首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Current standards of practice are based on the use of an independent calculation to validate the monitor units (MUs) derived from a treatment planning system. The ADAC PINNACLE treatment planning system has shown discrepancies of 10% or more compared to simple independent calculations for highly contoured areas such as tangential breast and chest wall irradiation. The ADAC treatment planning system generally requires more MUs to deliver the same prescribed dose. Independent MU calculation methods are based on full phantom conditions. On the other hand, the MUs from the ADAC treatment planning system are derived using realistic phantom scatter. As such, differences exist in TMR factors, off-axis wedge factors, and the phantom scatter factor. To systematically study the discrepancies due to phantom conditions, experimental measurements were performed with various percentages of tissue missing. The agreement between the experimental measurements and ADAC calculations was found to be within 2%. Using breast field geometry, a relationship between missing tissue and the dosimetric parameters used by ADAC was developed. This relationship, when applied, yielded independent MU calculations whose values closely matched those from the ADAC treatment planning system.  相似文献   

2.
3.
4.
The GAFCHROMIC EBT film model is a fairly new film product designed for absorbed dose measurements of high-energy photon beams. In vivo dosimetry for total body irradiation (TBI) remains a challenging task due to the extended source-to-surface distance (SSD), low dose rates, and the use of beam spoilers. EBT film samples were used for dose measurements on an anthropomorphic phantom using a TBI setup. Additionally, in vivo measurements were obtained for two TBI patients. Phantom results verified the suitability of the EBT film for TBI treatment in terms of accuracy, reproducibility, and dose linearity. Doses measured were compared to conventional dosimeter measurements using thermoluminescent dosimeters (TLDs), resulting in an agreement of 4.1% and 6.7% for the phantom and patient measurements, respectively. Results obtained from the phantom and patients confirm that GAFCHROMIC EBT films are a suitable alternative to TLDs as an in vivo dosimeter in TBI radiotherapy.  相似文献   

5.
Total body irradiation(TBI) is being used as a method of preparation for bone marrow transplantation(BMT). In TBI, the dose calculation is based on dosimetry using a phantom. We measured the basic dose with a phantom using a 10 MV X-rays. We confirmed the accuracy of the dose calculation performed in our facilities and investigated a method of more accurate dosimetry. We measured the variation in dose according to the size of the phantom and the depth using a tough water phantom, and examined the difference in TMR according to SCD, field size, and size of the phantom. Consequently, the dose has been changed regardless of the size of the phantom at larger than 80 x 30 x 30 cm(3), and it is about 1% larger than 30 x 30 x 30 cm(3). Also TMR has changed according to various conditions, including the size of the phantom, field size, and SCD. Therefore, it was found that dosimetry using the 30 x 30 x 30 cm(3) phantom leads to underestimation in dose calculation, and there is no difference in dose between the field size of 151.5 x 160 cm(2) and 151.5 x 80 cm(2). It is also necessary to consider the effect of the vertical size of the phantom.  相似文献   

6.
The high density and atomic number of hip prostheses for patients undergoing pelvic radiotherapy challenge our ability to accurately calculate dose. A new clinical dose calculation algorithm, Monte Carlo, will allow accurate calculation of the radiation transport both within and beyond hip prostheses. The aim of this research was to investigate, for both phantom and patient geometries, the capability of various dose calculation algorithms to yield accurate treatment plans. Dose distributions in phantom and patient geometries with high atomic number prostheses were calculated using Monte Carlo, superposition, pencil beam, and no-heterogeneity correction algorithms. The phantom dose distributions were analyzed by depth dose and dose profile curves. The patient dose distributions were analyzed by isodose curves, dose-volume histograms (DVHs) and tumor control probability/normal tissue complication probability (TCP/NTCP) calculations. Monte Carlo calculations predicted the dose enhancement and reduction at the proximal and distal prosthesis interfaces respectively, whereas superposition and pencil beam calculations did not. However, further from the prosthesis, the differences between the dose calculation algorithms diminished. Treatment plans calculated with superposition showed similar isodose curves, DVHs, and TCP/NTCP as the Monte Carlo plans, except in the bladder, where Monte Carlo predicted a slightly lower dose. Treatment plans calculated with either the pencil beam method or with no heterogeneity correction differed significantly from the Monte Carlo plans.  相似文献   

7.
In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth–dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.  相似文献   

8.
9.
The tabulated measured data model for external photon beam planning used on the General Electric Target system is very powerful, allowing fast and accurate calculations and is extended to incorporate complex planning techniques. This approach is ideally suited for the incorporation of correction factors, defined at any point as the ratio of the dose in an inhomogeneous phantom to the dose in a homogeneous phantom. The correction factor can be determined using techniques such as a generalized Batho power law or the equivalent tissue air ratio method, and the dose in an homogeneous phantom is taken from the measured data tables. The use of tabulated data gives the benefits of very fast calculation times and, when required, the accuracy of sophisticated scatter corrections. The basic model and methods of correcting for inhomogeneities are described. The extension of the two-dimensional model to a three-dimensional model for non-coplanar treatment planning retains the basic principles of the 2D model.  相似文献   

