首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary:  A common signaling pathway is known to operate downstream of immunoreceptors, such as the T-cell, B-cell, or Fc receptors, following engagement by their respective ligands. This pathway involves Src family kinase-mediated tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) that recruit and activate spleen tyrosine kinase (Syk) or Zap70 (ζ-associated protein of 70 kDa) kinases, which in turn activate a variety of downstream signals. Evidence has been building from a variety of sources, particularly mouse models, that molecules involved in the immunoreceptor signaling pathway are also required for signals initiated by integrins. Integrins are the major cell surface receptors that mediate adhesion of leukocytes to a variety of extracellular matrix proteins and counter-receptors expressed on endothelial cells. Integrin ligation is a critical step in the activation of leukocyte effector functions (such as neutrophil degranulation or lymphocyte proliferation). Integrin signaling through pathways common to those utilized by immunoreceptors provides a mechanism by which leukocyte adhesion can regulate activation of cellular responses. In animal models, integrin-mediated signal transduction plays a critical role in inflammatory disease. In this review, we discuss the convergence of immunoreceptor and integrin signaling, focusing on how these pathways modulate leukocyte activation.  相似文献   

2.
The recruitment of circulating leukocytes at vascular sites in target tissue has been linked to activation of Gi-protein signaling in leukocytes by endothelial chemokines. The mechanisms by which apical and subendothelial chemokines regulate leukocyte adhesion to and migration across endothelial barriers have been elusive. We recently found that endothelial chemokines not only stimulate integrin-mediated arrest on vascular endothelial ligands but also trigger earlier very late antigen (VLA)-4 integrin-mediated capture (tethering) of lymphocytes to vascular cell adhesion molecule 1 (VCAM-1)-bearing surfaces by extremely rapid modulation of integrin clustering at adhesive contact zones. This rapid modulation of integrin avidity requires chemokine immobilization in juxtaposition with the VLA-4 ligand VCAM-1. We also observed that endothelial-bound chemokines promote massive lymphocyte transendothelial migration (TEM). It is interesting that chemokine-promoted lymphocyte TEM requires continuous exposure of lymphocytes but not of the endothelial barrier to fluid shear. It is noteworthy that lymphocyte stimulation by soluble chemokines did not promote lymphocyte TEM. Our results suggest new roles for apical endothelial chemokines both in triggering lymphocyte capture to the endothelial surface and in driving post-arrest events that promote lymphocyte transmigration across endothelial barriers under shear flow.  相似文献   

3.
Chemokines trigger rapid integrin-dependent lymphocyte arrest to vascular endothelium. We show that the chemokines SLC, ELC, and SDF-1alpha rapidly induce lateral mobility and transient increase of affinity of the beta2 integrin LFA-1. Inhibition of phosphatidylinositol 3-OH kinase (PI(3)K) activity blocks mobility but not affinity changes and prevents lymphocyte adhesion to ICAM-1 immobilized at low but not high densities, suggesting that mobility enhances the frequency of encounters between high-affinity integrin and ligand but that at higher ligand density affinity changes are sufficient for arrest. Thus, chemokines trigger, through distinct signaling pathways, both a high-affinity state and lateral mobility of LFA-1 that can coordinately determine the vascular arrest of circulating lymphocytes under physiologic conditions.  相似文献   

