首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most mammals, the Y chromosome is composed of a large amount of constitutive heterochromatin. In some Microtus species, this feature is also extended to the X chromosome, resulting in enlarged (giant) sex chromosomes. Several repeated DNA sequences have been described in the gonosomal heterochromatin of these species, indicating that it has heterogeneous and species-specific composition and distribution. We have cloned an AT-rich, 851-bp long, repeated DNA sequence specific for M. cabrerae Y chromosome heterochromatin. The analysis of other species of the genus Microtus indicated that this sequence is also located on the Y chromosome (male-specific) in three species (M. agrestis, M. oeconomus and M. nivalis), present on both Y and X chromosomes and on some autosomes in M. arvalis and absent in the genome of M. guentheri. Our data also suggest that the mechanism of heterochromatin amplification operating on the sex chromosomes could have been different in each species since the repeated sequences of the gonosomal heterochromatic blocks in M. cabrerae and M. agrestis are different. The absence of this sequence in the mouse genome indicates that its evolutionary origin could be recent. Future analysis of the species distribution, localization and sequence of this repeat DNA family in arvicolid rodent species could help to establish the unsolved phylogenetic relationships in this rodent group.  相似文献   

2.
Lake trout,Salvelinus namaycush, is one of the few salmonids with morphologically differentiated sex chromosomes. Genetic analysis suggested that the sex-determining region of this species lies on the short arm of the Y chromosome. The differential arm of the Y chromosome was microdissected and the resulting DNA amplified in a sequence-independent manner. Amplified DNA was biotin labeled as a probe for fluorescencein situ hybridization (FISH). Strong hybridization signals were seen covering defined regions of both the Y and X chromosomes. Homeologous chromosomes of the ancestrally tetraploid genome were not identified by FISH with the Y probe, indicating diploidization of this region of the genome.  相似文献   

3.
For a long time, the evolutionary relationship between human and African apes, the 'trichotomy problem', has been debated with strong differences in opinion and interpretation. Statistical analyses of different molecular DNA data sets have been carried out and have primarily supported a Homo—Pan clade. An alternative way to address this question is by the comparison of evolutionarily relevant chromosomal breakpoints. Here, we made use of a P1-derived artificial chromosome (PAC)/bacterial artificial chromosome (BAC) contig spanning approximately 2.8 Mb on the long arm of the human Y chromosome, to comparatively map individual PAC clones to chromosomes from great apes, gibbons, and two species of Old World monkeys by fluorescence in-situ hybridization. During our search for evolutionary breakpoints on the Y chromosome, it transpired that a transposition of an approximately 100-kb DNA fragment from chromosome 1 onto the Y chromosome must have occurred in a common ancestor of human, chimpanzee and bonobo. Only the Y chromosomes of these three species contain the chromosome-1-derived fragment; it could not be detected on the Y chromosomes of gorillas or the other primates examined. Thus, this shared derived (synapomorphic) trait provides clear evidence for a Homo—Pan clade independent of DNA sequence analysis.  相似文献   

4.
The Y chromosome is perhaps the most interesting element of the mammalian genome but comparative analysis of the Y chromosome has been impeded by the difficulty of assembling a shotgun sequence of the Y. BAC-based sequencing has been successful for the human and chimpanzee Y but is difficult to do efficiently for an atypical mammalian model species (Skaletsky et al. 2003, Kuroki et al. 2006). We show how Y-specific sub-libraries can be efficiently constructed using DNA amplified from microdissected or flow-sorted Y chromosomes. A Bacterial Artificial Chromosome (BAC) library was constructed from the model marsupial, the tammar wallaby (Macropus eugenii). We screened this library for Y chromosome-derived BAC clones using DNA from both a microdissected Y chromosome and a flow-sorted Y chromosome in order to create a Y chromosome-specific sub-library. We expected that the tammar wallaby Y chromosome should detect ∼100 clones from the 2.2 times redundant library. The microdissected Y DNA detected 85 clones, 82% of which mapped to the Y chromosome and the flow-sorted Y DNA detected 71 clones, 48% of which mapped to the Y chromosome. Overall, this represented a ∼330-fold enrichment for Y chromosome clones. This presents an ideal method for the creation of highly enriched chromosome-specific sub-libraries suitable for BAC-based sequencing of the Y chromosome of any mammalian species.  相似文献   