10.
《Medical Dosimetry》2020,45(2):159-167
The aim of this work was to evaluate the accuracy of the RayStation treatment planning system electron Monte Carlo algorithm against measured data for a range of clinically relevant scenarios. This was done by comparing measured percentage depth dose data (PDD) in water, profiles at oblique incidence and with heterogeneities in the beam path, and output factor data and that generated using the RayStation treatment planning system Monte Carlo VMC++ based calculation algorithm. While electron treatments are widely employed in the radiotherapy setting accurate modelling is challenging (TPS) in the presence of patient being both heterogeneous and nonrectangular. Watertank-based measurements were made on a Varian TrueBeam linear accelerator covering electron beam energies 6 to 18 MeV. These included both normal and oblique incidence, heterogeneous geometries, and irregular shaped cut-outs. The measured geometries were replicated in RayStation and the Monte Carlo dose calculation engine used to generate dosimetric data for comparison against measurement in what were considered clinically relevant settings. Water-based PDDs and profile comparisons showed excellent agreement for all electron beam energies. Profiles measured with oblique beam incidence demonstrated acceptable agreement to the treatment planning system calculations although the correspondence worsened as the angle increased with the planning system overestimating the dose in the shoulder region. Profile measurements under inhomogeneities were generally good. The planning system had a tendency to overestimate dose under the heterogeneity and also demonstrated a broader penumbra than measurement. Of the 170 different output factors calculated in RayStation over the range of electron energies commissioned, 141 were within ± 3% of measured values and 164 within ± 5%. Four of the 6 comparisons beyond 5% were at 18 MeV and all had a cut-out edge within 3 cm of the beam central axis/measurement point. The RayStation implementation of a VMC++ electron Monte Carlo dose calculation algorithm shows good agreement with measured data for a range of scenarios studied and represented sufficient accuracy for clinical use.  相似文献   

11.
The commissioning and quality assurance (QA) associated with the implementation of linear accelerator multileaf collimator (MLC)-based intensity-modulated radiation therapy (IMRT) at the University of Nebraska Medical Center are described. Our MLC-based IMRT is implemented using the PRIMUS linear accelerator interface through the IMPAC record and verification system to the CORVUS treatment planning system. The "step-and-shoot" technique is used for this MLC-based IMRT. Commissioning process requires the verification of predefined parameters available on the CORVUS and the collection of some machine data. The machine data required are output factor in air and output factor in phantom, and percent depth dose for a number of field sizes. In addition, inplane and crossplane dose profiles of 4 x 4 cm and 20 x 20 cm field sizes and diagonal dose profiles of a large field size have to be measured. Validation of connectivity and dose model includes the use of uniform intensity bar strips, triangular-shaped nonuniform intensity bar strip, and N-shaped target. QA procedure follows the recommendation of the AAPM Task Group No. 40 report. In addition, the leaf position accuracy and reproducibility of the MLC should be checked at regular intervals. The dose validation is implemented through the hybrid plan where the patient beam parameters are applied to a flat phantom. Independent dose calculation method is used to confirm the dose delivery plan and data input to the CORVUS.  相似文献   

12.
目的 选取10例身高在120.0 cm左右的急性白血病患者分上下两段行螺旋断层治疗(HT)实现全身照射(TBI),通过分析衔接处靶区剂量分布的变化情况,寻找最佳靶区间隔距离所对应的计划设计参数。方法 选取的研究对象使用德国Siemens公司定位CT获得层厚为5 mm的全身图像,同时在髌骨上方10 cm处放置铅丝,作为上下两段靶区的分割线。在美国瓦里安Eclipse 13.5医生工作站进行靶区和危及器官的勾画,其中上下靶区在铅丝分割处依次分别内收不同距离,然后传至HT计划工作站进行计划设计,其中射野宽度(FW)分别选择5.0、2.5、1.0 cm,螺距分别选择0.430与0.287,调制因子1.8,剂量计算网格(最精细:0.195 cm×0.195 cm),其余计划参数都保持一致。将其分两段照射的上下靶区依据不同参数进行计划设计,并将设计好的不同参数的计划分别对应叠加在一起进行分析衔接处靶区剂量分布的变化情况。结果 通过比较不同螺距和射野宽度所对应不同间隔距离的衔接处靶区的剂量分布,发现只有射野宽度才影响衔接处靶区的剂量分布:当射野宽度为5.0 cm时,靶区间隔距离为5.0 cm在衔接处的剂量分布最佳;同理当射野宽度为2.5和1.0 cm时,靶区间隔距离分别为2.0和1.0 cm时最佳,即衔接处靶区的最佳剂量分布所对应的间隔距离与射野宽度保持一致。而螺距对衔接处靶区剂量和总治疗时间比值没有影响,总治疗时间长度与射野宽度保持一致反比关系。结论 对于HT进行分段式TBI治疗时,采用如上的计划设计参数,同时靶区勾画时间隔距离与射野宽度保持一致,能保证在进行分段TBI治疗时衔接处靶区不会出现剂量冷热点,确保了治疗的精确与安全。在实际临床治疗过程中,为达到治疗效果与效率的平衡,需要选择合适的计划参数。  相似文献   

