首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu S  Fushimi H  Cai S  Komatsu K 《Planta medica》2003,69(7):647-653
Chloroplast trnK gene and nuclear 18S rRNA gene sequences of 13 Panax taxa, collected mainly from Sino-Japanese floristic region, were investigated in order to construct phylogenetic relationship and to assist taxonomic delimitation within this genus. The length of trnK gene sequence varied from 2537 bp to 2573 bp according to the taxa, whereas matK gene sequences, embedded in the intron of trnK gene, were of 1512 bp in all taxa. Species-specific trnK/ matK sequence provided much insight into phylogeny and taxonomy of this genus. 18S rRNA gene sequences were of 1808 or 1809 bps in length, only 9 types of 18S rRNA sequences were observed among 13 taxa. Parsimony and neighbor-joining analyses of the combined data sets of trnK-18S rRNA gene sequences yielded a well-resolved phylogeny within genus Panax, where three main clades were indicated. P. pseudoginseng and P. stipuleanatus formed a sister group located at a basal position in the phylogenetic tree, which suggested the relatively primitive position of these two species. Monophyly of P. ginseng, P. japonicus (Japan) and P. quinquefolius, which are distributed in northern parts of Asia or America, was well supported (Northern Clade). The remaining taxa distributed in southern parts of Asia formed a relatively large clade (Southern Clade). The taxonomic debated taxa traditionally treated as subspecies or varieties of P. japonicus or P. pseudoginseng showed various nucleotide sequences, but all fell into one cluster. It might suggest these taxa are differentiated from a common ancestor and are in a period of high variation, which is revealed not only on morphological appearance, but also on molecular divergence. By comparing trnK and 18S rRNA gene sequences among 13 Panax taxa, a set of valuable molecular evidences for identification of Ginseng drugs was obtained.  相似文献   

2.
Previously, 185 ribosomal RNA gene and matK gene sequences of Chinese herbal medicines, Ginseng Radix, Panacis Japonici Rhizoma and Panacis Quinquefolli Radix were shown to correspond with those of the original plants, Panax ginseng, P. japonicus and P. quinquefolius, respectively, with the species-specific sequences especially for 18S rRNA gene sequences. In P. notoginseng and its derivative, Notoginseng Radix, however, we found two genetic groups with respect to both gene sequences. Five base substitutions were detected on both gene sequences and the homology between two groups was 99.7% for the 18S rRNA gene and 99.6% for the matK gene, respectively. One genetic group was found to have the identical sequences as those of P. ginseng.  相似文献   

3.
Comparative study on triterpene saponins of Ginseng drugs   总被引:3,自引:0,他引:3  
Zhu S  Zou K  Fushimi H  Cai S  Komatsu K 《Planta medica》2004,70(7):666-677
A comparative study on the triterpene saponins of 47 samples of Ginseng drugs derived from 12 Panax taxa was conducted using a reverse-phase high-performance liquid chromatography (HPLC)method. Eleven ginsenosides, which represent 4 types of typical sapogenins, were chosen as standards for quantitative determination in order to characterize the chemical constituent pattern of each Ginseng drug and investigate the relationship between genetic varieties and chemical constituent pattern. The results showed that the ginsenoside compositions in Ginseng drugs of different origins were of considerable variability. Total saponin contents varied by 10-fold from the highest drug to the lowest one. Chikusetsu-ninjin derived from P. japonicus (Japan) was found to have the highest content (192.80 - 296.18 mg/g) and Ginseng from P. ginseng to be the lowest (5.78 - 15.63 mg/g).Two main groups (I and II) suggested by phytochemical data were clearly observed; group I mainly containing dammarane saponins consisted of P. ginseng, P. quinquefolius, P. notoginseng, P. vietnamensis and P. vietnamensis var. fuscidiscus; and group II containing a large amount of oleanolic acid saponins was com-posed of P.japonicus (apan), P. zingiberensis, P.japonicus (China),P. japonicus var. angustifolius, P. japonicus var. major, P. japonicus var. bipinnatifidus and P. stipuleanatus. The ratios of the subtotal of dammarane saponins to that of oleanolic acid saponins (D/0) were found to be > 1.9 and < 0.25 for groups I and II, respectively.The drug samples derived from the same botanical origin revealed similar constituent patterns, in other words, each Panaxtaxon showed its own characteristic chromatographic profile,which appeared in the specific shape of an 11-direction radar graph constructed on the basis of the result of quantitative analysis. Similarities of chemical constitution were seen among the closely phylogenetically-related taxa, including P. ginseng and P.quinquefolius, P. vietnamensis and P. vietnamensis var.fuscidiscus,P. japonicus (China) and its varieties were demonstrated, except P. japonicus (Japan) and P. zingiberensis.  相似文献   

