首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the involvement of 5-HT1 and 5-HT2 receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test (FST). The pre-treatment of mice with PCPA (100mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), NAN-190 (0.5mg/kg, i.p., a 5-HT1A receptor antagonist), pindolol (32 mg/kg, i.p., a 5-HT1A/1B receptor/beta-adrenoceptor antagonist) or WAY100635 (0.1 and 0.3mg/kg, s.c., a selective 5-HT1A receptor antagonist), but not with ketanserin (5mg/kg, i.p., a 5-HT2A/2C receptor antagonist), prevented the antidepressant-like effect of adenosine (10mg/kg, i.p.) in the FST. Moreover, the pre-treatment of animals with WAY100635 (0.1mg/kg, s.c.) blocked the decrease in immobility time in the FST elicited by adenosine (5 or 10mg/kg, i.p.), but produced a synergistic effect with a sub-effective dose of adenosine (1mg/kg, i.p.) and did not cause any alteration at the highest dose of adenosine administered (50mg/kg, i.p.). Adenosine (1mg/kg, i.p.) produced a synergistic antidepressant-like effect with pindolol (32 mg/kg), NAN-190 (0.5mg/kg, i.p.), WAY100635 (0.03 mg/kg, s.c.), 8-OH-DPAT (1mg/kg, i.p., a 5-HT1A receptor agonist), but not with DOI (1mg/kg, i.p., a preferential 5-HT2A receptor agonist) or ketanserin. The pre-treatment of mice with DPCPX (2mg/kg, i.p., a selective adenosine A1 receptor antagonist) or ZM241385 (1mg/kg, i.p., a selective adenosine A2A receptor antagonist) did not prevent the effect of fluoxetine (32 mg/kg, i.p., a preferential serotonin reuptake inhibitor) in the FST. Besides that, adenosine (1mg/kg, i.p.) did not produce a synergistic antidepressant-like effect with fluoxetine (10mg/kg, i.p.). Taken together, the results indicate that the antidepressant-like effect of adenosine in the FST appears to be mediated, at least in part, by an interaction with 5-HT1A receptors.  相似文献   

2.
Putrescine, a polyamine present at high concentrations in the mammalian brain, was suggested to play a role in the modulation of depression. Thus, this study investigated the effect of putrescine in the mouse forced swimming test (FST) and in the tail suspension test (TST), two models predictive of antidepressant activity. Putrescine significantly reduced the immobility time both in the FST and in the TST (dose range of 1–10 mg/kg, i.p.), without changing locomotion in an open-field. I.c.v. injection of putrescine (0.1–10 nmol/site) also reduced the immobility time in the FST and in the TST. The pretreatment of mice with arcaine (1 mg/kg, i.p., an antagonist of the polyamine-site of NMDA receptor) completely blocked the anti-immobility effect of putrescine (10 mg/kg, i.p.). A subeffective dose of putrescine (0.1 mg/kg, i.p.) produced a synergistic antidepressant-like effect with agmatine (0.001 mg/kg, i.p.) in the FST. Moreover, a subeffective dose of putrescine (0.01 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect with arcaine (50 μg/site, i.c.v.). The results indicate that putrescine produces antidepressant-like effects in the FST that seems to be mediated through its interaction with the polyamine-site of NMDA receptors.  相似文献   

3.
The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5–5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT3 receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na+ K+ ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT2A/2C and 5-HT3 receptors).  相似文献   

4.
Yu Lin  John W. Phillis   《Brain research》1991,540(1-2):307-310
The identity of the receptors involved in mediating the depressant actions of adenosine and its analogs on the spontaneous firing of rat cerebral cortical neurons was elucidated by evaluating the effects of selective A1 and A2 receptor agonists and antagonists. The A1 agonist N6-cyclopentyladenosine (CPA) and the A2 agonist CGS 21680 both depressed cortical neuronal firing. At low doses (0.001–0.01 mg/kg) the A1 antagonist DPCPX blocked the effects of CPA, but not those of CGS 21680. At higher doses, it antagonized both agonists. The A2 antagonist CGS 15943 (0.01–0.1 mg/kg) selectively blocked the actions of CGS 21680. At 1 mg/kg it also antagonized the responses of some neurons to CPA. These results suggest that the depressant actions of adenosinergic agonists on the firing of rat cerebral cortical neurons involve both A1 and A2 receptors.  相似文献   

