首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Genistein, the predominant isoflavone in soy, may be chemopreventive in prostate cancer (CaP). It down-regulates the prostate-specific antigen (PSA) and androgen receptor (AR) in androgen responsive cells. However, the extent of the down-regulation and whether genistein has a general effect on all androgen responsive genes (ARGs) are unclear. We investigated the ability of genistein to modulate ARG expression by the synthetic androgen R1881 in LNCaP cells. Given that there is important crosstalk between AR and mitogen activated protein kinase (MAPK) signaling, we also investigated whether genistein activates the MAPK end targets c-Jun N-terminal kinase (JNK) and c-Jun. Changes in ARG expression were determined by Western analysis and semi-quantitative RT-PCR. The activation of JNK and c-Jun was investigated by Western analysis and a solid phase kinase assay. The PSA protein and mRNA expression were both down-regulated by genistein. In contrast, KLK4 was up-regulated at the mRNA, but down-regulated at the protein level. NKX3.1 mRNA levels did not change significantly, but protein levels were significantly down-regulated. STAMP2 mRNA levels slightly increased whereas the protein expression was down-regulated. The AR mRNA expression changed significantly only at high concentrations of genistein when it was down-regulated, whereas AR protein levels were decreased at low concentrations of genistein. The solid phase kinase assay indicated a transient activation of JNK by genistein, which was supported by Western analysis. Thus genistein differentially modulates ARG mRNA expression, but has an inhibitory role on the ARG protein levels. The activation of the JNK pathway which inhibits AR signaling may provide a mechanism for the overall inhibition of protein levels.  相似文献   

4.
This study examined the mechanisms by which the prostate cancer chemopreventive agent genistein modulates gene expression in LNCaP human prostate cancer cells. Expression of androgen- and estrogen-regulated genes was measured in LNCaP cells cultured in the presence or absence of hormonal stimulation and the presence or absence of genistein. Genistein strongly suppressed basal expression of androgen-responsive gene (ARG) mRNAs, including prostate-specific antigen (PSA) and Ste20-related proline-alanine-rich kinase (SPAK). However, genistein had little or no effect on basal expression of two other ARGs, beta2-microglobulin (B2M) or selenoprotein P (SEPP1). Culturing LNCaP cells in the presence of the synthetic androgen R1881-induced increases in PSA, SPAK, B2M, and SEPP1 mRNA levels. The R1881-induced expression of these genes was uniformly blocked by genistein. For PSA and SPAK, genistein also blocked or downregulated 17beta-estradiol-induced increases in mRNA expression. These results indicate that genistein selectively alters expression of ARG mRNAs in LNCaP cells through modulation of both androgen- and estrogen-induced signaling pathways.  相似文献   

5.
6.
Lee SO  Lou W  Hou M  Onate SA  Gao AC 《Oncogene》2003,22(39):7981-7988
Androgen receptor (AR) plays an important role in the development and progression of prostate cancer upon the action of androgen through the binding of the androgen-responsive elements (AREs) on the target genes. Abnormal activation of the AR by nonandrogen has been implicated in the progression of androgen-independent prostate cancer. The levels of interleukin-4 (IL-4) are significantly elevated in sera of patients with hormone refractory prostate cancer. The potential role of IL-4 on the activation of AR was investigated in prostate cancer cells. IL-4 enhances AR-mediated prostate-specific antigen (PSA) expression and ARE-containing gene activity through activation of the AR in the androgen ablation condition in human prostate cancer cells. The AR can also be sensitized by IL-4 and activated by significantly lower levels of androgen (10 pM of R1881) in prostate cancer cells. IL-4 enhances nuclear translocation of AR and increases binding of the AR to the ARE in LNCaP prostate cancer cells. Blocking of the Akt pathway by an Akt-specific inhibitor LY294002 abrogates IL-4-induced PSA expression and AR signaling. These results demonstrate that IL-4 enhances PSA expression through activation of the AR and Akt signaling pathways in LNCaP prostate cancer cells. Understanding IL-4-induced signaling leading to abnormal activation of AR will provide insights into the molecular mechanisms of androgen-independent progression of prostate cancer cells.  相似文献   

