首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
VX-680 is a potent inhibitor of Aurora kinases that induces the accumulation of cells with > or =4N DNA content, followed by cell death. Here, we define the role of p53 and p21(Waf1/Cip1) in cell cycle perturbations following exposure to VX-680. Endoreduplication and apoptosis in response to VX-680 are limited in A549 and MCF-7 cells expressing wild-type p53, and markedly enhanced in cells lacking p53, including those engineered to express the HPV16-E6 oncoprotein or short interfering RNA pools targeting p53. In contrast, endoreduplication and apoptosis occur in the p53 wild-type cell lines, RKO and U2OS. The difference in response to VX-680 among these cell lines correlates with the timing of induction of p21(Waf1/Cip1) and its ability to inhibit cyclin E-cdk2 activity. In A549 cells, VX-680 induces the expression of p53 and p21(Waf1/Cip1) within 24 hours, with consequent inhibition of cyclin E-cdk2, and reduction of retinoblastoma protein phosphorylation, limiting endoreduplication. In RKO and U2OS cells, the induction of p21(Waf1/Cip1) is delayed and associated with higher residual cyclin E-cdk2 kinase activity and retinoblastoma protein phosphorylation, followed by progressive endoreduplication and apoptosis. Abrogation of p21(Waf1/Cip1) expression by short interfering RNA targeting in A549 cells results in a substantial increase in the degree of endoreduplication, whereas inducible expression of p21(Waf1/Cip1) in p53-negative NCI-H1299 cells inhibits VX-680-induced endoreduplication and cell death. These data suggest that the integrity of the p53-p21(Waf1/Cip1)-dependent postmitotic checkpoint governs the response to Aurora kinase inhibition. Although cells with intact checkpoint function arrest with 4N DNA content, those with compromised checkpoint function are more likely to undergo endoreduplication followed by eventual apoptosis.  相似文献   

2.
Norcantharidin (NCTD), the demethylated analogue of cantharidin, has been used to treat human cancers in China since 1984. It was recently found to be capable of inducing apoptosis in human colon carcinoma, hepatoma and glioblastoma cells by way of an elusive mechanism. In this study, we demonstrated that NCTD also induces apoptosis in human oral cancer cell lines SAS (p53 wild-type phenotype) and Ca9-22 (p53 mutant) as evidenced by nuclear condensation, TUNEL labeling, DNA fragmentation and cleavage of PARP. Apoptosis induced by NCTD was both dose- and time-dependent. We found NCTD did not induce Fas and FasL, implying that it activated other apoptosis pathways. Our data showed that NCTD caused accumulation of cytosolic cytochrome c and activation of caspase-9, suggesting that apoptosis occurred via the mitochondria mediated pathway. NCTD enhanced the expression of Bax in SAS cells consistent with their p53 status. Moreover, we showed that NCTD downregulated the expression of Bcl-2 in Ca9-22 and Bcl-XL in SAS. Our results suggest that NCTD-induced apoptosis in oral cancer cells may be mediated by an increase in the ratios of proapoptotic to antiapoptotic proteins. Since oral cancer cells with mutant p53 or elevated Bcl-XL levels showed resistance to multiple chemotherapeutic agents, NCTD may overcome the chemoresistance of these cells and provide potential new avenues for treatment.  相似文献   

3.
4.
This study is the first to investigate the anticancer effect of plumbagin in human melanoma A375.S2 cells. Plumbagin exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Further investigation revealed that plumbagin's inhibition of cell growth was also evident in a nude mice model. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. Plumbagin triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of ROS is a critical mediator in plumbagin-induced cell growth inhibition. Plumbagin increased the activation of apoptosis signal-regulating kinase 1, JNK and extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38. In addition, antioxidants vitamin C and catalase significantly decreased plumbagin-mediated c-Jun N-terminal kinase (JNK) activation and apoptosis. Moreover, blocking ERK and JNK by specific inhibitors suppressed plumbagin-triggered mitochondrial apoptotic pathway. Taken together, these results imply a critical role for ROS and JNK in the plumbagin's anticancer activity.  相似文献   