4.
Zhu S  Fushimi H  Cai S  Komatsu K 《Planta medica》2004,70(2):189-192
The multiplex amplification refractory mutation system (MARMS) was applied to the identification of 5 Panax species ( P. ginseng, P. japonicus, P. quinquefolius, P. notoginseng and P. vietnamensis). A set of specific primers, including 2-pair primers on chloroplast trnK gene and nuclear 18S rRNA gene regions, respectively, was designed and synthesized for each species on the basis of species-specific sequences of the 2 genes. By using 5 sets of specific primers, in turn, PCR amplifications were performed with total DNA extracted from 5 Panax species as template under appropriate condition, and each resulting product was detected by agarose gel electrophoresis. The results showed that two expected fragments, one from trnK gene and another from 18S rRNA gene regions, were observed simultaneously only when the set of species-specific primers encountered template DNA of the corresponding species. This assay could give more reliable results for identification of not only 5 Panax species but also corresponding Ginseng drugs by simultaneous detection of 4-site nucleotide differences on 2 completely different genes.  相似文献   

5.
We have developed a novel method called loop-mediated isothermal amplification (LAMP) to detect Panax ginseng, the botanical source of Ginseng (Ginseng Radix), and to distinguish P. ginseng from Panax japonicus. Six allele-specific primers (two outer primers, two inner primers, and two loop primers) were designed based on the 18S ribosomal RNA gene sequence of P. ginseng, and LAMP was performed using those primers and total DNA extracted from P. ginseng as template. Amplifications were observed from approximately 30 min onwards at DNA concentrations of 0.5 to 10.0 ng. The presence of loop primers shortened the reaction time considerably. In contrast, in the reactions using total DNA from P. japonicus as template, no amplifications were observed. LAMP also enabled us to distinguish Ginseng from Japanese Ginseng (Panacis Japonici Rhizoma). LAMP was proven to be a rapid, highly sensitive, and specific method for the detection of P. ginseng and Ginseng.  相似文献   

6.
扣子七中人参皂苷的HPLC-MS-MS方法研究   总被引:6,自引:0,他引:6  
扣子七为五加科人参届植物大叶三七Panaxjaponicus C.A.Mey.var.major(Burkill)C.Y.Wu et K.M.Feng的干燥根茎,分布于云南,重庆,湖北等地。在渝东鄂西,扣子七用于养阴,清肺,散淤,止血,定痛,其化学成分的研究尚未见报道。 本实验以HPLC分离扣子七中人参皂苷,用离  相似文献   

7.
Panax japonicus is an important medicinal plant. The aim of this study was to develop species-specific molecular markers for P. japonicus. Amplified fragment length polymorphism (AFLP) was compared among P. japonicus, P. ginseng and P. quinquefolius. A clear species-specific AFLP marker for P. japonicus was generated. After isolation and sequencing of the AFLP fragment, a DNA sequence (293 bp) was obtained and named JG14. Oligonucleotide primer (23 mer) was designed for amplifying 191 bp of the sequence of JG14. PCR analysis revealed a clear amplified band for P. japonicus but not in 3 other Panax species (P. ginseng, P. quinquefolius and P. notoginseng). This sequence characterized amplified regions (SCAR) marker will be used for rapid authentication of P. japonicus among other related Panax species. This is the first report of species-specific SCAR marker development in P. japonicus.  相似文献   