7.
The peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily. Recent studies found that ligand-activated PPARgamma regulated differentiation and clonal growth of several types of cancer cells, including prostate cancer, suggesting that PPARgamma could be a tumor suppressor. Troglitazone was a widely used antidiabetic drug that activates PPARgamma. Recently, we reported that this agent had antiprostate cancer effects in vitro and in vivo. In this study, we administered troglitazone for over 1.5 years to an individual with occult recurrent prostate cancer. Using the prostate-specific antigen (PSA) levels as a surrogate marker of the disease, the oral administration of troglitazone (600-800 mg/day) reduced the increase velocity of PSA levels, suggesting clinical efficacy of troglitazone in prostate cancer. PSA promoter/ enhancer reporter assays showed that the PPARgamma ligands troglitazone (10(-5) M), pioglitazone (10(-5) M), or 15-deoxy-delta12,14-prostaglandin J2 (10(-5) M) down-regulated androgen-stimulated reporter gene activity in LNCaP cells, a prostate cancer cell line. The PSA promoter contains androgen receptor response elements (AREs). Reporter gene studies showed that troglitazone inhibited androgen activation of the AREs in the PSA regulatory region. Consistent with inhibition of gene expression, 2 days of incubation of LNCaP with troglitazone dramatically suppressed PSA protein expression without suppressing AR expression, suggesting that troglitazone inhibited ARE activation by a mechanism other than down-regulation of expression of the AR. Taken together, ligands of PPARgamma may be a useful therapeutic approach for the treatment of prostate cancer and may be acting, in part, by inhibiting transactivation of androgen-responsive genes.  相似文献   

8.
  目的  探讨多西紫杉醇治疗男性雄激素抵抗前列腺癌(castration-resistant prostate cancer, CRPC)的分子机制。  方法  前列腺癌细胞株LNCaP、PC-3和CW22-rv1体外培养后, 通过蛋白质印迹、细胞转染、荧光素酶分析、细胞存活率分析等试验分析多西紫杉醇(Docetaxel, Doc)处理后细胞株的存活、AR及p-c-jun的表达情况及其与细胞生存的关系, 同时实时定量PCR检测相应mRNA的表达情况。  结果  多西紫杉醇对不同前列腺癌细胞株的敏感性不同, 其中PC-3细胞最敏感, CW22-rv1和LNCaP细胞中度敏感, 其敏感性与p-c-jun表达呈负相关。转染c-jun基因可降低细胞对多烯紫杉醇的敏感性, 而PC-3细胞转染c-jun和AR基因后则可以使细胞恢复到中等程度敏感性, 细胞存活率为30%。长期暴露于Bicalutmide(比卡鲁胺)后的LNCaP细胞经Doc处理后PSA蛋白表达增加, AR蛋白表达水平降低, AR的mRNA却增加。  结论  p-c-jun降低前列腺癌细胞株对多西紫杉醇的敏感性, 而AR可以增加前列腺癌细胞株对多西紫杉醇的反应, AR的上调降低c-jun/p-c-jun的转录活性, 从而增加前列腺癌细胞株对Doc的反应, 可能是Doc治疗前列腺癌的机制之一。   相似文献   