5.
An inverted and satellited Y chromosome of almost acrocentric appearance was detected in seven of 14 male orangutans. In the remaining seven animals a submetacentric Y chromosome without NORs occurred. The high frequency with which the satellited Y chromosomes were associated with acrocentric autosomes and the positive AgNO3-staining of their satellite stalks clearly indicate the active state of the NOR on the Y chromosomes. DNA fingerprinting in two orangutan families showed that the inverted and satellited Y chromosomes in carrier orangutan males do not interfere with normal fertility. Within our sample of male orangutans studied, the inverted and satellited Y chromosome is restricted to Sumatran animals; all Bornean specimens possessed the submetacentric Y chromosome. The question arises whether these two kinds of Y chromosome differ constitutively between thePongo pygmaeus subpopulations.We dedicate this paper to Professor Ulrich Wolf on the occasion of his 60th birthday.  相似文献   

6.
Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.  相似文献   

7.
Most spiders exhibit a multiple sex chromosome system, X1X20, whose origin has not been satisfactorily explained. Examination of the sex chromosome systems in the spider genus Malthonica (Agelenidae) revealed considerable diversity in sex chromosome constitution within this group. Besides modes X1X20 (M. silvestris) and X1X2X30 (M. campestris), a neo-X1X2X3X4X5Y system in M. ferruginea was found. Ultrastructural analysis of spread pachytene spermatocytes revealed that the X1X20 and X1X2X30 systems include a pair of homomorphic sex chromosomes. Multiple X chromosomes and the pair exhibit an end-to-end pairing, being connected by attachment plaques. The X1X2X3X4X5Y system of M. ferruginea arose by rearrangement between the homomorphic sex chromosome pair and an autosome. Multiple X chromosomes and the sex chromosome pair do not differ from autosomes in a pattern of constitutive heterochromatin. Ultrastructural data on sex chromosome pairing in other spiders indicate that the homomorphic sex chromosome pair forms an integral part of the spider sex chromosome systems. It is suggested that this pair represents ancestral sex chromosomes of spiders, which generated multiple X chromosomes by non-disjunctions. Structural differentiation of newly formed X chromosomes has been facilitated by heterochromatinization of sex chromosome bivalents observed in prophase I of spider females.  相似文献   

8.
The black marsh turtle (Siebenrockiella crassicollis) has morphologically differentiated X and Y sex chromosomes. To elucidate the origin and evolutionary process of S. crassicollis X and Y chromosomes, we performed cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) and chromosome mapping of the sex-linked genes of S. crassicollis using FISH. The X and Y chromosomes of S. crassicollis were hybridized with DNA probe of P. sinensis chromosome 5, which is homologous to chicken chromosome 5. S. crassicollis homologues of 14 chicken chromosome 5-linked genes were all localized to the X long arm, whereas two genes were mapped to the Y short arm and the other 12 genes were localized to the Y long arm in the same order as the X chromosome. This result suggests that extensive linkage homology has been retained between chicken chromosome 5 and S. crassicollis X and Y chromosomes and that S. crassicollis X and Y chromosomes are at an early stage of sex chromosome differentiation. Comparison of the locations of two site-specific repetitive DNA sequences on the X and Y chromosomes demonstrated that the centromere shift was the result of centromere repositioning, not of pericentric inversion.  相似文献   

9.
Sex chromosomes in species of the genus Microtus present some characteristic features that make them a very interesting group to study sex chromosome composition and evolution. M. cabrerae and M. agrestis have enlarged sex chromosomes (known as ‘giant sex chromosomes’) due to the presence of large heterochromatic blocks. By chromosome microdissection, we have generated probes from the X chromosome of both species and hybridized on chromosomes from six Microtus and one Arvicola species. Our results demonstrated that euchromatic regions of X chromosomes in Microtus are highly conserved, as occurs in other mammalian groups. The sex chromosomes heterochromatic blocks are probably originated by fast amplification of different sequences, each with an independent origin and evolution in each species. For this reason, the sex heterochromatin in Microtus species is highly heterogeneous within species (with different composition for the Y and X heterochromatic regions in M. cabrerae) and between species (as the composition of M. agrestis and M. cabrerae sex heterochromatin is different). In addition, the X chromosome painting results on autosomes of several species suggest that, during karyotypic evolution of the genus Microtus, some rearrangements have probably occurred between sex chromosomes and autosomes.  相似文献   