13.
An independent dose calculation method has been developed to validate intensity-modulated radiation therapy (IMRT) plans from the NOMOS PEACOCK System. After the plan is generated on the CORVUS planning system, the beam parameters are imported into an independent workstation. The beam parameters consist of intensity maps at each gantry angle and each arc position. In addition, CT scans of the patient are imported into the independent workstation to obtain the external contour of the patient. The coordinate system is defined relative to the alignment point chosen in the CORVUS plan. The independent calculation uses the pencil beam data viz tissue maximum ratio (TMR) and beam profiles for a single 1 x 0.8-cm beamlet formed by the NOMOS multileaf intensity-modulating collimator (MIMiC) leaf. The pencil beam data were measured for the 6-MV photon beam from Siemens PRIMUS linear accelerator using film dosimetry. The dose at a point is calculated using the depth and off-axis distance from a given pencil beam, corrected for its beam intensity. Isodose distributions are generated using the independent dose calculations and compared to the CORVUS plans. Isodose distributions show good agreement with the CORVUS plans for a number of clinical cases. The independent dose calculation algorithm is described in this paper.  相似文献   

14.
The degree of accuracy of inhomogeneity corrections in a treatment planning system is dependent on the algorithm used by the system. The choice of field size, however, could have an effect on the calculation accuracy as well. There have been several evaluation studies on the accuracy of inhomogeneity corrections used by different algorithms. Most of these studies, however, focus on evaluating the dose in phantom using simplified geometry and open/static fields. This work focuses on evaluating the degree of dose accuracy in calculations involving intensity-modulated radiation therapy (IMRT) fields incident on a phantom containing both lung- and bone-equivalent heterogeneities using 6 and 10 MV beams. IMRT treatment plans were generated using the Philips Pinnacle treatment planning system and delivered to a phantom containing 55 thermoluminescent dosimeter (TLD) locations within the lung and bone and near the lung and bone interfaces with solid water. The TLD readings were compared with the dose predicted by the planning system. We find satisfactory agreement between planned and delivered doses, with an overall absolute average difference between measurement and calculation of 1.2% for the 6 MV and 3.1% for the 10 MV beam with larger variations observed near the interfaces and in areas of high-dose gradient. The results presented here demonstrate that the convolution algorithm used in the Pinnacle treatment planning system produces accurate results in IMRT plans calculated and delivered to inhomogeneous media, even in regions that potentially lack electronic equilibrium.  相似文献   

15.
Central axis percentage depth dose values and isodose curves for the bremsstrahlung beam from a 2.5 MV Van de Graaff generator were measured with a water phantom at 100 cm target-to-surface distance. Tissue-air ratios were calculated from the central axis depth dose data. Use of the 2.5 MV percentage depth dose values are necessary for treatment planning since they are substantially larger than the values given in compilations for 2.0 MV beams.  相似文献   

16.
Basic and clinical studies of total body irradiation (TBI) with respect to the dose distribution are described. TBI was performed with 10 MV X-rays at the Department of Radiology of Hyogo College of Medicine Hospital. Two opposed bilateral fields were used, the source-axis distance was 400 cm, and the dose rate was 10 cGy/min. At 55 cm from the rear concrete wall, the back-scattered radiation from the wall was 0.91% of the radiation dose. The beam flatness was +/- 2.9% within 130 cm of the diagonal by using a beam flattening filter improved. The surface dose was 93.5% of the peak dose by the acrylic bolus (1.5 cm thickness) placed on the source side 45 cm from the center of the body axis. We devised compensating filters using lead plates to improve dose distribution of the head, neck and thorax. The effectiveness of the compensating filters in producing a homogeneous dose distribution was checked by the thermoluminescent dosimeters (TLDs) in a Rando phantom. The average dose distribution to each site when the compensators used was 94% for the head, 104% for the neck, and 99% for the thorax when the scheduled dose was taken as 100%. TBI was performed 4 to 1 days before bone marrow transplantation, and 10 Gy was given in equal daily fractions of 2.5 Gy over 4 days. During TBI, the patients were placed in the supine position with the knees bent. The body surface dose was measured with pairs of TLDs at the head, neck, thorax, and pelvis in 32 patients. At the pelvis, the dose was measured simultaneously with an ionization chamber. The average doses were 91% for the head, 95% for the neck, 93% for the thorax, and 106% for the pelvis.  相似文献   