5.
We have previously shown that the peripheral administration of an A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680) protected the hippocampus against kainate-induced excitotoxicity. The present study utilises the intrahippocampal route to further investigate CGS 21680-mediated protection as well as examining the role of adenosine and both A1 and A2A receptors in kainate-induced excitotoxicity. Injections were made directly into the hippocampus of anaesthetised male Wistar rats. Following surgery and the administration of 0.25 nmol kainate in 1 μl of solution, the animals were left to recover for seven days before perfusion and brain slicing. Haematoxylin and eosin staining revealed substantial damage to the CA3 region. Co-administration of the A2A receptor agonist CGS 21680 over a range of doses did not protect the region to any degree. Similarly neither the A1 receptor agonist R-phenylisopropyladenosine (R-PIA), nor adenosine itself reduced kainate-induced damage. The intrahippocampal injection of the selective A2A receptor antagonist, 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385) however, significantly decreased kainate damage to the CA3 region. These results show that adenosine A2A receptor-induced protection is most likely to be mediated peripherally and is probably not due to activation of A2A receptors within the hippocampus. The lack of protection observed with either R-PIA or adenosine may be due to an inhibitory action of the A2A receptor on the neuroprotective A1 receptor. Importantly, this study also questions the role of endogenously released adenosine in protecting the hippocampus from excitotoxic damage.  相似文献   

6.
The antidepressant-like effect of the ethanolic extract obtained from barks of Tabebuia avellanedae, a plant widely employed in folk medicine, was investigated in two predictive models of depression: forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in this antidepressant-like action and the effects of the association of the extract with the antidepressants fluoxetine, desipramine and bupropion in the TST were investigated. The extract from T. avellanedae produced an antidepressant-like effect, in the FST (100 mg/kg, p.o.) and in the TST (10–300 mg/kg, p.o.), without accompanying changes in ambulation when assessed in the open-field test. The anti-immobility effect of the extract (30 mg/kg, p.o.) in the TST was prevented by pre-treatment of mice with ketanserin (5 mg/kg, i.p., a preferential 5-HT2A receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist) and SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist). The combined administration of a subeffective dose of WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist) and a subeffective dose of the extract (1 mg/kg, p.o.) produced a significant reduction in the immobility time in the TST. In addition, the combination of fluoxetine (1 mg/kg, p.o.), desipramine (0.1 mg/kg, p.o.), or bupropion (1 mg/kg, p.o.) with a subeffective dose of the extract (1 mg/kg, p.o.) produced a synergistic antidepressant-like effect in the TST, without causing hyperlocomotion in the open-field test. It may be concluded that the extract from T. avellanedae produces an antidepressant-like effect in the FST and in the TST that is dependent on the monoaminergic system. Taken together, our results suggest that T. avellanedae deserves further investigation as a putative alternative therapeutic tool that could help the conventional pharmacotherapy of depression.  相似文献   

7.
This study investigated the involvement of 5-HT(1) and 5-HT(2) receptors in the antidepressant-like effect of agmatine in the mouse forced swimming test (FST). Pretreatment with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, intraperitoneally (i.p.), an inhibitor of serotonin synthesis, for 4 consecutive days), methysergide (5 mg/kg, i.p., a serotonin (5-HT) antagonist), pindolol (32 mg/kg, i.p., a 5-HT(1A/1B) receptor/beta-adrenoceptor antagonist), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridynyl)cyclohexanecarboxamide (WAY 100635; 0.3 mg/kg, subcutaneously (s.c.), a selective 5-HT(1A) receptor antagonist), 1-(2-methoxyphenyl)-4[-(2-phthalimido)butyl]piperazine) (NAN-190; 0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane; 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist), cyproheptadine (3 mg/kg, i.p., a 5-HT(2) antagonist) or ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), prevented the effect of agmatine (10 mg/kg, i.p.) in the FST. A subeffective dose of agmatine (0.001 mg/kg, i.p.) produced a synergistic antidepressant-like effect with pindolol (32 mg/kg), NAN-190 (0.5 mg/kg, i.p.), WAY 100635 (0.03 mg/kg, s.c.), (+)-8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT; 0.01 mg/kg, i.p., a 5-HT(1A) receptor agonist), R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI; 1 mg/kg, i.p., a preferential 5-HT(2A) receptor agonist), or fluoxetine (10 mg/kg, i.p., a selective serotonin reuptake inhibitor, SSRI) but not with isamoltane (2.5 mg/kg, i.p.), ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist) or ketanserin (5 mg/kg, i.p.). Taken together, the results firstly demonstrate that agmatine antidepressant-like effects in the FST seem to be mediated, at least in part, by an interaction with 5-HT(1A/1B) and 5-HT(2) receptors.  相似文献   