10.
Comparative FISH-mapping among Y chromosomes of cattle (Bos taurus, 2n = 60, BTA, submetacentric Y chromosome), zebu (Bos indicus, 2n = 60, BIN, acrocentric Y chromosome but with visible small p-arms), river buffalo (Bubalus bubalis, 2n = 50, BBU, acrocentric Y chromosome), sheep (Ovis aries, 2n = 54, OAR, small metacentric Y chromosome) and goat (Capra hircus, 2n = 60, CHI, Y-chromosome as in sheep) was performed to extend the existing cytogenetic maps and improve the understanding of karyotype evolution of these small chromosomes in bovids. C- and R-banding comparison were also performed and both bovine and caprine BAC clones containing the SRY, ZFY, UMN0504, UMN0301, UMN0304 and DYZ10 loci in cattle and DXYS3 and SLC25A6 in goat were hybridized on R-banded chromosomes by FISH. The main results were the following: (a) Y-chromosomes of all species show a typical distal positive C-band which seems to be located at the same region of the typical distal R-band positive; (b) the PAR is located at the telomeres but close to both R-band positive and ZFY in all species; (c) ZFY is located opposite SRYand on different arms of BTA, BIN, OAR/CHI Y chromosomes and distal (but centromeric to ZFY) in BBU-Y; (d) BTA-Y and BIN-Y differ as a result of a centromere transposition or pericentric inversion since they retain the same gene order along their distal chromosome regions and have chromosome arms of different size; (e) BTA-Y and BBU-Y differ in a pericentric inversion with a concomitant loss or gain of heterochromatin; (f) OAR/CHI-Y differs from BBU-Y for a pericentric inversion with a major loss of heterochromatin and from BTA and BIN for a centromere transposition followed by the loss of heterochromatin.  相似文献   

11.
We carried out a global survey of all major types of transposable elements in Silene latifolia, a model species with sex chromosomes that are in the early stages of their evolution. A shotgun genomic library was screened with genomic DNA to isolate and characterize the most abundant elements. We found that the most common types of elements were the subtelomeric tandem repeat X-43.1 and Gypsy retrotransposons, followed by Copia retrotransposons and LINE non-LTR elements. SINE elements and DNA transposons were less abundant. We also amplified transposable elements with degenerate primers and used them to screen the library. The localization of elements by FISH revealed that most of the Copia elements were accumulated on the Y chromosome. Surprisingly, one type of Gypsy element, which was similar to Ogre elements known from legumes, was almost absent on the Y chromosome but otherwise uniformly distributed on all chromosomes. Other types of elements were ubiquitous on all chromosomes. Moreover, we isolated and characterized two new tandem repeats. One of them, STAR-C, was localized at the centromeres of all chromosomes except the Y chromosome, where it was present on the p-arm. Its variant, STAR-Y, carrying a small deletion, was specifically localized on the q-arm of the Y chromosome. The second tandem repeat, TR1, co-localized with the 45S rDNA cluster in the subtelomeres of five pairs of autosomes. FISH analysis of other Silene species revealed that some elements (e.g., Ogre-like elements) are confined to the section Elisanthe while others (e.g. Copia or Athila-like elements) are present also in more distant species. Similarly, the centromeric satellite STAR-C was conserved in the genus Silene whereas the subtelomeric satellite X-43.1 was specific for Elisanthe section. Altogether, our data provide an overview of the repetitive sequences in Silene latifolia and revealed that genomic distribution and evolutionary dynamics differ among various repetitive elements. The unique pattern of repeat distribution is found on the Y chromosome, where some elements are accumulated while other elements are conspicuously absent, which probably reflects different forces shaping the Y chromosome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
A number of wheat—Elymus trachycaulus (2n= 4x= 28, genomically StStHtHt) chromosome addition, substitution, and translocation lines were isolated from the derivatives of anE. trachycaulus × wheat hybrid. Eighteen out of a total of 28 chromosome arms ofE. trachycaulus were recovered in the addition lines. The genomic affinity of individualE. trachycaulus chromosomes was analysed by comparative chromosome banding andin situ hybridization using genome-specific repetitive DNA sequences as probes. The homoeology of theE. trachycaulus chromosomes added to wheat was determined by storage protein, isozyme, and restriction fragment length polymorphism analysis. Alloplasmic wheat—E. trachycaulus chromosome additions were isolated which only involved chromosome 1Ht and 1St that carry fertility restoration geneRf-H t1 andRf-S t1, respectively. Based on the results of production and characterization of a wheat—E. trachycaulus 5Ht(5B) substitution line, it is likely that some wheat chromosomes can be well compensated genetically byE. trachycaulus chromosomes. Several spontaneous wheat—E. trachycaulus chromosome translocation lines were detected. All the translocation lines involved either 1Ht or 1St. To estimate the potential of recombination between wheat andE. trachycaulus chromosomes, a backcross population derived from a plant which was double monosomic for chromosomes 7A and 7AL·7AS—1StS and aph1b gene was developed. The plants from this population were analysed for 1St-specific genetic markers and no recombinant was recovered.  相似文献   