8.
In order to identify the existence of Panax species in herbal medicine preparations, the Ginseng specific marker primer was selected and created based on the sequence of Korean ginseng DNA fragment, 359 bp. The gradient PCR was performed on 40 types of the herbal medicines including the 7 types of Araliaceae that are in the same family with the Panax ginseng using the created Ginseng maker primer. As result, Panax notoginseng (Chinese), Panax japonicus (Japanese) and Panax quinquefolius (American), along with Panax ginseng (Korean) were the only ones amplified. However, in the case of Atractylodes lancea, one of the herbal medicines not categorized as Panax species, the DNA was prominently amplified by the Ginseng marker primer. The sequence of the amplified DNA of Atractylodes lancea was identified, resulting in enabling the differentiation from the Panax species by the Restriction Fragment Length Polymorphisms (RFLP) method. In addition, the results of the gradient PCR performed on the herbal medicine preparations that consists of Panax ginseng showed that 290 bp size of the original DNA fragments of Panax ginseng was amplified on the herbal medicine preparations containing Panax ginseng. Therefore, these results suggest a possibility of creating a new testing method for identifying specific herb medicines using the gradient PCR, a molecular biological method not only on Panax ginseng, but also on other herbal medicines and herbal medicine preparations.  相似文献   

9.
Cui XM  Lo CK  Yip KL  Dong TT  Tsim KW 《Planta medica》2003,69(6):584-586
The great majority of Panax species are well-known herbal medicines in the Orient, and many of them share a close resemblance in appearance and chemical composition. Among these Panax species, the root of P. notoginseng (Sanqi) is a unique herb that has distinct clinical usage. Here, the 5S-rRNA spacer domains were isolated from P. notoginseng, P. japonicus var. major, P. stipuleanatus, P. quinquefolius, P. ginseng, P. zingiberensis, and P. wangianus, and four common adulterants of P. notoginseng including Curcuma wenyujin, Curcuma longa, Bletilla striata and Gynura segetum. The spacer domains were sequenced and compared, which showed over 75 % DNA identity among all Panax species, but not for the adulterants. In addition, random amplification of polymorphic DNA (RAPD) analysis was used to distinguish different members of Panax genus as well as the morphological variants of P. notoginseng. These molecular methods could be used in the authentic identification of P. notoginseng from other Panax species.  相似文献   

10.
Panax ginseng and Panax quinquefolius are the most widely used Panax species, but they are known to have different properties and medicinal values. The aim of this study is to develop a robust and accurate DNA marker for identifying P. ginseng and the origins of ginseng products. Two single nucleotide polymorphism (SNP) sites specific to P. ginseng were exploited from nuclear ribosomal external transcribed spacer (ETS) region. Based on the SNP sites, two specific primers were designed for P. ginseng and P. quinquefolius respectively. P. ginseng can be easily discriminated from P. quinquefolius by amplifying the two specific alleles using multiplex allele-specific PCR. Favorable results can also be obtained from commercial ginseng products. The established method is highly sensitive and can detect 1% of intentional adulteration of P. quinquefolius into P. ginseng down to the 0.1ng level of total DNA. Therefore this study provides a reliable and simple DNA method for authentication of the origins and purities of ginseng products.  相似文献   

11.
人参、西洋参质量标准研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
本文综述了人参、西洋参的质量标准,着重比较<中国药典>与<美国药典>在鉴别项与含量测定项上的异同;并对近年来人参、西洋参的化学成分分析进行了总结.  相似文献   