5.
6.
Yoon DK  Jeong CH  Jun HO  Chun KH  Cha JH  Seo JH  Lee HY  Choi YK  Ahn BJ  Lee SK  Kim KW 《Cancer letters》2007,254(1):111-118
AKAP12 (A-Kinase anchoring protein 12) is a protein kinase C substrate and a potential tumor suppressor. AKAP12 is down-regulated by several oncogenes and strongly suppressed in various cancers including prostate, ovarian and breast cancers. AKAP12 acts as a regulator of mitogenesis by anchoring key signal proteins such as PKA, PKC, and cyclins. In this study, AKAP12 was found to suppress tumor cell viability by inducing apoptosis via caspase-3 in HT1080 cells. This AKAP12-induced apoptosis was associated with a decreased expression of Bcl-2 and increased expression of Bax. Moreover, AKAP12-transfectant strongly induced the expression of Cip1/p21 and Kip1/p27, but resulted in a decrease in cyclin D1 involved in G(1) progression. Accordingly, these results suggest that AKAP12 may play an important role in tumor growth suppression by inducing apoptosis with the regulation of multiple molecules in the cell cycle progression.  相似文献   

7.
8.
Lee S  Yang W  Lan KH  Sellappan S  Klos K  Hortobagyi G  Hung MC  Yu D 《Cancer research》2002,62(20):5703-5710
The recombinant humanized anti-ErbB2/HER2 monoclonal antibody Herceptin (Trastuzumab) has been shown to significantly enhance the tumoricidaleffects of antitumor drugs such as paclitaxel (Taxol) in patients with ErbB2-overexpressing breast cancers. Here, we investigated the molecular mechanisms by which Herceptin enhances the antitumor effects of Taxol. Because activation of p34(Cdc2) is required for Taxol-induced apoptosis and because overexpression of ErbB2 blocks Taxol-induced apoptosis by inhibiting p34(Cdc2) activation, we studied the effect of Herceptin treatment on p34(Cdc2) kinase activation and apoptosis in Taxol-treated human breast carcinoma cell lines MDA-MB-435, SKBr3, MDA-MB-453, and 435.eB, which is an ErbB2 transfectant of MDA-MB-435. Herceptin treatment down-regulated ErbB2, reduced the inhibitory phosphorylation of Cdc2 on Tyr-15, and down-regulated the expression of p21(Cip1), a Cdc2 inhibitor. Herceptin plus Taxol treatment led to higher levels of p34(Cdc2) kinase activity and apoptosis in ErbB2-overexpressing breast cancer cells, which is likely attributable to inhibition of Cdc2-Tyr-15 phosphorylation and p21(Cip1) expression. Because significant dephosphorylation of Cdc2-Tyr-15 and down-regulation of p21(Cip1) occur at least 24 h after Herceptin treatment, we investigated whether 24 h Herceptin pretreatment will render ErbB2-overexpressing breast cancer cells more sensitive to Taxol-induced apoptosis compared with the simultaneous treatment of Herceptin plus Taxol. Indeed, Herceptin pretreatment increased Taxol-induced apoptosis and cytotoxicity in vitro and more effectively inhibited the growth of tumor xenografts with enhanced in vivo apoptosis. Thus, Herceptin treatment of ErbB2-overexpressing cells can inhibit ErbB2-mediated Cdc2-Tyr-15 phosphorylation and p21(Cip1) up-regulation, which allows effective p34(Cdc2) activation and induction of apoptosis upon Taxol treatment. Herceptin pretreatment renders ErbB2-overexpressing breast cancers more susceptible to Taxol-induced cell death, which may have important clinical therapeutic implications.  相似文献   

9.

Background

Norcantharidin, the demethylated analog of cantharidin derived from a traditional Chinese medicine, Mylabris, has been used in the treatment of anti-cancer effects. However, the detailed mechanisms underlying this process are generally unclear. The aim of this study was to investigate the mechanism of NCTD-induced apoptosis in HepG2 cells.

