首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A great effort has been made to identify crucial cognitive markers that can be used to characterize the cognitive profile of Alzheimer's disease (AD). Because topographical disorientation is one of the earliest clinical manifestation of AD, an increasing number of studies have investigated the spatial deficits in this clinical population. In this systematic review, we specifically focused on experimental studies investigating allocentric and egocentric deficits to understand which spatial cognitive processes are differentially impaired in the different stages of the disease. First, our results highlighted that spatial deficits appear in the earliest stages of the disease. Second, a need for a more ecological assessment of spatial functions will be presented. Third, our analysis suggested that a prevalence of allocentric impairment exists. Specifically, two selected studies underlined that a more specific impairment is found in the translation between the egocentric and allocentric representations. In this perspective, the implications for future research and neurorehabilitative interventions will be discussed.  相似文献   

2.
Motor imagery tasks (hand laterality judgment) are usually performed with respect to a self-body (egocentric) representation, but manipulations of stimulus features (hand orientation) can induce a shift to other's body (allocentric) reference frame. Visual perspective taking tasks are also performed in self-body perspective but a shift to an allocentric frame can be triggered by manipulations of context features (e.g., another person present in the to-be-judged scene). Combining hand laterality task and visual perspective taking, we demonstrated that both stimulus and context features can modulate motor imagery performance. In Experiment 1, participants judged laterality of a hand embedded in a human or non-human silhouette. Results showed that observing a human silhouette interfered with judgments on “egocentric hand stimuli” (right hand, fingers up). In Experiment 2, participants were explicitly required to judge laterality of a hand embedded in a human silhouette from their own (egocentric group) or from the silhouette's perspective (allocentric group). Consistent with previous results, the egocentric group was significantly faster than the allocentric group in judging fingers-up right hand stimuli. These findings showed that concurrent activation of egocentric and allocentric frames during mental transformation of body parts impairs participants’ performance due to a conflict between motor and visual mechanisms.  相似文献   

3.
Convergent findings demonstrate that numbers can be represented according to a spatially oriented mental number line. However, it is not established whether a default organization of the mental number line exists (i.e., a left-to-right orientation) or whether its spatial arrangement is only the epiphenomenon of specific task requirements. To address this issue we performed two experiments in which subjects were required to judge laterality of hand stimuli preceded by small, medium or large numerical cues; hand stimuli were compatible with egocentric or allocentric perspectives. We found evidence of a left-to-right number–hand association in processing stimuli compatible with an egocentric perspective, whereas the reverse mapping was found with hands compatible with an allocentric perspective. These findings demonstrate that the basic left-to-right arrangement of the mental number line is defined with respect to the body-centred egocentric reference frame.  相似文献   

4.
The spatial location of objects is processed in egocentric and allocentric reference frames, the early temporal dynamics of which have remained relatively unexplored. Previous experiments focused on ERP components related only to egocentric navigation. Thus, we designed a virtual reality experiment to see whether allocentric reference frame‐related ERP modulations can also be registered. Participants collected reward objects at the end of the west and east alleys of a cross maze, and their ERPs to the feedback objects were measured. Participants made turn choices from either the south or the north alley randomly in each trial. In this way, we were able to discern place and response coding of object location. Behavioral results indicated a strong preference for using the allocentric reference frame and a preference for choosing the rewarded place in the next trial, suggesting that participants developed probabilistic expectations between places and rewards. We also found that the amplitude of the P1 was sensitive to the allocentric place of the reward object, independent of its value. We did not find evidence for egocentric response learning. These results show that early ERPs are sensitive to the location of objects during navigation in an allocentric reference frame.  相似文献   