8.
In this study, the antidepressant-like effect caused by diphenyl diselenide on rat forced swimming test (FST) was investigated. The involvement of the monoaminergic system in the antidepressant-like effect was also evaluated. Diphenyl diselenide (0.1-30 mg/kg), given by oral route (p.o.), 30 min earlier, reduced the immobility time in the FST, without accompanying changes in ambulation when assessed in an open field. The anti-immobility effect of diphenyl diselenide (1 mg/kg, p.o.) on the FST was prevented by pretreatment of rats with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis, given once a day, for 3 consecutive days), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT(2A)/(2C) receptor antagonist), ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist), haloperidol (1 mg/kg, i.p., a D(1), D(2) and D(3) receptor antagonist), SCH233390 (0.05 mg/kg, s.c., a D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a D(2) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist). However, the anti-immobility effect caused by diphenyl diselenide (1 mg/kg, p.o.) on the FST was not affected by pretreatment with propanolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist). Furthermore, monoamine oxidase (MAO) activity was inhibited (39%) in the animals treated with diphenyl diselenide (30 mg/kg, p.o.) when compared to the control group. Taken together these data demonstrated that the antidepressant-like effect caused by diphenyl diselenide seems to be mediated by involvement of the central monoaminergic system.  相似文献   

9.
Literature data has shown that acute administration of magnesium reduces immobility time in the mouse forced swimming test (FST), which suggests potential antidepressant activity in humans. However, its mechanism of action is not completely understood. Thus, this study is aimed at investigating the antidepressant-like action of magnesium and the possible involvement of the monoaminergic system in its effect in the FST. The immobility time in the FST was significantly reduced by magnesium chloride administration (30–100 mg/kg, i.p.) without accompanying changes in ambulation when assessed in an open-field test. The pre-treatment of mice with NAN-190 (0.5 mg/kg, i.p. a 5-HT1A receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT1A receptor antagonist), ritanserin (4 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ketanserin (5 mg/kg, a preferential 5-HT2A receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), haloperidol (0.2 mg/kg, i.p., a non selective dopaminergic receptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D1 receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist) 30 min before the administration of magnesium chloride (30 mg/kg, i.p.) significantly prevented its anti-immobility effect in the FST. Moreover, the administration of sub-effective doses of fluoxetine (10 mg/kg, i.p., serotonin reuptake inhibitor), imipramine (5 mg/kg, i.p., a mixed serotonergic noradrenergic reuptake inhibitor), bupropion (1 mg/kg, i.p., dopamine reuptake inhibitor) was able to potentiate the action of sub-effective doses of magnesium chloride. In conclusion, the present study provides evidence indicating that the antidepressant-like effect of magnesium in the FST is dependent on its interaction with the serotonergic (5-HT1A and 5-HT2A/2C receptors), noradrenergic (α1- and α2- receptors) and dopaminergic (dopamine D1 and D2 receptors) systems.  相似文献   

10.
In this study, the potential antidepressant-like effects of pioglitazone and the possible involvement of peroxisome proliferator-activated receptor gamma (PPARγ) and nitric oxide system in antidepressant effects of pioglitazone were determined using forced swimming test (FST) in mice.

Method

After assessment of locomotor activity in open-field test, mice were forced to swim individually and the immobility time of the last 4 min was evaluated. Pioglitazone was administered orally with doses (5, 10, 20 and 30 mg/kg) 2 and 4 h before FST. To assess the involvement of PPARγ in the possible antidepressant effect of pioglitazone, GW9662, a PPARγ antagonist (2 mg/kg) was administered before pioglitazone (20 mg/kg). For determination of possible role of nitric oxide pathway in this effect, a non-specific NOS inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg, i.p.), a specific iNOS inhibitor, aminoguanidine (50 mg/kg, i.p.), or a NO precursor, l-arginine (750 mg/kg, i.p.) was co-administered with pioglitazone, either 2 or 4 h before FST.