13.
The dioecious plant Rumex acetosa has a multiple sex chromosome system: females are 2n = XX + 12, males are 2n = XY1Y2 + 12, and the two Y chromosomes are heterochromatic. A DNA sequence abounded in the male genome was isolated and analyzed. The sequence (RAE180) was a 180-bp-long tandemly arranged repetitive sequence, distributed in chromosomes Y1 and Y2, and two pairs of autosomes. Both Y chromosomes contained large amounts of RAE180 and the sequence formed many DAPI bands, while, on the two pairs of autosomes, RAE180 did not form DAPI bands. The internal structure and morphological changes of the Y chromosomes were analyzed by FISH, using RAE180 and the Y-chromosome-specific sequence RAYSI as probes. The pattern of the FISH signals caused by the accumulation of RAE180 and RAYSI suggested the structural change in the Y chromosomes during the process of sex chromosome evolution, and the morphological change in the Y chromosomes was explained by reciprocal translocation and inversion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Applying two-colour fluorescencein situ hybridization (FISH) we simultaneously hybridizedRBM- andTSPY-related cosmids to Y chromosomes in prophase and to released Y chromatin in interphase nuclei of man and pygmy chimpanzee. Whereas, even on prophasic Y chromosomes, no resolution of the overlappingRBM andTSPY signal clusters could be achieved, theRBM andTSPY signals are completely separated from each other in our maximum released Y chromatin stretches in interphase nuclei. These results unequivocally lend support to the view that theRBM andTSPY families have an interspersed organization on the Y chromosomes of man and higher apes. Thus, the distribution ofRBM andTSPY signals might well go back to a common organization of these genes next to each other on an ancient Y chromosome.accepted for publication by M. Schmid  相似文献   

15.
Many canine tumour types represent useful models for tumours also found in humans. Studies of chromosomal abnormalities in canine tumours have been impeded by the complexity of the canine karyotype (2n = 78), which has made accurate identification of rearranged chromosomes difficult and laborious. To overcome this difficulty we have developed a seven-colour paint system for canine chromosomes, with six sets of chromosome paints covering all chromosomes except Y. Several pairs of canine autosomes co-locate in the flow karyotype. To distinguish these autosomes from each other, paint sets were supplemented with chromosomes of red fox and Japanese raccoon dog. Paints were used in fluorescence in-situ hybridization to analyse karyotypes in fourteen canine soft tissue sarcomas. Rearranged karyotypes were observed in seven tumours, but there was evidence for loss of rearrangement during tissue culture. Five tumours had rearrangements involving four chromosomes or fewer; one, a chondrosarcoma, had lost seven chromosomes whilst the last, a spindle cell sarcoma, had rearrangements involving eighteen chromosome pairs. The paint sets described here facilitate the complete cytogenetic analysis of balanced translocations and other inter-chromosomal rearrangements in canine tumours. We believe that this is the first canine tumour series to be subjected to this level of analysis.  相似文献   

16.
Two homogenous sequences of 47z (DXYS5) are located on the X (DXYS5X) and Y (DXYS5Y) chromosomes, and these are known to be useful polymorphic markers for tracing male-specific gene flow such as the migration routes of human populations. Using the 47z/StuI PCR–RFLP system, we found a novel allele which showed two bands, in contrast to the previous two allele types, one band (Y1) and three bands (Y2). This means that copies of PCR products derived from both the DXYS5X and DXYS5Y loci were clearly cut by the StuI enzyme, implying that the DXYS5X locus of the X chromosome is polymorphic. Allelic frequencies examined in 267 male Korean individuals showed that 95.8% had Y1, 3.4% Y2, and 0.8% had the novel allele. Our findings should contribute to a better understanding of genetic polymorphism on X and Y chromosomes, the molecular evolution mechanism of sex chromosomes, and how the migration route of Koreans is related to those of other East Asian populations.Sung-Hwa Chae and Jeong-Mo Kim contributed equally to this work  相似文献   