4.
PURPOSE OF REVIEW: In the last 2-3 years our understanding of leukocyte adhesion cascades has increased, mainly in defining new pathways by which integrin activation occurs on circulating leukocytes recruited to sites of inflammation. While defects in the integrin structure (leukocyte adhesion deficiency (LAD) I) and in the selectin glycoprotein ligand biosynthesis (LAD II) have been described in the past few decades, a newly recognized defect in the activation of integrins (LAD III) was only recently delineated. The clinical manifestations and molecular basis of this syndrome and related cases will be reviewed. RECENT FINDINGS: While in LAD I and II the defect in the adhesion cascade is restricted to leukocytes, all four cases of LAD III described to date also had defects in platelet aggregation. These patients suffered from recurrent bacterial infections and a severe bleeding tendency. All cases were reported to have activation defects in all major integrin subfamily members expressed in circulating leukocytes and platelets. In one case there was a defect in Rap1, which is a crucial protein in the inside-out and outside-in (ligand-induced) signaling underlying integrin activation mainly by cytokines. In this case, both chemokines and cytokines were unable to activate Rap1 leading to severe adhesive defects analyzed in vitro. SUMMARY: While in LAD I and II the primary genetic defect is known, in the newly described LAD III the primary event leading to the defect is still unknown, despite a clear biochemical defect in Rap1 activation. The molecular basis or the defect in integrin activation may be different in the various cases described so far. It seems logical, however, to assume that in all reported cases, a key component of inside-out signaling to integrins activation is involved.  相似文献   

5.
The adhesive function of integrins is regulated through cytoplasmic signaling induced by several stimuli, whose process is designated as "inside-out signaling". A large number of lymphocytes are recruited to the sites of inflammation where they form an essential component of the response to infection, injury, autoimmune disorders, allergy, tumor invasion, atherosclerosis and so on. The recruitment of leukocytes into tissue is regulated by a sequences of interactions between the circulating leukocytes and the endothelial cells. Leukocyte integrins play a pivotal role in leukocyte adhesion to endothelial cells. During the process, the activation of integrins by chemokines is essential for integrin-mediated adhesion in which a signal transduced to the leukocyte converts the functionally inactive integrin to an active adhesive configuration. The present review documents the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemokines during inflammatory processes.  相似文献   

6.
Chemokines regulate rapid leukocyte adhesion by triggering a complex modality of integrin activation. We show that the small GTPase RhoA and the atypical zeta PKC differently control lymphocyte LFA-1 high-affinity state and rapid lateral mobility induced by chemokines. Activation of LFA-1 high-affinity state and lateral mobility is controlled by RhoA through the activity of distinct effector regions, demonstrating that RhoA is a central point of diversification of signaling pathways leading to both modalities of LFA-1 triggering. In contrast, zeta PKC controls LFA-1 lateral mobility but not affinity triggering. Blockade of the 23-40 RhoA effector region prevents induction of LFA-1 high-affinity state as well as lymphocyte arrest in Peyer's patch high endothelial venules. Thus, RhoA controls the induction of LFA-1 high-affinity state by chemokines independently of zeta PKC, and this is critical to support chemokine-regulated homing of circulating lymphocytes.  相似文献   

7.
Leukocyte extravasation into perivascular tissue during inflammation and lymphocyte homing to lymphoid organs involve transient adhesion to the vessel endothelium, followed by transmigration through the endothelial cell (EC) layer and establishment of residency at the tissue site for a period of time. In these processes, leukocytes undergo multiple attachments to, and detachments from, the vessel-lining endothelial cells, prior to transendothelial cell migration. Transmigrating leukocytes must traverse a subendothelial basement membrane en route to perivascular tissues and utilize enzymes known as matrix metalloproteinases to make selective clips in the extracellular matrix components of the basement membrane. This review will focus on the evidence for a link between adhesion of leukocytes to endothelial cells, the induction of matrix metalloproteinases mediated by engagement of adhesion receptors on leukocytes, and the ability to utilize these matrix metalloproteinases to facilitate leukocyte invasion of tissues. Leukocytes with invasive phenotypes express high levels of MMPs, and expression of MMPs enhances the migratory and invasive properties of these cells. Furthermore, MMPs may be used by lymphocytes to proteolytically cleave molecules such as adhesion receptors and membrane bound cytokines, increasing their efficiency in the immune response. Engagement of leukocyte adhesion receptors may modulate adhesive (modulation of integrin affinities and expression), synthetic (proteinase induction and activation), and surface organization (clustering of proteolytic complexes) behaviors of invasive leukocytes. Elucidation of these pathways will lead to better understanding of controlling mechanisms in order to develop rational therapeutic approaches in the areas of inflammation and autoimmunity.  相似文献   