Results

The immobility time significantly decreased after pioglitazone administration (20 and 30 mg/kg). GW-9662 significantly reversed antidepressant effect of pioglitazone administered 2 and 4 h prior to FST. Co-administration of non-effective doses of pioglitazone and l-NAME revealed antidepressant-like effect in FST; while, co-administration of non-effective doses of aminoguanidine and pioglitazone did not affect the immobility time. l-Arginine also reversed the antidepressant-like effect of pioglitazone.

Conclusion

The antidepressant-like effect of pioglitazone on mice in the FST is mediated at least in part through PPARγ receptors and nitric oxide pathway.  相似文献   

11.
Recent preclinical data indicated the antidepressant-like activity of zinc in different tests and models of depression. The present study investigates the involvement of the serotonergic system in zinc activity in the forced swim test (FST) in mice and rats. The combined treatment of sub-effective doses of zinc (hydroaspartate, 2.5 mg Zn/kg) and citalopram (15 mg/kg), fluoxetine (5 mg/kg) but not with reboxetine (2.5 mg/kg) significantly reduces the immobility time in the FST in mice. These treatments had no influence on the spontaneous locomotor activity. Moreover, while the antidepressant-like effect of zinc (5 mg/kg) in the FST was significantly blocked by pretreatment with inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 3 × 200 mg/kg), 5HT-2A/C receptor antagonist, ritanserin (4 mg/kg) or 5HT-1A receptor antagonist, WAY 1006335 (0.1 mg/kg), the zinc-induced reduction in the locomotor activity was not affected by these serotonin modulator agents. These results indicate the specific involvement of the serotonergic system in antidepressant but not the motion behavior of zinc in mice. Also, an increase in the swimming but not climbing parameter of the rat FST observed following zinc administration (2.5 and 5 mg Zn/kg) indicates the serotonin pathway participation. This present data indicates that the antidepressant-like activity of zinc observed in the FST involves interaction with the serotonergic system.  相似文献   

12.
The antidepressant-like effect of a supercritical CO2 (SCCO2) Valeriana glechomifolia extract enriched in valepotriates was investigated in a mice tail suspension test (TST) and forced swimming test (FST). The SCCO2 extract decreased mice immobility in the FST (0.5-20 mg/kg p.o.) and elicited a biphasic dose-response relationship in the TST (1-20 mg/kg p.o.) with no alterations in locomotor activity and motor coordination (assessed in the open-field and rota-rod tests, respectively). The anti-immobility effect of the SCCO2 extract (5 mg/kg, p.o.) was prevented by mice pre-treatment with yohimbine (1 mg/kg, i.p., an α2 adrenoceptor antagonist), SCH 23390 (15 μg/kg, s.c., D1 dopamine receptor antagonist) and sulpiride (50 mg/kg, i.p., D2 dopamine receptor antagonist). However, mice pre-treatments with prazosin (1 mg/kg, i.p., α1 adrenoceptor antagonist) and p-chlorophenilalanine methyl ester (4 × 100 mg/kg/day, i.p., a serotonin synthesis inhibitor) were not able to block the anti-immobility effect of the SCCO2 extract. Administration (p.o.) of the SCCO2 extract (0.25 mg/kg) and imipramine (10 mg/kg), desipramine (5 mg/kg) and bupropion (3 mg/kg) at sub-effective doses significantly reduced mice immobility time in the FST. These data provide the first evidence of the antidepressant-like activity of V. glechomifolia valepotriates, which is due to an interaction with dopaminergic and noradrenergic neurotransmission.  相似文献   