Methods

The cytotoxicity was measured by MTT assay for cellular viability and by flow cytometry. The mitochondrial membrane potential and reactive oxygen species production was evaluated by flow cytometry analysis. The role of caspase activities were assayed using caspase apoptosis detection kit . Western blot analysis was used to evaluate the level of Cyto-C, Bcl-2, Bax, Bid, caspase 3, -9, -8 and PARP expression

Results

After treatment with NCTD, a decrease in the viability of HepG2 cells and increase in apoptosis were observed. NCTD-induced apoptosis was accompanied by an increase in ROS production, loss of mitochondrial membrane potential and release of cytochrome c(cyto-c) from the mitochondria to the cytosol and down-regulation of anti-apoptotic protein Bcl-2 levels with concurrent up-regulation in pro-apoptotic protein Bax levels. However, another pro-apoptotic molecule, Bid, showed no change in such same treatment. NCTD-increased activity of caspase 9,caspase 3 and the subsequent cleavage caspase substrate PARP were also observed. The expression levels of pro-caspase-8 were not changed after NCTD treatment.

Conclusion

These results indicate that NCTD induced cytotoxicity in HepG2 cells by apoptosis, which is mediated through ROS generation and mitochondrial pathway.  相似文献   

10.
Chen J  Xiong J  Liu H  Chernenko G  Tang SC 《Oncogene》2002,21(46):7050-7059
BAG-1 protein can be expressed as four isoforms of 50, 46, 33 and 29 kDa with different subcellular localizations, which may have different functions in anti-apoptosis, but the exact mechanism remains unclear. We constructed BAG-1 full length and deletion mutated plasmids in a pCR3.1 vector and established stable transfections of BAG-1 isoforms in low BAG-1 expressing C33A cells. Treatment of the transfected cells with cisplatin, staurosporine, paclitaxel and doxorubicine showed that BAG-1 p50, p46 and p33 isoforms enhanced the resistance to apoptosis. BAG-1 p50, p46 and p33 exhibited different degrees of apoptosis inhibition in the transfected cells and BAG-1 p46 isoform had the most pronounced effect on anti-apoptosis. BAG-1 p29 failed to protect the transfected cells from apoptosis. Resistance to apoptosis by BAG-1 isoforms was correlated with decreased caspase-3 activation. We also detected the expression of Bax, Bak, p53, Bcl-2, Bcl-X(L), AIF and MRP1 by Western blots. Bcl-2 protein expression was significantly increased in p50, p46 and p33 transfected cells, while the expression of Bax, Bak, p53, Bcl-X(L) and MRP1 was essentially unchanged. These in vitro results suggest that distinct isoforms of BAG-1 have different anti-apoptotic functions and their functions may be correlated to increased Bcl-2 expression.  相似文献   

11.
The realization that chemotherapeutic agents induce apoptosis raises the concern that tumors resistant to chemotherapy are unable to initiate the apoptotic program. In the present study, we examined the apoptosis-resistance mechanism of a multidrug-resistant cell line, A549/CPT, which was established from the human lung-cancer cell line A549 by in vitro selection with gradually increased camptothecin (CPT) concentrations. We found that A549/CPT cells were resistant to anti-cancer drug-induced apoptosis in which caspase-3-like protease activity was attenuated remarkably, compared with parental A549 cells. We observed 2 mechanisms associated with apoptosis resistance in A549/CPT cells: over-expression of anti-apoptotic bcl-2 and elevated expression of p21Waf1/Cip1. Transfection of either bcl-2 or p21Waf1/Cip1 cDNA into parental A549 cells resulted in resistance to apoptosis. Furthermore, the co-treatment of p21Waf1/Cip1 and bcl-2 anti-sense oligodeoxy-nucleotides restored drug susceptibility in A549/CPT cells more effectively than either one of them alone. These results indicate that co-induction of bcl-2 and p21Waf1/Cip1 in A549/CPT cells may be involved in acquired drug resistance by inhibiting caspase-mediated apoptosis. Agents aimed at preventing both bcl-2 and p21Waf1/Cip1 expression may increase the efficiency of chemotherapy.  相似文献   