8.
Integration of inflammatory signals by rolling neutrophils   总被引:15,自引:0,他引:15  
Summary: In inflammation, neutrophils roll along the endothelial wall of postcapillary venules and sample inflammatory signals. Neutrophil activation is required to generate β2 integrin bonds with the endothelium that are strong enough to withstand the flow forces and thus achieve arrest from the rolling state. Unlike naïve T cells, neutrophils are not only activated by ligation of G-protein coupled receptors with chemokines and other chemoattractants but also receive signals from engagement of adhesion molecules including the selectins and β2 integrins. Rolling neutrophils integrate the sum total of inputs received while scanning the inflamed endothelium. In this process, the velocity of rolling neutrophils systematically decreases as a function of their contact time with the inflamed endothelium. If an activation threshold is reached, β2 integrins switch to the high-affinity conformation, redistribute on the cell surface, and trigger arrest and adhesion. Rolling cells that do not reach the activation threshold detach from the endothelium and are released back into the circulation. The role of chemokines, adhesion molecules, and other activating inputs involved in this response as well as signaling pathways are the subjects of ongoing investigations. This review provides a conceptual framework for neutrophil recruitment from the flowing blood.  相似文献   

9.
Chemokines and leukocyte trafficking in rheumatoid arthritis.   总被引:2,自引:0,他引:2  
Leukocyte infiltration into the joint space and tissues is an essential component of the pathogenesis of rheumatoid arthritis (RA). In this review, we will summarize the current understanding of the mechanisms of leukocyte trafficking into the synovium, focusing on the role of adhesion molecules, chemokines, and chemokine receptors in synovial autoimmune inflammation. The process by which a circulating leukocyte decides to migrate into the synovium is highly regulated and involves the capture, firm adhesion, and transmigration of cells across the endothelial monolayer. Adhesion molecules and chemokine signals function in concert to mediate this process and to organize leukocytes into distinct structures within the synovium. Chemokines play a key regulatory role in organ-specific leukocyte trafficking and activation by affecting integrin activation, chemotaxis, effector cell function, and cell survival. Consequently, chemokines, their receptors, and downstream signal transduction molecules are attractive therapeutic targets for RA.  相似文献   

10.
Lymphocyte adhesiveness is dynamically regulated in response to conditions in the extracellular environment. One mechanism of regulation of integrin adhesion receptors involves a rapid, but transient, increase in integrin function upon T lymphocyte activation. These integrin activating signals can be initiated either via ligation of Ig superfamily members that are coupled to tyrosine kinase cascades, such as the CD3/T cell receptor, CD2, and CD28, or by G proteincoupled receptors for chemokines. Analysis of integrin activation induced by CD3/TCR, CD2 and CD28 suggests a critical role for phosphoinositide 3-OH kinase (PI 3-K). This review summarizes recent insights into PI 3-K-dependent regulation of integrin function in leukocytes, including the mechanisms by which these receptors are coupled to PI 3-K, and potential downstream effectors of PI 3-K that regulate integrin-mediated adhesion in leukocytes.  相似文献   

11.
Lymphocyte adhesiveness is dynamically regulated in response to conditions in the extracellular environment. One mechanism of regulation of integrin adhesion receptors involves a rapid, but transient, increase in integrin function upon T lymphocyte activation. These integrin activating signals can be initiated either via ligation of Ig superfamily members that are coupled to tyrosine kinase cascades, such as the CD3/T cell receptor, CD2, and CD28, or by G protein-coupled receptors for chemokines. Analysis of integrin activation induced by CD3/TCR, CD2 and CD28 suggests a critical role for phosphoinositide 3-OH kinase (PI 3-K). This review summarizes recent insights into PI 3-K-dependent regulation of integrin function in leukocytes, including the mechanisms by which these receptors are coupled to PI 3-K, and potential downstream effectors of PI 3-K that regulate integrin-mediated adhesion in leukocytes.  相似文献   