13.
Guanosine is an extracellular signaling molecule implicated in the modulation of glutamatergic transmission and neuroprotection. The present study evaluated the antidepressant-like effect of guanosine in the forced swimming test (FST) and in the tail suspension test (TST) in mice. The contribution of NMDA receptors as well as l-arginine-NO-cGMP and PI3K-mTOR pathways to this effect was also investigated. Guanosine administered orally produced an antidepressant-like effect in the FST (0.5-5mg/kg) and TST (0.05-0.5mg/kg). The anti-immobility effect of guanosine in the TST was prevented by the treatment of mice with NMDA (0.1pmol/site, i.c.v.), d-serine (30μg/site, i.c.v., a co-agonist of NMDA receptors), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase), sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor), LY294002 (10μg/site, i.c.v., a reversible PI3K inhibitor), wortmannin (0.1μg/site, i.c.v., an irreversible PI3K inhibitor) or rapamycin (0.2nmol/site, i.c.v., a selective mTOR inhibitor). In addition, the administration of ketamine (0.1mg/kg, i.p., a NMDA receptor antagonist), MK-801 (0.001mg/kg, i.p., another NMDA receptor antagonist), 7-nitroindazole (50mg/kg, i.p., a neuronal nitric oxide synthase inhibitor) or ODQ (30pmol/site i.c.v., a soluble guanylate cyclase inhibitor) in combination with a sub-effective dose of guanosine (0.01mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. None of the treatments affected locomotor activity. Altogether, results firstly indicate that guanosine exerts an antidepressant-like effect that seems to be mediated through an interaction with NMDA receptors, l-arginine-NO-cGMP and PI3K-mTOR pathways.  相似文献   

14.
In this study we have demonstrated that cyclohexane extract of Hypericum polyanthemum (POL) and its main phloroglucinol derivative uliginosin B (ULI) present antidepressant-like activity in rodent forced swimming test (FST). The involvement of monoaminergic neurotransmission on the antidepressant-like activity of ULI was evaluated in vivo and in vitro. POL 90 mg/kg (p.o.) and ULI 10 mg/kg (p.o.) reduced the immobility time in the mice FST without altering locomotion activity in the open-field test. The combination of sub-effective doses of POL (45 mg/kg, p.o.) and ULI (5 mg/kg, p.o.) with sub-effective doses of imipramine (10 mg/kg, p.o.), bupropion (3 mg/kg, p.o.) and fluoxetine (15 mg/kg, p.o.) induced a significant reduction on immobility time in FST. The pretreatment with SCH 23390 (15 μg/kg, s.c., dopamine D1 receptor antagonist), sulpiride (50 mg/kg, i.p., dopamine D2 receptor antagonist), prazosin (1 mg/kg, i.p., α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., α2-adrenoceptor antagonist) and pCPA (100 mg/kg/day, i.p., p-chlorophenilalanine methyl ester, inhibitor of serotonin synthesis, for four consecutive days) before ULI administration (10 mg/kg, p.o.) significantly prevented the anti-immobility effect in FST. ULI was able to inhibit synaptosomal uptake of dopamine (IC50 = 90 ± 38 nM), serotonin (IC50 = 252 ± 13 nM) and noradrenaline (280 ± 48 nM), but it did not bind to any of the monoamine transporters. These data firstly demonstrated the antidepressant-like effect of POL and ULI, which depends on the activation of the monoaminergic neurotransmission in a different manner from the most antidepressants.  相似文献   

15.
The present study was undertaken to investigate the effects of aqueous extract of Glycyrrhiza glabra L. (Family: Fabaceae), popularly known as liquorice, on depression in mice using forced swim test (FST) and tail suspension test (TST). The extract of G. glabra (75, 150, and 300 mg/kg) was administered orally for 7 successive days in separate groups of Swiss young male albino mice. The dose of 150 mg/kg of the extract significantly reduced the immobility times of mice in both FST and TST, without any significant effect on locomotor activity of mice. The efficacy of extract was found to be comparable to that of imipramine (15 mg/kg i.p.) and fluoxetine (20 mg/kg i.p.). Liquorice extract reversed reserpine-induced extension of immobility period of mice in FST and TST. Sulpiride (50 mg/kg i.p.; a selective D2 receptor antagonist) and prazosin (62.5 microg/kg i.p.; an alpha1-adrenoceptor antagonist) significantly attenuated the extract-induced antidepressant-like effect in TST. On the other hand, p-chlorophenylalanine (100 mg/kg i.p.; an inhibitor of serotonin synthesis) did not reverse antidepressant-like effect of liquorice extract. This suggests that antidepressant-like effect of liquorice extract seems to be mediated by increase of brain norepinephrine and dopamine, but not by increase of serotonin. Monoamine oxidase inhibiting effect of liquorice may be contributing favorably to the antidepressant-like activity. Thus, it is concluded that liquorice extract may possess an antidepressant-like effect.  相似文献   

