in length (T1/2 weighted = 23. days). Breaking of the longer fibers would be expected to increase the short fiber pool and therefore could account for this difference in clearance rates. The short fibers were never found clumped together but appeared as separate, fine fibrils, occasionally unwound at one end. Short free fibers appeared in the corners of alveolar septa, and fibers or their fragments were found within alveolar macrophages. The same was true of fibers in lymphatics, as they appeared free or within phagocytic lymphocytes. These results support the evidence presented by that the chrysotile fibers are rapidly cleared from the lung in marked contrast to amphibole fibers which persist.  相似文献   

19.
《Inhalation toxicology》2013,25(7):1031-1058
Abstract

The biopersistence of three fibers was evaluated using an inhalation model. The fibers studied were man-made vitreous fiber (MMVF) 11, a commercially produced glass fiber; Fiber B, a relatively soluble glass fiber; and Fiber J, a synthetic stonewool with a high content of alkaline earth oxides. Fischer 344 male rats were exposed to a well-defined rat respirable aerosol (mean diameter of ≤1 μm) at a target concentration of 30 mg/m3, 6 h/day for 5 days. Following the end of the exposure period, subgroups were sacrificed at 1 h, 1 day, 5 days, 4 wk, 13 wk, 26 wk, and 52 wk. At sacrifice, the whole lung was removed, weighed, and immediately frozen at -20°C for subsequent digestion by low temperature plasma ashing. The number and bivariate size distribution of the fibers in the aerosol and lung were determined. At 1 h following the last exposure, the 3 fibers were found to have similar lung burdens ranging from 7.36-7.72 × 106 fibers/lung with geometric mean diameters of 0.42-0.54 μm. The three fibers were found to be removed from the lung following the cessation of inhalation exposure with half-lives of 8-42 days, in addition, an important difference in removal was seen between the long fiber (>15 μm) and short fiber (<15 μm) fractions. The long fibers cleared more rapidly with a Tψ. of 20, 5, and 7 days for MMVF 11, Fiber B, and Fiber J, respectively. The dissolution of the long fibers appeared to result in rapid breaking and disintegration with the formation of short fibers and particles within the first 24 h. The short fiber fraction had a longer Yψ of 46, 10, and 12 days for MMVF 11, Fiber B, and Fiber J, respectively. Short fibers have been reported to be phagocytized by macrophages and either cleared by ciliated mucous transport or eventually translocated to the bronchial-associated lymphoid tissue and lymph nodes. The pH of the phagolysosome within the macrophage has been reported to be <5. Acellular in vitro studies indicate a slower dissolution at this pH. The diameters of either the long or short fibers did not change significantly over time, supporting the in vitro observation of the formation of a leached layer with similar physical dimensions as the original fiber. The clearance half-times for the three fibers evaluated were considerably shorter than that reported for crocidolite asbestos, a known fiber carcinogen, suggesting that these fibers would not persist in the lung as has been shown to be in the case for crocidolite. These results demonstrate that the inhalation biopersistence model provides a sensitive means of evaluating the critical parameters of fiber biodurability and clearance in the lung. For the MMVF fibers tested, the longer fibers not only dissolve but also appear to break apart in the lung, thereby quickly removing the potentially carcinogenic fraction from the lung.  相似文献   

20.
Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung function and Clara cell 16 (CC16) protein release in healthy young subjects. Twenty-nine nonsmokers participated in a randomized, two-factor crossover study with or without biking exercise for 180 min and with 24-h exposure to particle-rich (6169-15,362 particles/cm(3); 7.0-11.6 microg/m(3) PM(2.5); 7.5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood-gas barrier after rush-hour exposure. Lung function was assessed using body plethysmography, flow-volume curves, and measurements of the diffusion capacity of carbon monoxide. CC16 was measured in plasma and urine as another marker of alveolar integrity. Particulate matter exposure had no significant effect on the epithelial membrane integrity using the methods available in this study. Exercise increased the clearance rate of (99m)Tc-DTPA indicated by a 6.8% (95% CI: 0.4-12.8%) shorter half-life and this was more pronounced in men than women. Neither particulate matter exposure nor exercise had an effect on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood-gas barrier following moderate exercise, whereas exposure to ambient levels of urban air particles has no detectable effects on the alveolar blood-gas barrier or lung function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号