12.
Treatment of rats with a single oral dose (10-30 mg/kg) of a crude Panax ginseng extract of unknown ginsenoside content has been reported to modestly increase hepatic microsomal cytochrome P450-mediated aminopyrine N-demethylation activity. In the present study, we compared the effect of P. ginseng and Panax quinquefolius extracts on rat hepatic CYP2B1, CYP3A23, and CYP1A2 gene expression. Adult male Sprague-Dawley rats (250-275 g) received, by oral gavage or i.p., P. ginseng extract [4% (w/w) total ginsenosides; 30 or 100 mg/kg/day for 1 or 4 days], P. quinquefolius extract [10% (w/w) total ginsenosides; 100 or 400 mg/kg/day for 21 consecutive days), or an equivalent volume (2 ml/kg) of the vehicle (0.9% NaCl or 0.3% carboxymethylcellulose) and were terminated 1 day after the last dose. P. ginseng and P. quinquefolius extracts did not affect body weight gain, absolute or relative liver weight, hepatic CYP2B1, CYP3A23, or CYP1A2 mRNA expression, or microsomal CYP2B-mediated 7-benzyloxyresorufin O-dealkylation (BROD) or CYP1A-mediated 7-ethoxyresorufin O-dealkylation (EROD) activity. In contrast, results from positive control experiments indicated that phenobarbital increased CYP2B1 mRNA and BROD activity, dexamethasone increased CYP3A23 mRNA, and beta-naphthoflavone increased CYP1A2 mRNA and EROD activity levels. Treatment of primary cultures of rat hepatocytes with either of the ginseng extracts (0.1-1000 microg/ml for 2 days) also did not affect CYP2B1 or CYP3A23 mRNA expression. Overall, our data indicate that P. ginseng and P. quinquefolius extracts do not increase rat hepatic CYP2B1, CYP3A23, or CYP1A2 gene expression.  相似文献   

13.
Curcuma drugs have been used discriminatingly for invigorating blood circulation, promoting digestion, and as a cholagogic in China. However, there is confusion about the drug's botanical origins and clinical uses because of morphological similarity of Curcuma plants and drugs. In order to develop an ultimate identification, molecular analysis based on 18S rRNA gene and trnK gene sequences were performed on 6 Curcuma species used medicinally in China and Japan. The 18S rRNA gene sequences were found to be of 1810 bps in length. In comparison with the common sequence of C. longa, C. phaeocaulis, C. wenyujin and C. aromatica, that of C. kwangsiensis had one base substitution, and the same base difference was observed between the Chinese and the Japanese populations of C. zedoaria. The trnK gene sequences were found to span 2698-2705 bps. There were base substitutions, small deletions or insertions at some sites between the trnK coding region and matK region among each species. Based on the base substitutions, C. zedoaria and C. kwangsiensis specimens were divided into two groups, respectively. An identical sequence was detected in C. phaeocaulis and in the Chinese population of C. zedoaria, as well as in the Japanese population of C. zedoaria and in one group of C. kwangsiensis with a purple-colored band in leaves. New taxonomic information to be used for authenticating Curcuma drugs was obtained.  相似文献   

14.
主要人参皂甙的分布和比例及人参产品的质量控制   总被引:9,自引:0,他引:9  
采用反相高效液相色谱法,对150多种西洋参、人参及三七的根、叶及其产品进行了分析。以8种主要的人参皂甙Rg,Re,Rf,Rb1,Rc,Rb2,Rg2和Rd作为对照品,来评价人参及其产品的质量,这8种人参皂甙的分布及其比例在对人参及其商品的定性、定量分析方面具有显著的意义。本文首次提出了单体皂甙的含量比率这一有价值的数据在人参品种及不同用药部位鉴定方面的有效性。  相似文献   

15.
Ginseng is prepared from Panax ginseng C.A. Meyer root. The root of wild P. ginseng has long tortuous rhizome called traditionally "Rozu" in Japanese. In the present historical studies on ginseng, it has been proven that ginseng has sometimes been used after removing "Rozu" due to its emetic effects. However, ginseng with "Rozu" is prescribed in almost all the present Kampo formulations used clinically in China and Japan. Possible reasons for this are (1) some formulations including "Rozu" have been used for vomiting resulting from the retention of fluid in the intestine and stomach, "tan-in" in Japanese, and (2) the present cultivated ginseng has shorter "Rozu" than wild ginseng. Furthermore, it is proved that "Rozu", rich in ginsenoside Ro with oleanane-type aglycone, is distinguished from ginseng roots rich in ginsenosides Rb1 and Rg1 with dammarane-type aglycone. This is the first report to declare the distribution of ginsenosides in underground parts of wild P. ginseng. Ginsenoside Ro is a minor ginsenoside in ginseng whereas it is the major ginsenoside in P. japonicus rhizome (chikusetsu-ninjin in Japanese). Ginsenoside Ro is characterized by antiinflammatory effects which differ from ginsenosides Rb1 and Rg1 responsible for adaptogenic effects of ginseng. These results suggest that "Rozu" containing both oleanane- and dammarane-type ginsenosides might be a promising raw material distinct from ginseng root or P. japonicus rhizome.  相似文献   