16.
We investigated the antidepressant-like effect of zinc chloride (zinc) administered acutely during 7 days (i.p. route), or chronically during 30 days (oral route) in the forced swimming test (FST) in rats. It was also investigated whether the antidepressant-like effect of zinc is associated with changes in the glutathione antioxidant system in the Wistar rat brain. Animals receiving a single zinc dose (5, 15 and 30 mg/kg, i.p.) 24 h prior to analysis showed no changes in the FST, but glutathione reductase and glutathione S-transferase activity were reduced in the hippocampus and cerebral cortex. This treatment did not, however, affect the glutathione status (GSH and GSSG) in both brain structures. The 7-day zinc treatment (1, 5 and 15 mg/kg, i.p.) caused a mild though significant antidepressant-like effect in the FST at the highest dosing, without affecting the glutathione antioxidant system. Finally, a consistent antidepressant-like effect was achieved in the FST after chronic (30 days) zinc treatment (300 mg/L, p.o.). This was accompanied by a significant increase in total glutathione levels in the hippocampus and cerebral cortex. The good response to oral treatment in the FST led us to investigate other variables, such as ERK phosphorylation and BDNF expression. Similar to therapeutic antidepressants, zinc in chronic oral treatment produced an increase in ERK phosphorylation and BDNF expression in the cerebral cortex. It is our hypothesis that up-regulation of neuroprotective effectors (GSH, ERK and BDNF) may be related to the antidepressant properties of zinc, but this will require additional work to be confirmed.  相似文献   

17.
Tramadol is a centrally acting analgesic which is used mainly for the treatment of moderate or severe pain. It is a synthetic opioid in the aminocyclohexanol group that binds weakly to μ-opioid receptors. Since it has been suggested that both opioid and monoaminergic systems play a role in depressive disorders, tramadol has been studied in the forced swimming test (FST). The present study was designed to explore the antidepressant activity of tramadol in rat FST and its possible mechanisms of action. The involvement of l-arginine–nitric oxide (NO)–cyclic guanosine monophosphate (cGMP) signaling pathway in the antidepressant action of tramadol was investigated. Treatment with tramadol, given (30 min earlier) by oral route (p.o.) at the doses of 10, 20 and 40 mg/kg, decreased immobility time in the FST. Pretreatment of rats with l-arginine (250 mg/kg, intraperitoneal, i.p., a nitric oxide precursor) or sildenafil (5 mg/kg, i.p., a phosphodiesterase 5 inhibitor, PDE5) significantly reversed the reduction in immobility time elicited by tramadol (20 mg/kg, p.o.) in the FST. Treatment of animals with a sub-effective dose of tramadol (5 mg/kg, p.o.) produced a synergistic antidepressant-like effect with NG-nitro-l-arginine (L-NNA, 3 mg/kg, i.p., an inhibitor of nitric oxide synthase) or with 7-nitroindazole (7-NI, 9 mg/kg i.p., a specific neuronal nitric oxide synthase inhibitor) in the FST. Pretreatment of animals with methylene blue (3.75 mg/kg i.p., an inhibitor of NO synthase and soluble guanylate cyclase — sGC) or (1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one) (ODQ, 2 mg/kg, i.p., a specific inhibitor of sGC) significantly caused a synergistic effect with a sub-effective dose of tramadol (5 mg/kg, p.o.) in the FST. In the present study, different doses of tramadol and the combination with the l-arginine–NO–cGMP pathway modulators had no effect on the locomotor activity of rats in the open-field test. Thus, our findings suggest that the acute administration of tramadol produces antidepressant-like effect in the rat FST by a mechanism that involves the inhibition of l-arginine–NO–cGMP pathway.  相似文献   