12.
Recently, apoptosis has been implicated as one of the end points of cells exposed to chemotherapeutic agents. The p53 and Bcl-2 family of proteins are involved in chemotherapy-induced apoptosis, but in a cell type-dependent manner. We sought to determine the roles played by the p53 and Bcl-2 family of proteins in 5-fluorouracil (5-FU)-induced apoptosis of human colon cancer cell lines. We first studied the p53 genetic and functional status, and then 5-FU, at inhibitory concentration of 50% (IC50) doses, was used to induce apoptosis, which was confirmed by morphological analysis and enzyme-linked immunosorbent assay (ELISA). Bcl-2, Bcl-X(L), Bax, Bad, Bak and p53 protein expression was analysed by Western blotting. Using five human colon cancer cell lines, we found that equitoxic (IC50) doses of 5-FU induced apoptosis in both wild-type p53 and mutant p53 cells. Analysis of the steady-state levels of Bcl-2 family proteins showed high expression of Bcl-X(L) in all of the cell lines except Colo320. Bcl-2 was expressed in two of them. Bax presented with the lowest basal expression and Bad showed homogeneous expression. On the other hand, Bak expression varied more than fivefold among these cells. In cells containing wild-type p53 (e.g. LoVo), 5-FU-induced apoptosis was accompanied by increased expression of Bax and Bak without consistent modulation of other bcl-2 family proteins. In contrast in cells containing mutant p53 (e.g. DLD1), Bak expression was remarkably increased. There was a significant correlation between chemosensitivity and Bcl-X(L) to Bax ratio, rather than Bcl-2 to Bax. In conclusion, these results suggest that some members of the Bcl-2 family of proteins, in human colon cancer cell lines, are modulated by 5-FU and that the ratio of Bcl-X(L) to Bax may be related to chemosensitivity to 5-FU.  相似文献   

13.
Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.  相似文献   

14.
Natural products derived from plants provide a rich source for development of new anticancer drugs. Dulxanthone A was found to be an active cytotoxic component in Garcinia cowa by bioactivity-directed isolation. Studies to elucidate the cytotoxic mechanisms of dulxanthone A showed that dulxanthone A consistently induced S phase arrest and apoptosis in the most sensitive cell line HepG2. Furthermore, p53 was dramatically up-regulated, leading to altered expression of downstream proteins upon dulxanthone A treatment. Cell cycle related proteins, such as cyclin A, cyclin B, cyclin E, cdc-2, p21 and p27 were down-regulated. Some apoptosis correlated proteins were also altered following the drug treatment. Bcl-2 family members PUMA was up-regulated while Bcl-2 and Bax were down-regulated. However, the expression ratio of Bax/Bcl-2 was increased. This resulted in the release of cytochrome C from the mitochondria to the cytosol. Concurrently, Apaf-1 was stimulated with p53 by dulxanthone A. In result, cytochrome C, Apaf-1 and procaspase-9 form an apoptosome, which in turn triggered the activation of caspase-9, caspase-3 and downstream caspase substrates. Lamin A/C and PARP were down-regulated or cleaved, respectively. Moreover, cell cycle arrest and apoptosis in HepG2 cells induced by dulxanthone A were markedly inhibited by siRNA knockdown of p53. In summary, dulxanthone A is an active cytotoxic component of G. cowa. It induces cell cycle arrest at lower concentrations and triggers apoptosis at higher concentrations via up-regulation of p53 through the intrinsic mitochondrial pathway in HepG2 cells. Dulxanthone A is therefore likely a promising preventive and/or therapeutic agent against Hepatoma.  相似文献   

15.
Norcantharidin (NCTD) has been reported to induce tumor cell apoptosis. However, the underlying mechanism behinds its antitumor effect remains elusive. We have previously shown that TR3 expression is significantly decreased in metastatic melanomas and involved in melanoma cell apoptosis. In this study, we showed that NCTD inhibited melanoma cell proliferation and induced apoptosis in a dose related manner. NCTD induced translocation of TR3 from nucleus to mitochondria where it co-localized with Bcl-2 in melanoma cells. NCTD also increased cytochome c release from mitochondria to the cytoplasm. These changes were accompanied by increased expression of Bax and cleaved caspase-3 along with decreased expression of Bcl2 and NF-κB2. The effects of NCTD were inhibited by knockdown of TR3 expression using TR3 specific shRNA in melanoma cells. Furthermore, NCTD significantly decreased tumor volume and improved survival of Tyr::CreER; BRAF(Ca/+); Pten(lox/lox) transgenic mice. Our data indicates that NCTD inhibits melanoma growth by inducing tumor cell apoptosis via activation of a TR3 dependent pathway. These results suggest that NCTD is a potential therapeutic agent for melanoma.  相似文献   