9.
10.
A seminal plasma protein, semenogelin I (SgI), contributes to sperm clotting, upon binding to Zn2+, and can be proteolyzed by prostate-specific antigen (PSA), resulting in release of the trapped spermatozoa after ejaculation. In contrast, the role of SgI in the development and progression of any types of malignancies remains largely unknown. We previously demonstrated that SgI was overexpressed in prostate cancer tissues and its expression was enhanced by zinc treatment in LNCaP cells. In the current study, using cell lines stably expressing SgI, we investigated its biological functions, in conjunction with zinc, androgen, and androgen receptor (AR), in prostate cancer. Zinc, without SgI, inhibited cell growth of both AR-positive and AR-negative lines. Co-expression of SgI prevented zinc inhibiting dihydrotestosterone-mediated proliferation of AR-positive cells, whereas SgI and/or dihydrotestosterone showed marginal effects in AR-negative cells. Similar effects of SgI overexpression in LNCaP on dihydrotestosterone-induced cell invasion, such as its significant enhancement with zinc, were seen. Overexpression of SgI in LNCaP and CWR22Rv1 cells also augmented dihydrotestosterone-mediated PSA expression (mRNA, protein) in the presence of zinc. However, culture in the conditioned medium containing secreted forms of SgI failed to significantly increase cell viability with or without zinc. In luciferase reporter gene assays, SgI showed even slight inhibitory effects (8% and 15% decreases in PC3 and CWR22Rv1, respectively) at 0 μM zinc and significant stimulatory effects (2.1- and 3.2-fold) at 100 μM zinc on dihydrotestosterone-enhanced AR transactivation. Co-immunoprecipitation then demonstrated dihydrotestosterone-induced physical interactions between AR and SgI. These results suggest that intracellular SgI, together with zinc, functions as an AR coactivator and thereby promotes androgen-mediated prostate cancer progression.  相似文献   

11.
Recent studies have provided convincing evidence for the role of soy-isoflavones, particularly genistein, in the inhibition of prostate cancer cell growth. Prostate specific antigen (PSA) is a biological marker used to detect and monitor the treatment of prostate cancer patients. Previous studies have documented that isoflavones can inhibit the secretion of PSA in the androgen-dependent prostate cancer cell line, LNCaP, however, the effects of genistein on androgen-independent PSA expression has not been explored. In this study, we have utilized a prostate cancer cell line, VeCaP, which expresses PSA in an androgen-independent manner, to determine the effects of genistein on cell proliferation and PSA expression. Here we show that genistein inhibits cell growth similarly in both the LNCaP and VeCaP cell lines, but has differential effects on PSA expression. We demonstrate using concentrations of genistein that have been detected in the serum of humans consuming a soy-rich diet, that genistein decreases PSA mRNA, protein expression and secretion. Conversely, only high concentrations of genistein inhibited PSA expression in VeCaP cells. Additionally, we have demonstrated that genistein inhibits cell proliferation independent of PSA signaling pathways, providing further evidence to support the role of genistein as a chemopreventive/therapeutic agent for prostate cancer irrespective of androgen responsiveness.  相似文献   

12.
13.
12-0-tetradecanoylphorbol-13-acetate (TPA) stimulates protein kinase C (PKC) which mediates apoptosis in androgen-sensitive LNCaP human prostate cancer cells. The downstream signals of PKC that mediate TPA-induced apoptosis in LNCaP cells are unclear. In this study, we found that TPA activates the c-Jun NH2-terminal kinase (JNK)/c-Jun/AP-1 pathway. To explore the possible role that the JNK/c-Jun/AP-1 signal pathway has on TPA-induced apoptosis in LNCaP cells, we stably transfected the scaffold protein, JNK interacting protein 1 (JIP-1), which binds to JNK inhibiting its ability to phosphorylate c-Jun. TPA (10(-9)-10(-7) mol l(-1)) caused phosphorylation of JNK in both wild-type and JIP-1-transfected (LNCaP-JIP-1) cells. It resulted in phosphorylation and upregulation of expression of c-Jun protein in the wild-type LNCaP cells, but not in the JIP-1-transfected LNCaP cells. In addition, upregulation of AP-1 reporter activity by TPA (10(-9) mol l(-1)) occurred in LNCaP cells but was abrogated in LNCaP-JIP-1 cells. Thus, TPA stimulated c-Jun through JNK, and JIP-1 effectively blocked JNK. TPA (10(-12)-10(-8) mol l(-1)) treatment of LNCaP cells caused their growth inhibition, cell cycle arrest, upregulation of p53 and p21waf1, and induction of apoptosis. All of these effects were significantly attenuated when LNCaP-JIP-1 cells were similarly treated with TPA. A previous study showed that c-Jun/AP-1 blocked androgen receptor (AR) signaling by inhibiting AR binding to AR response elements (AREs) of target genes including prostate-specific antigen (PSA). Therefore, we hypothesised that TPA would not be able to disrupt the AR signal pathway in LNCaP-JIP-1 cells. Contrary to expectation, TPA (10(-9)-10(-8) mol l(-1)) inhibited DHT-induced AREs reporter activity and decreased levels of PSA in the LNCaP-JIP-1 cells. Taken together, TPA, probably by stimulation of PKC, phosphorylates JNK, which phosphorylates and increases expression of c-Jun leading to AP-1 activity. Growth control of prostate cancer cells can be mediated through the JNK/c-Jun pathway, but androgen responsiveness of these cells can be independent of this pathway, suggesting that androgen independence in progressive prostate cancer may not occur through activation of this pathway.  相似文献   