18.
It was previously shown that the acute administration of adenosine elicits an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism dependent on the inhibition of the L-arginine-nitric oxide (NO)-guanylate cyclase pathway. Taken into account that the stimulation of this pathway is associated with the activation of K(+) channels, this study investigated the involvement of different types of K(+) channels in the effect of adenosine in the FST. Intracerebroventricular treatment of mice with tetraethylammonium (TEA, a non-specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channel inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site) was able to potentiate the action of subeffective doses of adenosine (1 mg/kg, i.p.) and fluoxetine (a serotonin reuptake inhibitor, 10 mg/kg, i.p.). Furthermore, the administration of adenosine or fluoxetine and the K(+) channel inhibitors, alone or in combination, did not affect the ambulatory behavior. Moreover, the reduction in the immobility time elicited by active doses of adenosine (10 mg/kg, i.p.) or fluoxetine (32 mg/kg, i.p.) in the FST was prevented by the pretreatment of mice with cromakalim (a K(+) channel opener, 10 microg/site, i.c.v.), without affecting the locomotion in an open-field. Together these results indicate that the modulatory effects of adenosine and fluoxetine on neuronal excitability, via inhibition of K(+) channels, may represent the final pathway of their antidepressant-like effects in the FST.  相似文献   

19.
This study investigated the involvement of the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in the antidepressant-like effect of an acute administration of memantine in the forced swimming test (FST) in mice, since this signaling pathway is supposed to play a significant role in depression. The antidepressant-like effect of memantine (3 mg/kg, i.p.) was prevented by pretreatment with L-arginine (750 mg/kg, i.p.) or S-nitroso-N-acetyl-penicillamine (SNAP, 25 microg/site, i.c.v.), but not with d-arginine (750 mg/kg, i.p.).The treatment of mice with NG-nitro-L-arginine (L-NNA, 0.03 and 0.3 mg/kg, i.p.) potentiated the effect of a subeffective dose of memantine (0.3 mg/kg, i.p.) in the FST. Moreover, the pretreatment of mice with (1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one) (ODQ, 30 pmol/site, i.c.v.) produced a synergistic antidepressant-like effect with subeffective doses of memantine (0.3 and 1 mg/kg, i.p.) in the FST. Furthermore, the reduction in the immobility time elicited by memantine (3 mg/kg, i.p.) in the FST was prevented by pretreatment with sildenafil (5 mg/kg, i.p.). Taken together, the results demonstrate that memantine produced an antidepressant-like effect in the FST that seems to be mediated through an interaction with the L-arginine-NO-cGMP pathway.  相似文献   

20.
1. 1. Recent clinical evidence suggests that the nonselective 5-HT1A receptor antagonist pindolol may enhance the antidepressive efficacy of selective serotonin reuptake inhibitors (SSRIs); an effect generally ascribed to a presumed blockade of somatodendritic 5-HT1A receptors by pindolol.
2. 2. The present study investigated whether blockade of 5-HT1A receptors similarly potentiates the previously reported anti-alcohol effects of the SSRI fluoxetine.
3. 3. Pindolol and the selective 5-HT1A receptor antagonist WAY-100635 were tested alone and in combination with fluoxetine in cAA rats, a genetic model of alcoholism. However, as pindolol has also a high affinity to 5-HT1B receptors, the effects of selective 5-HT1B receptor agonists and antagonists were evaluated as well.
4. 4. Neither pindolol (3–30 mg/kg, IP), nor WAY-100635 (1–10 mg/kg, IP) affected alcohol intake when tested alone. In contrast, the 5-HTm receptor agonists CP-94,253 and TFMPP (both 1–10 mg/kg, IP), and antagonists metergoline (1–10 mg/kg, IP) and GR 127935 (3–30 mg/kg, IP) were found to reduce alcohol intake with different degrees of selectivity (that is, the extent to which reductions in ethanol intake could be separated from reductions in food- and/or total fluid intake) and specificity (that is, the degree to which effects on ethanol intake coincided with effects on ethanol preference).
5. 5. Because the behavioral profile of pindolol resembles that of WAY-100635, and not that of the 5-HT1B receptors ligands, combination experiments with fluoxetine were only performed with the former two compounds. Neither pindolol (30 mg/kg), nor WAY-100635 (3 mg/kg) potentiated the anti-alcohol effects of fluoxetine (10 mg/kg, IP). Moreover, WAY-100635 tended to shift the anti-alcohol effect of fluoxetine towards a less selective and specific profile.

It is concluded that acute blockade of 5-HT1A receptors does not potentiate the anti-alcohol effects of fluoxetine. In addition, it is suggested that different mechanisms underly the antidepressive and anti-alcohol effects of SSR.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号