16.
Background: The heart of the cell cycle regulatory machine is a group of enzymes named cyclin-dependent kinases (Cdks). The active form of these enzymes includes a kinase and its partner, a cyclin. The regulation of cyclin-Cdk complexes is provided by Cdk inhibitors (CKIs) such as Cip/Kip family comprising p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2. The hypermethylation and deacetylation of Cip/Kip gene family seem to be frequent in numerous cancers. It has been indicated that increased expression of DNMTs and HDACs contributes to cancer induction. Previously, we reported the effect of DNA demethylating agents and histone deacetylase inhibitors on histone deacetylase 1, DNA methyltransferase 1, and CIP/KIP family in colon cancer. The current study was designed to evaluate the effect of zebularine in comparison to and in combination with trichostatin A (TSA) on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, DNA methyltransferases (DNMT1, 3a and 3b) and histone deacetylases (HDAC1, 2, and 3) genes expression, cell growth inhibition and apoptosis induction in colon cancer LS 180 cell line. Materials and Methods: The colon cancer LS 180 cell line was cultured and treated with zebularine and TSA. To determine cell viability, apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. Results: Both compounds significantly inhibited cell growth, and induced apoptosis. Furthermore, both compounds increased p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 significantly. Additionally, zebularine and TSA decreased DNMTs and HDACs gene expression respectively. Conclusion: The zebularine and TSA can reactivate the CIP/KIP family through inhibition of DNMTs and HDACs genes activity.  相似文献   

17.
Purpose Diosgenin is a steroidal sapogenin with estrogenic and antitumor properties. In order to elucidate the mechanism of its antiproliferative activity, we investigated its effects on the cell cycle and apoptosis in human chronic myelogenous leukemia K562 cells.Methods Cell viability was assessed via an MTT assay. Apoptosis was investigated in terms of nuclear morphology, DNA fragmentation, and phosphatidylserine externalization. Cell cycle analysis was performed via PI staining and flow cytometry (FCM). Western blotting and immunofluorescence methods were used to determine the levels of p53, cell cycle-related proteins and Bcl-2 family members. FCM was also used to estimate the changes in mitochondrial membrane potential (MMP), intracellular Ca2+ concentration and reactive oxygen species (ROS) generation.Results Cell cycle analysis showed that diosgenin caused G2/M arrest independently of p53. The levels of cyclin B1 and p21Cip1/Waf1 were decreased, whereas cdc2 levels were increased. Subsequent apoptosis was demonstrated with the dramatic activation of caspase-3. A dramatic decline in intracellular Ca2+ concentration was observed as an initiating event in the process of cell cycle arrest and apoptosis, which was followed by the hyperpolarization and depolarization of MMP. Generation of ROS was observed in the progression of apoptosis. The antiapoptotic Bcl-2 and Bcl-xL proteins were downregulated, whereas the proapoptotic Bax was upregulated.Conclusions Diosgenin inhibits K562 cell proliferation via cell cycle G2/M arrest and apoptosis, with disruption of Ca2+ homeostasis and mitochondrial dysfunction playing vital roles.  相似文献   