17.
《Medical Dosimetry》2020,45(2):168-171
Lung toxicity is a serious concern during total body irradiation (TBI). Therefore, evaluation of accurate dose calculation when using lung blocks is of utmost importance. Existing clinical treatment planning systems can perform the calculation but there are large inaccuracies when calculating volumetric dose at extended distances in the presence of high atomic number materials. Percent depth dose and absolute dose measurements acquired at 400 cm SSD with a cerrobend block were compared with calculated values from the Eclipse treatment planning system using AAA and Acuros. The block was simulated in 2 ways; (1) manually drawing a contour to mimic the block and (2) creating a virtual block in the accessory tray. Although the relative dose distribution was accurately calculated, larger deviations of around 50% and 40% were observed between measured depth dose and absolute dose with AAA and Acuros, respectively. Deviations were reduced by optimizing the relative electron density in the contoured block or the transmission factor in the virtual block.  相似文献   

18.
PURPOSE: To evaluate the accuracy of dose calculation algorithms of different planning systems for postoperative tangential radiotherapy in breast cancer. MATERIAL AND METHODS: On a CT dataset of an anthropomorphic phantom, a structure set of the left lung, clinical target volume (CTV), planning target volume, heart, and external contour were delineated. The dataset was processed by six radiation oncology centers participating in this multicenter dosimetry project. Conventional plans with two tangential wedged fields were generated in MasterPlan, Pinnacle, Eclipse, TMS, and PrecisePLAN. Plan calculations were done using the beam data of local linacs. The dose distributions were verified under local conditions with Gafchromic-EBT films. RESULTS: In all planning systems, deviations between calculation and measurement were around +/-3% in the CTV in the measured plane. Only small areas with deviations of +/-5% were detected. Pencil-beam (PB) calculations overestimated the dose inside the lung by up to 23%. Collapsed cone (CC) underestimated the lung dose by up to 6%. CONCLUSION: CC calculates the dose distribution more accurately than PB. Inside regions with electron disequilibrium, however, the dose is slightly underestimated.  相似文献   

19.
A characterization of the new Tsing Hua open-pool reactor (THOR) epithermal neutron beam designed for boron neutron capture therapy (BNCT) has been performed. The facility is currently under construction and expected in completion in March 2004. The designed epithermal neutron flux for 1 MW power is 1.7x10(9)n cm(-2)s(-1) in air at the beam exit, accompanied by photon and fast neutron absorbed dose rates of 0.21 and 0.47 mGys(-1), respectively. With (10)B concentrations in normal tissue and tumor of 11.4 and 40 ppm, the calculated advantage depth dose rate to the modified Snyder head phantom is 0.53RBE-Gymin(-1) at the advantage depth of 85 mm, giving an advantage ratio of 4.8. The dose patterns determined by the NCTPlan treatment planning system using the new THOR beam for a patient treated in the Harvard-MIT clinical trial were compared with results of the MITR-II M67 beam. The present study confirms the suitability of the new THOR beam for possible BNCT clinical trials.  相似文献   

20.
Purpose The purpose of this study was to investigate the dosimetric effect of various hip prostheses on pelvis lateral fields treated by a 9-MV photon beam using Monte Carlo (MC) and effective path-length (EPL) methods. Material and methods The head of the Neptun 10 pc linac was simulated using the MCNP4C MC code. The accuracy of the MC model was evaluated using measured dosimetric features including depth dose values and dose profiles in a water phantom. The Alfard treatment planning system (TPS) was used for EPL calculations. A virtual water phantom with dimensions of 30 × 30 × 30 cm3 and a cube with dimensions of 4 × 4 × 4 cm3 made of various metals centered in 12 cm depth was used for MC and EPL calculations. Various materials including titanium, Co-Cr-Mo, and steel alloys were used as hip prostheses. Results Our results showed significant attenuation in absorbed dose for points after and inside the prostheses. Attenuations of 32%, 54% and 55% were seen for titanium, Co-Cr-Mo, and steel alloys, respectively, at a distance of 5 cm from the prosthesis. Considerable dose increase (up to 18%) was found at the water–prosthesis interface due to back-scattered electrons using the MC method. The results of EPL calculations for the titanium implant were comparable to the MC calculations. This method, however, was not able to predict the interface effect or calculate accurately the absorbed dose in the presence of the Co-Cr-Mo and steel prostheses. Conclusion The dose perturbation effect of hip prostheses is significant and cannot be predicted accurately by the EPL method for Co-Cr-Mo or steel prostheses. The use of MC-based TPS is recommended for treatments requiring fields passing through hip prostheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号