17.
Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. No difference in hybridization pattern of the X paint (as well as Y paint) probes on male and female chromosomes was discovered. The set of golden hamster (Mesocricetus auratus) chromosomal painting probes revealed 44 and 43 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. A comparative chromosome map was established based on the results of cross-species chromosome painting and a hypothetical ancestral Ellobius karyotype was reconstructed. A considerable number of rearrangements were detected; 31 and 7 fusion/fission rearrangements differentiated the karyotypes of E. lutescens and E. talpinus from the ancestral Ellobius karyotype. It seems that inversions have played a minor role in the genome evolution of these Ellobius species.  相似文献   

18.
Cytogenetic studies were carried out in the fish, Hoplias malabaricus, from the Parque Florestal do Rio Doce (Brazil). This population is characterized by 2n = 42 chromosomes for both males and females and an XX/XY sex chromosome system, confirmed through several banding methods. Females show 24 metacentric, 16 submetacentric and 2 subtelocentric chromosomes. Males show 24 metacentric, 17 submetacentric and 1 subtelocentric chromosomes. While the X chromosome is easily recognized (the only subtelocentric element), the Y chromosome is somewhat difficult to identify but appears to correspond to the smallest submetacentric in the male karyotype. In-situ hybridization with an 18S rDNA probe showed 10 well-labeled chromosomes, including the X chromosome. The 5S rDNA is interstitially located in a single metacentric pair independent of the 18S rDNA sites. The NOR on the X chromosome is always active and occurs adjacent to a heterochromatic distal segment on the long arm. Variations in size of the NORs and/or heterochromatic segment correspond to a polymorphic size condition observed in the X chromosome. The present results confirm the XX/XY sex chromosome system in the population analyzed as well as a new cytotype in the Hoplias malabaricus group.  相似文献   

19.
Cytogenetic studies of the primate Y chromosomes have suggested that extensive rearrangements have occurred during evolution of the great apes. We have usedin situ hybridization to define these rearrangements at the molecular level.pHU-14, a probe including sequences from the sex determining geneSRY, hybridizes close to the early replicating pseudoautosomal segment in a telomeric or subtelomeric position of the Y chromosomes of all great apes. The low copy repeat detected by the probeFr35-II is obviously included in Y chromosomal rearrangements during hominid evolution. These results, combined with previous studies, suggest that the Y chromosome in great apes has a conserved region including the pseudoautosomal region and the testis-determining region. The rest of the Y chromosome has undergone several rearrangements in the different great apes.  相似文献   

20.
The genus Tokudaia comprises three species, two of which have lost their Y chromosome and have an XO/XO sex chromosome constitution. Although Tokudaia muenninki (Okinawa spiny rat) retains the Y chromosome, both sex chromosomes are unusually large. We conducted a molecular cytogenetic analysis to characterize the sex chromosomes of T. muenninki. Using cross-species fluorescence in situ hybridization (Zoo-FISH), we found that both short arms of the T. muenninki sex chromosomes were painted by probes from mouse chromosomes 11 and 16. Comparative genomic hybridization analysis was unable to detect sex-specific regions in the sex chromosomes because both sex probes highlighted the large heterochromatic blocks on the Y chromosome as well as five autosomal pairs. We then performed comparative FISH mapping using 29 mouse complementary DNA (cDNA) clones of the 22 X-linked genes and the seven genes linked to mouse chromosome 11 (whose homologue had fused to the sex chromosomes), and FISH mapping using two T. muenninki cDNA clones of the Y-linked genes. This analysis revealed that the ancestral gene order on the long arm of the X chromosome and the centromeric region of the short arm of the Y chromosome were conserved. Whereas six of the mouse chromosome 11 genes were also mapped to Xp and Yp, in addition, one gene, CBX2, was also mapped to Xp, Yp, and chromosome 14 in T. muenninki. CBX2 is the candidate gene for the novel sex determination system in the two other species of Tokudaia, which lack a Y chromosome and SRY gene. Overall, these results indicated that the Y chromosome of T. muenninki avoided a loss event, which occurred in an ancestral lineage of T. osimensis and T. tokunoshimensis, through fusion with an autosome. Despite retaining the Y chromosome, sex determination in T. muenninki might not follow the usual mammalian pattern and deserves further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号