18.
Park WH  Seol JG  Kim ES  Hyun JM  Jung CW  Lee CC  Kim BK  Lee YY 《Cancer research》2000,60(11):3065-3071
We investigated the in vitro effect of As2O3 on proliferation, cell cycle regulation, and apoptosis in human myeloma cell lines. As2O3 significantly inhibited the proliferation of all of eight myeloma cell lines examined in a dose-dependent manner with IC50 of approximately 1-2 microM. DNA flow cytometric analysis indicated that As2O3 (2 microM) induced a G1 and/or a G2-M phase arrest in these cell lines. To address the mechanism of the antiproliferative effect of As2O3, we examined the effect of As2O3 on cell cycle-related proteins in MC/CAR cells in which both G1 and G2-M phases were arrested. Western blot analysis demonstrated that treatment with As2O3 (2 microM) for 72 h did not change the steady-state levels of CDK2, CDK4, cyclin D1, cyclin E, and cyclin B1 but decreased the levels of CDK6, cdc2, and cyclin A. The mRNA and protein levels of CDKI, p21 were increased by treatment with As2O3, but those of p27 were not. In addition, As2O3 markedly enhanced the binding of p21 with CDK6, cdc2, cyclin E, and cyclin A compared with untreated control cells. Furthermore, the activity of CDK6-associated kinase was reduced in association with hypophosphorylation of Rb protein. The activity of cdc2-associated kinase was decreased, which was accompanied by the up-regulation of cdc2 phosphorylation (cdc2-Tyr15 phosphorylation) resulting from reduction of cdc25B and cdc25C phosphatases. As2O3 also induced apoptosis in MC/CAR cells as evidenced by flow cytometric detection of sub-G1 DNA content and annexin V binding assay. This apoptotic process was associated with down-regulation of Bcl-2, loss of mitochondrial transmembrane potential (delta psi(m)), and an increase of caspase-3 activity. These results suggest that As2O3 inhibits the proliferation of myeloma cells, especially MC/CAR cells, via cell cycle arrest in association with induction of p21 and apoptosis.  相似文献   

19.
Choi HJ  Yee SB  Park SE  Im E  Jung JH  Chung HY  Choi YH  Kim ND 《Cancer letters》2006,232(2):214-225
We investigated the possible mechanisms by which petrotetrayndiol A, a polyacetylene from the sponge Petrosia sp., exerts its anti-proliferative activity in cultured SK-MEL-2 human melanoma cells. Petrotetrayndiol A-treated SK-MEL-2 cells showed growth inhibition and induction of apoptosis in a dose-dependent manner as measured by MTT assay, fluorescent microscopy and flow cytometric analysis. Flow cytometric analysis revealed that petrotetrayndiol A resulted in G2/M arrest in the cell cycle progression which was associated with a marked decrease in the protein expression of cyclin B1 and its activating partner Cdc2 with concomitant inductions of p21WAF1/CIP1. The increase in apoptosis was associated with a dose-dependent up-regulation of cytosolic factor, such as Bax and release of cytochrome c, and down-regulation of Bcl-2. We also observed activation of caspase-9 and caspase-3, DNA ladder formation, proteolytic degradation of poly(ADP-ribose)-polymerase (PARP), and selective down-regulation of cIAP-1. The apoptotic manifestations, such as PARP cleavage and DNA fragmentation, were abolished in the presence of the tripeptide caspase inhibitor z-VAD-fmk and a caspase-3-specific inhibitor Ac-DEVD-cho. Our data thus demonstrate that petrotetrayndiol A-induced apoptosis and growth inhibition of SK-MEL-2 cells is dependent on caspase activation.  相似文献   

20.
The present study was undertaken to determine the anticancer efficacy of zerumbone (ZER), a sesquiterpene from subtropical ginger, against human breast cancer cells in vitro and in vivo. ZER treatment caused a dose-dependent decrease in viability of MCF-7 and MDA-MB-231 human breast cancer cells in association with G2/M phase cell cycle arrest and apoptosis induction. ZER-mediated cell cycle arrest was associated with downregulation of cyclin B1, cyclin-dependent kinase 1, Cdc25C, and Cdc25B. Even though ZER treatment caused stabilization of p53 and induction of PUMA, these proteins were dispensable for ZER-induced cell cycle arrest and/or apoptosis. Exposure of MDA-MB-231 and MCF-7 cells to ZER resulted in downregulation of Bcl-2 but its ectopic expression failed to confer protection against ZER-induced apoptosis. On the other hand, the SV40 immortalized mouse embryonic fibroblasts derived from Bax and Bak double knockout mice were significantly more resistant to ZER-induced apoptosis. ZER-treated MDA-MB-231 and MCF-7 cells exhibited a robust activation of both Bax and Bak. In vivo growth of orthotopic MDA-MB-231 xenografts was significantly retarded by ZER administration in association with apoptosis induction and suppression of cell proliferation (Ki-67 expression). These results indicate that ZER causes G2/M phase cell cycle arrest and Bax/Bak-mediated apoptosis in human breast cancer cells, and retards growth of MDA-MB-231 xenografts in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号