12.
Integrin modulation and signaling in leukocyte adhesion and migration   总被引:3,自引:1,他引:2  
Summary:  The movement of leukocytes from the blood into peripheral tissues plays a key role in immunity as well as chronic inflammatory and autoimmune diseases. The shear force of blood flow presents special challenges to leukocytes as they establish adhesion on the vascular endothelium and migrate into the underlying tissues. Integrins are a family of cell adhesion and signaling molecules, whose function can be regulated to meet these challenges. The affinity of integrins for their vascular ligands can be stimulated in subseconds by chemoattractant signaling. This aids in inducing leukocyte adhesion under flow conditions. Further, linkage of these integrins to the actin cytoskeleton also helps to establish adhesion to the endothelium under flow conditions. In the case of α4β1 integrins, this linkage of the integrin to the cytoskeleton is mediated in part by the binding of paxillin to the α4 integrin subunit and the subsequent binding of paxillin to the cytoskeleton molecule talin. The movement of leukocytes along the vascular endothelium and in between endothelial cells requires the temporal and spatial regulation of small guanosine triphosphatases, such as Rac1. We describe mechanisms through which α4β1 integrin signaling regulates appropriate Rac activation to drive leukocyte migration.  相似文献   

13.
Chemokines   总被引:10,自引:0,他引:10  
Motility is a hallmark of leukocytes, and breakdown in the control of migration contributes to many inflammatory diseases. Chemotactic migration of leukocytes largely depends on adhesive interaction with the substratum and recognition of a chemoattractant gradient. Chemokines are secreted proteins and have emerged as key controllers of integrin function and cell locomotion. Numerous distinct chemokines exist that target all types of leukocytes, including hematopoietic precursors, leukocytes of the innate immune system, as well as naive memory, and effector lymphocytes. The combinatorial diversity in responsiveness to chemokines ensures the proper tissue distribution of distinct leukocyte subsets under normal and pathological conditions. Inflammatory chemokines are readily detected in lesional tissue and local cellular infiltrates carry corresponding chemokine receptors. Blocking of inflammatory chemokines represents a promising strategy for the development of novel anti-inflammatory therapeutics.This review focuses on a separate class of chemokines, termed homeostatic chemokines, with steady-state production at diverse sites, including primary and secondary lymphoid tissues as well as peripheral (extralymphoid) tissues. More precisely, we discuss the chemokines involved in T-cell traffic during the initiation of adaptive immunity and compare the distinct migration properties of short-lived effector T cells and long-lived memory T cells. Memory T cells are currently classified according to the presence of the lymph node-homing receptor CCR7 into CCR7+ central memory T (T(CM)) cells and CCR7- effector memory T (T(EM)) cells. For better understanding memory T-cell function, we propose the distinction of a third category, termed peripheral immune surveillance T (T(PS)) cells, which typically reside in healthy peripheral tissues, such as skin, lung, and gastrointestinal tract.Localization and relocation of memory T cells is strictly related to their function in recall responses. Therefore, detailed knowledge of their generation and tissue distribution may help to design better vaccination strategies.  相似文献   

14.
One monoclonal antibody, HML-4, directed against the αEβ7 integrin (CD103), an integrin preferentially expressed on human intestinal intraepithelial lymphocytes (IEL), induced the homotypic aggregation of IEL and of a CD103+ MOLT16 cell line. Aggregation was an active adhesion event dependent on an intact cytoskeleton, on tyrosine phosphorylation but not on activation of protein kinase C. It was blocked by four other anti-CD103 antibodies but by none of the antibodies blocking known adhesion lymphocyte pathways. It was associated with a redistribution of the CD103 integrin in the areas of cell-cell contacts. These results indicated that HML-4zx-induced homotypic adhesion was mediated via CD103 and resulted from the binding of the integrin to an as yet undefined ligand expressed by CD103+ cells. This ligand was distinct from the epithelial ligand of CD103: in contrast with homotypic adhesion, heterotypic adhesion of CD103+ MOLT16 cells on two epithelial intestinal cell lines (DLD1 and HT29) was dependent on the presence of divalent cations, was not enhanced by HML-4, was inhibited by HML-1 but not by the three other antibodies with an inhibitory effect on homotypic adhesion. Finally, the study of conjugates between CD103+ and CD103- sublines derived from the MOLT16 cell line suggested that HML-4-induced homotypic aggregation resulted from homophilic CD103-CD103 interactions.  相似文献   