14.
15.
16.
Yuan Xu  Hu Zhao  Jianquan Hou 《Tumour biology》2014,35(7):6695-6700
The objective of this study was to investigate the role of epithelial cell adhesion molecule (EpCAM) in the genesis and the progress of prostate cancer, especially of castration-resistant prostate cancer. Protein expression of EpCAM in ten pairs of prostate cancer tissues and normal adjacent tissues, plus three cell lines, was examined. Short hairpin RNA (shRNA) interference technique was employed to silence the expression of EpCAM in prostate cancer cell LNCaP and construct a stable transfected cell line. In vitro assay was conducted to analyze the effect of EpCAM expression on the expressions of Androgen receptor (AR), Prostate specific antigen (PSA), and cellular proliferation and invasion. EpCAM was found significantly expressed higher in prostate cancer tissues than in normal adjacent tissues. In three cell lines (DU-145, PC-3, and LNCaP), the expression of EpCAM in LNCaP, androgen-dependent prostate cancer cells, was significantly higher than that in the other two. As EpCAM was silenced in LNCaP, the expression levels of AR and PSA obviously descended, and cellular abilities of proliferation and invasion were obviously inhibited.The overexpression of EpCAM has correlation with the genesis of prostate cancer, especially androgen-dependent prostate cancer. As the expression of AR is facilitated, prostate cancer cells’ abilities to proliferate and invade are consequently enhanced.  相似文献   

17.
18.
19.
BACKGROUND: Calcitriol, the natural ligand for the vitamin D receptor, has significant potential in prostate cancer treatment. Measurement of its antineoplastic activity in prostate cancer clinical trials may be complicated by effects of calcitriol on prostate-specific antigen (PSA) production. We examined the effects of calcitriol at similar concentration on cell proliferation, androgen receptor (AR) expression, and PSA production in vitro and on PSA concentrations in prostate cancer patients. EXPERIMENTAL DESIGN: LNCaP prostate cancer cell proliferation was examined by cell counts 6 days after exposure to a range of concentrations of calcitriol. AR and PSA protein was quantified in LNCaP cells over 96 hours after exposure to 1 nmol/L calcitriol. Serum PSA and free PSA was serially measured by immunoassay over a period of 8 days in patients with hormone-na?ve prostate cancer after a single dose of 0.5 microg/kg calcitriol. RESULTS: Calcitriol treatment resulted in dose-dependent growth inhibition of LNCaP with approximately 50% growth inhibition at the clinically achievable concentration of 1 nmol/L. Time-dependent up-regulation of AR expression and of PSA production in LNCaP cells was shown at the same concentration. No significant change in serum PSA or free PSA over 8 days was seen in eight subjects treated with a single dose of 0.5 microg/kg calcitriol. The analysis was powered to detect a 1.23-fold change between the baseline and day 8 serum PSA. CONCLUSIONS: At clinically achievable concentrations, calcitriol inhibits growth and induces AR and PSA expression in LNCaP cells. We did not detect similar changes in serum PSA or free PSA in patients exposed to similar concentrations of calcitriol. Thus, a PSA flare, predicted by preclinical systems, is unlikely to occur in patients and therefore unlikely to complicate interpretation of clinical trial outcomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号