5.
Spatial priming in visual search is a well-documented phenomenon. If the target of a visual search is presented at the same location in subsequent trials, the time taken to find the target at this repeated target location is significantly reduced. Previous studies did not determine which spatial reference frame is used to code the location. At least two reference frames can be distinguished: an observer-related frame of reference (egocentric) or a scene-based frame of reference (allocentric). While past studies suggest that an allocentric reference frame is more effective, we found that an egocentric reference frame is at least as effective as an allocentric one (Ball et al. Neuropsychologia 47(6):1585–1591, 2009). Our previous study did not identify which specific egocentric reference frame was used for the priming: participants could have used a retinotopic or a body-centred frame of reference. Here, we disentangled the retinotopic and body-centred reference frames. In the retinotopic condition, the position of the target stimulus, when repeated, changed with the fixation position, whereas in the body-centred condition, the position of the target stimulus remained the same relative to the display, and thus to the body-midline, but was different relative to the fixation position. We used a conjunction search task to assess the generality of our previous findings. We found that participants relied on body-centred information and not retinotopic cues. Thus, we provide further evidence that egocentric information, and specifically body-centred information, can persist for several seconds, and that these effects are not specific to either a feature or a conjunction search paradigm.  相似文献   

6.
There is a significant overlap between the processes and neural substrates of spatial cognition and those subserving memory and learning. However, for procedural learning, which often is spatial in nature, we do not know how different forms of spatial knowledge, such as egocentric and allocentric frames of reference, are utilized nor whether these frames are differentially engaged during implicit and explicit processes. To address this issue, we trained human subjects on a movement sequence presented on a bi-dimensional (2D) geometric frame. We then systematically manipulated the geometric frame (allocentric) or the sequence of movements (egocentric) or both, and retested the subjects on their ability to transfer the sequence knowledge they had acquired in training and also determined whether the subjects had learned the sequence implicitly or explicitly. None of the subjects (implicit or explicit) showed evidence of transfer when both frames of reference were changed which suggests that spatial information is essential. Both implicit and explicit subjects transferred when the egocentric frame was maintained indicating that this representation is common to both processes. Finally, explicit subjects were also able to benefit from the allocentric frame in transfer, which suggests that explicit procedural knowledge may have two tiers comprising egocentric and allocentric representations.  相似文献   

7.
Normal aging and mild Alzheimer's disease (AD) are associated with declines in navigational skills, including allocentric and egocentric representations, cognitive mapping, landmark processing, and spatial memory. These changes, however, are associated with different patterns of structural and functional alterations in the neural network of navigation. In AD, these changes occur in the hippocampus, parahippocampal gyrus, parietal lobe, retrosplenial cortex, prefrontal cortex, and caudate nucleus, whereas in aging, modifications occur mainly in the prefrontal cortex and the hippocampus. The navigation abilities of patients with mild cognitive impairment (MCI) have been found to show different performance patterns, depending on their cognitive profiles. Since patients with MCI do not uniformly develop dementia of the Alzheimer type, it is important to identify reliable early cognitive markers of conversion to AD dementia. In this review, we propose that navigation deficits may help distinguish patients at higher risk of developing AD dementia from individuals with normal cognitive aging and those with other neurodegenerative diseases.  相似文献   

8.
Navigation deficits are prominent in Alzheimer's disease (AD) patients and transgenic mice expressing familial AD-mutant hAPP and A beta peptides. To determine the impact of strategy use on these deficits, we assessed hAPP and nontransgenic mice in a cross maze that can be solved by allocentric (world-based) or egocentric (self-based) strategies. Most nontransgenic mice used allocentric strategies, whereas half of hAPP mice were egocentric. At 3 months, all mice learned the cross maze rapidly; at 6 months, only allocentric hAPP mice were impaired. At 3 and 6 months, hAPP mice had reduced hippocampal Fos expression, which correlated with cross maze learning in older mice. Striatal pCREB expression was unaltered in hAPP mice, suggesting striatal sparing. We conclude that egocentric strategy use may be an earlier indicator of hAPP/A beta-induced hippocampal impairment than spatial learning deficits. Persistent use of allocentric strategies when egocentric strategies are available is maladaptive when there is hippocampal damage. Interventions promoting flexibility in selecting learning strategies might help circumvent otherwise debilitating navigational deficits caused by AD-related hippocampal dysfunction.  相似文献   