15.
Integrin-associated proteins as potential therapeutic targets   总被引:1,自引:0,他引:1  
Summary: Integrins are adhesion receptors important for hematopoiesis, leukocyte trafficking, and formation of immunological synapses; hence, they may provide targets for therapeutic intervention in leukocyte-driven pathologies. Blocking integrin–ligand binding is one strategy for inhibiting integrins; however, a complete loss of integrin function can lead to mechanism-based toxicities. Because integrin α and β subunits interact with a variety of other proteins to receive and transmit cellular signals, targeting these integrin-associated proteins may utilize alternative sites for intervention that lead to therapies with fewer side effects. This review summarizes integrin-associated proteins in leukocytes and focuses on four of these proteins with perceived therapeutic potential. Specific mutations in the α4 integrin cytoplasmic tail block or enforce binding to paxillin and thus modulate integrin signaling required for efficient cell migration. Similarly, the association of RAPL(NORE1B) with β2 integrins may participate in adhesive and migratory events in leukocytes. The β integrin cytoplasmic tail-binding protein talin is critical for increasing the affinity of integrins (activation), and blockade of talin binding can prevent leukocyte arrest on the endothelium. Finally, the membrane protein CD98 mediates β1 and β3 integrin signaling and may be involved in leukocyte functions. Identification of biologically important interactions of integrins and signaling proteins can thus pave the way to new strategies for manipulating leukocyte functions.  相似文献   

16.
The neutrophil has developed into one of the most efficient vertebrate motile cells. It migrates through tissues, where it encounters multiple chemoattractant signals with complex spatial and temporal characteristics. The directional movement of the neutrophil is signaled by the binding of chemoattractants and chemokines to G-protein-coupled receptors expressed on the plasma membrane. The signals from the ligand-bound receptors are transmitted along signaling pathways and initiate various cell responses, such as motility, superoxide production, and secretion. The signaling of the motility responses finds its climax in the polymerization of F-actin, which results in lamella formation and overall rearrangement of the cellular cytoskeleton and cell crawling. Also, during motility, adhesion receptors attach to and detach from their ligands and provide the necessary traction for crawling. These events are highly synchronized and allow the cell to orient in shallow chemoattractant gradients even when more than one chemoattractants are present. Due to the complexity of the motility responses, the signaling of their regulation is still not well understood. Recent advances in the understanding of the mechanism of F-actin polymerization have shown that the small GTPasess Cdc42, Rac2, and RhoA, play a critical role in motility. The bound integrin receptors may also contribute to the signaling of motility via tyrosine kinase phosphorylation of guanine nucleotide exchange factors and other regulatory proteins. In this review, we discuss the signaling of neutrophil motility in relation to the response of the cell to chemoattractant activation. © 2002 Biomedical Engineering Society. PAC2002: 8717Jj, 0130Rr  相似文献   

17.
CD11a/CD18 (beta2)-integrins are expressed on leukocytes and are involved in cell adhesion and signaling. Despite extensive studies the signaling pathways and molecular mechanisms involved in integrin regulation in T cells remain not completely understood. We have now studied the involvement of the tyrosine kinase Lck in the regulation of CD11a/CD18 function in Jurkat T cells. Using the Src-family kinase inhibitor PP2, we found that CD3 ligation-induced adhesion to ICAM-1 was inhibited by PP2 at the same concentration required for complete inhibition of the MAP kinase pathway, implicating a role for Lck in integrin activation. We therefore used the Lck-deficient Jurkat cell line JCaM1.6 to further examine the involvement of Lck in integrin regulation. Interestingly, JCaM1.6 cells showed dramatically reduced levels of both CD3- and phorbol ester-induced adhesion to coated ICAM-1 as compared to normal Jurkat cells. By using flow cytometry and cell surface labeling, it was found that the surface expression of the CD11a/CD18-integrins was significantly lower in Lck-deficient T cells as compared to normal Jurkat cells. CD18 was expressed as a mature and an immaturely glycosylated form in Jurkat T cell lines, and predominantly the immature form, not associated with CD11a, was found in Lck-deficient cells. Retransfection of human Lck in JCaM1.6 cells restored adhesion. Thus, Lck is involved in regulating CD11a/CD18-integrins in T cells.  相似文献   