9.
The present study investigated the brain dynamics accompanying spatial navigation based on distinct reference frames. Participants preferentially using an allocentric or an egocentric reference frame navigated through virtual tunnels and reported their homing direction at the end of each trial based on their spatial representation of the passage. Task-related electroencephalographic (EEG) dynamics were analyzed based on independent component analysis (ICA) and subsequent clustering of independent components. Parietal alpha desynchronization during encoding of spatial information predicted homing performance for participants using an egocentric reference frame. In contrast, retrosplenial and occipital alpha desynchronization during retrieval covaried with homing performance of participants using an allocentric reference frame. These results support the assumption of distinct neural networks underlying the computation of distinct reference frames and reveal a direct relationship of alpha modulation in parietal and retrosplenial areas with encoding and retrieval of spatial information for homing behavior.  相似文献   

10.
Delay improves performance on a haptic spatial matching task   总被引:6,自引:6,他引:0  
Systematic deviations occur when blindfolded subjects set a test bar parallel to a reference bar in the horizontal plane using haptic information (Kappers and Koenderink 1999, Perception 28:781–795; Kappers 1999, Perception 28:1001–1012). These deviations are assumed to reflect the use of a combination of a biasing egocentric reference frame and an allocentric, more cognitive one (Kappers 2002, Acta Psychol 109:25–40). In two experiments, we have examined the effect of delay between the perception of a reference bar and the parallel setting of a test bar. In both experiments a 10-s delay improved performance. The improvement increased with a larger horizontal (left–right) distance between the bars. This improvement was interpreted as a shift from the egocentric towards the allocentric reference frame during the delay period. Electronic Publication  相似文献   

11.
This research is about the role of categorical and coordinate spatial relations and allocentric and egocentric frames of reference in processing spatial information. To this end, we asked whether spatial information is firstly encoded with respect to a frame of reference or with respect to categorical/coordinate spatial relations. Participants had to judge whether two vertical bars appeared on the same side (categorical) or at the same distance (coordinate) with respect to the centre of a horizontal bar (allocentric) or with respect to their body midline (egocentric). The key manipulation was the timing of the instructions: one instruction (reference frame or spatial relation) was given before stimulus presentation, the other one after. If spatial processing requires egocentric/allocentric encoding before coordinate/categorical encoding, then spatial judgements should be facilitated when the frame of reference is specified in advance. In contrast, if categorical and coordinate dimensions are primary, then a facilitation should appear when the spatial relation is specified in advance. Results showed that participants were more accurate and faster when the reference frame rather than the type of spatial relation was provided before stimulus presentation. Furthermore, a selective facilitation was found for coordinate and categorical judgements after egocentric and allocentric cues, respectively. These results suggest a hierarchical structure of spatial information processing where reference frames play a primary role and selectively interact with subsequent processing of spatial relations.  相似文献   

12.
Working memory is a cognitive ability chiefly organized by the prefrontal cortex. Working memory tests may be resolved based on allocentric or egocentric spatial strategies. Serotonergic neurotransmission is closely involved in working memory, but its role in spatial strategies for working memory performance is unknown. To address this issue, prefrontal serotonin depletion was induced to adult male rats, and three days after the behavioral expression of both allocentric and egocentric strategies were evaluated in the "Y" maze and in a crossed-arm maze, respectively. Serotonin depletion caused no effects on allocentric-related behavioral performance, but lesioned rats performed deficiently when the egocentric working memory was evaluated. These results suggest that serotonin may be more closely related with the organization of working memory that uses own movement-guided responses than with that involving the use of external visuospatial signals. Further neurochemical studies are needed to elucidate possible interactions between serotonergic activity and other neurotransmitter systems in the organization of working memory-related allocentric and egocentric strategies.  相似文献   

13.
When reaching to remembered target locations following an intervening eye movement a systematic pattern of error is found indicating eye-centred updating of visuospatial memory. Here we investigated if implicit targets, defined only by allocentric visual cues, are also updated in an eye-centred reference frame as explicit targets are. Participants viewed vertical bars separated by varying distances, and horizontal lines of equivalently varying lengths, implying a “target” location at the midpoint of the stimulus. After determining the implied “target” location from only the allocentric stimuli provided, participants saccaded to an eccentric location, and reached to the remembered “target” location. Irrespective of the type of stimulus reaching errors to these implicit targets are gaze-dependent, and do not differ from those found when reaching to remembered explicit targets. Implicit target locations are coded and updated as a function of relative gaze direction with respect to those implied locations just as explicit targets are, even though no target is specifically represented.  相似文献   