18.
CD4+CD3- cells are the predominant hematopoietic cells found in mouse fetal intestine. We prove their role as Peyer's patch (PP)-inducing cells by transfer into neonatal PP-deficient mice. To test the requirement of chemokines and adhesion molecules in induction of PP, we studied mice deficient in CXCR5 and/or alpha4beta1 integrin-mediated adhesion. CXCR5-/- mice have CD4+CD3- cells, which are inefficient in inducing PP formation. We show here that CXCR5/CXCL13 signaling activates alpha4beta1 integrin on CD4+CD3- cells. Blocking of beta1 integrin or VCAM-1, the ligand of alpha4beta1 integrin, inhibits PP formation. This study demonstrates the link between chemokine receptors and adhesion molecules that regulates stromal/hematopoietic cell interaction leading to PP formation.  相似文献   

19.
Characteristic features of the inflammatory and immune responses involve the recruitment of leukocytes to sites of tissue injury and the recirculation of lymphocytes through hematopoietic and lymphoid tissues. Recent studies indicate that the regulated cell surface expression of a family of protein adhesion molecules known as selectins and their counterreceptors on both leukocytes and endothelium play critical roles in both biologic processes. Initially, the function of these molecules was thought to be restricted to regulating cell-cell adhesive interactions. Selectin-dependent cell-cell binding has been shown to be essential in localizing leukocytes within tissues by promoting cell rolling along endothelium prior to the development of tight adhesion and subsequent cell migration. However, recent studies suggest that these molecules also play an active role in regulating additional leukocyte functions. This article will review the emerging evidence that indicates a broader and significant role of selectin molecules and their counterreceptors in the initiation of intracellular signaling pathways and regulation of other leukocyte functional responses including degranulation, cytokine expression, activation of the respiratory burst, and T lymphocyte activation. This study was supported by NIH-1 R29 AI31443, AHAM-89GB945 and HL44085.  相似文献   

20.
We have found previously that disaccharides (DS) enzymatically generated from heparin or heparan sulphate can modulate tumour necrosis factor-alpha (TNF-alpha) secretion from immune cells in vitro and cell-mediated immune reactions in vivo. Here, we show that such DS can modulate the adhesion and migration of human T cells. We found that certain heparin- and heparan sulphate-derived DS induced, in a dose-dependent manner, the adhesion of human T cells to both extracellular matrix (ECM) and immobilized fibronectin (FN); maximal T-cell adhesion occurred with 1 ng/ml of DS. The levels of T-cell adhesion to ECM that were induced by the tested DS molecules resembled those induced by the prototypic chemokine, macrophage inflammatory protein 1beta (MIP-1beta). However, the kinetics of DS-induced T-cell adhesion to FN resembled that induced by phorbol myristate acetate (PMA), but not that induced by MIP-1beta. This adhesion appeared to involve beta1 integrin recognition and activation, and was associated with specific intracellular activation pathways. Although a first exposure of T cells to certain DS molecules appeared to result in cell adhesion, a subsequent exposure of T cells to pro-adhesive chemokines, such as MIP-1beta or RANTES, but not to other pro-adhesive stimuli, for example interleukin-2 or CD3 cross-linking, resulted in inhibition of T-cell adhesion to and chemotactic migration through FN. Hence, we propose that the breakdown products of tissues generated by inflammatory enzymes are part of an intrinsic functional programme, and not necessarily molecular waste. Moreover, because the DS molecules exert their modulatory functions within a limited time, it appears that the historical encounters of the tissue-invading cells with the constituents of inflamed loci may dictate the cells' behaviour upon subsequent exposure to proinflammatory mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号