14.
To produce accurate goal-directed arm movements, subjects must determine the precise location of target object. Position of extracorporeal objects can be determined using: (a) an egocentric frame of reference, in which the target is localized in relation to the position of the body; and/or (b) an allocentric system, in which target position is determined in relation to stable visual landmarks surrounding the target (Bridgeman 1989; Paillard 1991). The present experiment was based on the premise that (a) the presence of a structured visual environment enables the use of an allocentric frame of reference, and (b) the sole presence of a visual target within a homogeneous background forces the registration of the target location by an egocentric system. Normal subjects and a deafferented patient (i.e., with an impaired egocentric system) pointed to visual targets presented in both visual environments to evaluate the efficiency of the two reference systems. For normals, the visual environment conditions did not affect pointing accuracy. However, kinematic parameters were affected by the presence or absence of a structured visual surrounding. For the deafferented patient, the presence of a structured visual environment permitted a decrease in spatial errors when compared with the unstructured surrounding condition (for movements with or without visual feedback of the trajectory). Overall, results support the existence of an egocentric and an allocentric reference system capable of organizing extracorporeal space during arm movements directed toward visual targets.  相似文献   

15.
Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's “theory of visual attention” (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield.Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset.These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD.  相似文献   

16.
This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level.  相似文献   

17.
Thirty patients who had undergone either a right or left unilateral temporal lobectomy (14 RTL; 16 LTL) and 16 control participants were tested on a computerized human analogue of the Morris Water Maze. The procedure was designed to compare allocentric and egocentric spatial memory. In the allocentric condition, participants searched for a target location on the screen, guided by object cues. Between trials, participants had to walk around the screen, which disrupted egocentric memory representation. In the egocentric condition, participants remained in the same position, but the object cues were shifted between searches to prevent them from using allocentric memory. Only the RTL group was impaired on the allocentric condition, and neither the LTL nor RTL group was impaired on additional tests of spatial working memory or spatial manipulation. The results support the notion that the right anterior temporal lobe stores long-term allocentric spatial memories.  相似文献   

18.
This study addressed the role of the medial temporal lobe regions and, more specifically, the contribution of the human hippocampus in memory for body-centered (egocentric) and environment-centered (allocentric) spatial location. Twenty-one patients with unilateral atrophy of the hippocampus secondary to long-standing epilepsy (left, n = 7; right, n = 14) and 15 normal control participants underwent 3 tasks measuring recall of egocentric or allocentric spatial location. Patients with left hippocampal sclerosis were consistently impaired in the allocentric conditions of all 3 tasks but not in the egocentric conditions. Patients with right hippocampal sclerosis were impaired to a lesser extent and in only 2 of the 3 tasks. It was concluded that hippocampal structures are crucial for allocentric, but not egocentric, spatial memory.  相似文献   

19.
We required healthy subjects to recognize visually presented one’s own or others’ hands in egocentric or allocentric perspective. Both right- and left-handers were faster in recognizing dominant hands in egocentric perspective and others’ non-dominant hand in allocentric perspective. These findings demonstrated that body-specific information contributes to sense of ownership, and that the “peri-dominant-hand space” is the preferred reference frame to distinguish self from not-self body parts.  相似文献   

20.
Normally reared hamsters, but not hamsters reared on a liquid diet, demonstrated spatial memory for the location of odor cues in an allocentric task (Experiment 1). In Experiment 2, an egocentric task, liquid-reared hamsters detected a change in the spatial location of odor cues. In Experiment 3 liquidreared hamsters detected a change in the spatial location of two visual cues under allocentric task conditions. Female hamsters on a liquid diet retrieved their pups more often than dams on solid food, resulting in reduced exploratory opportunities for their pups during the period when olfaction mediates behavior. Hamsters in Experiment 4 experienced a direct restriction of early forays. The restricted-rearing group failed to detect a change in the spatial location of odor cues in an allocentric task. These findings suggest that restriction of early exploratory experience during a narrow period of development results in specific spatial processing deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号