16.
中药材分子鉴别新方法:锚定引物扩增多态性DNA的研究   总被引:4,自引:0,他引:4  
为了寻找稳定性好、可操作性强的分子鉴定新方法,在充分吸取RAPD优势的基础上,对其引物和退火温度进行了改进。本文以人参、西洋参为例进行了方法的探索和各种验证,并推广应用到天花粉以及白芷类药材的鉴别。结果显示引物Pg-q36F得到人参、西洋参及其9种伪品的多态性条带。对于人参、西洋参的鉴别结果与文献鉴别方法结果一致,并且具有更高的稳定性。引物TkS1-64F得到了天花粉及其11种伪品的多态性条带,引物AfS1-100F得到白芷及其3种伪品的多态性条带,均能准确鉴别各种药材。实验结果证明本方法具有简单易行、稳定性和重复性好、提供的信息量大等优点,是一种极具前途的中药材分子鉴定新方法,被命名为锚定引物扩增多态性DNA(anchored primer amplification polymorphism DNA,APAPD)。  相似文献   

17.
J Wang  W Y Ha  F N Ngan  P P But  P C Shaw 《Planta medica》2001,67(8):781-783
A 420-bp RAPD fragment from Panax quinquefolius was converted to a sequence characterized amplified region (SCAR) marker. The main difference between the SCAR of P. quinquefolius and its homolog in P. ginseng is the presence of a 25 bp insertion in the latter. Primers derived from this sequence were successfully used to authenticate six Panax species and two common adulterants.  相似文献   

18.
Ha WY  Yau FC  But PP  Wang J  Shaw PC 《Planta medica》2001,67(6):587-589
The method of direct amplification of length polymorphism (DALP) was applied to authenticate Panax ginseng and P. quinquefolius. A 636-bp DALP fragment was present in all P. ginseng but absent in all the P. quinquefolius cultivars examined. We have shown that the use of DALP and conversion of specific polymorphic band to sequence-tagged site (STS) for quick authentication may be applied to authenticate related medicinal materials.  相似文献   

19.
In order to explore the effect of Panax vietnamensis on carbon tetrachloride-induced hepatotoxicity, mice were pretreated for 7 days with either crude extract or total saponins. Crude extract and total saponins dramatically decreased carbon tetrachloride-induced increase of serum GST alpha level (-50.0%, -49.5% respectively). Serum AST level was significantly decreased only with total saponins (-52.2%) and ALT level was slightly modified. In vitro experiments shown that both preparations at high concentrations (> 2000 micrograms/ml) are able to inhibit CYP2E1 enzymatic activity in mouse and human microsomes. However, we did not observe any modification of Cyp2e1 gene expression (enzymatic activity, protein and mRNA levels) in mice treated with either crude extract or total saponins. Taken together, these data demonstrated that Panax vietnamensis could be used as an hepatoprotectant. However, the mechanism of action is not associated with CYP2E1 expression, as previously suggested in vitro in rat for total saponins from Panax ginseng.  相似文献   

20.
三七的18S rRNA,matK基因序列和HPLC化学指纹图谱分析研究   总被引:2,自引:0,他引:2  
目的分析中药三七Panaxnotoginseng的18SrRNA和matK基因的分子特征和三七的化学指纹特征,为三七的正品药材基原鉴定提供分子和化学依据。方法采用PCR直接测序技术测定三七及其7种伪品的18SrRNA和matK基因部分核苷酸序列以及不同产地三七的DNA分子特征。利用HPLC的化学分析技术,明确产地对三七化学成分的影响,以及三七不同部位的化学指纹特征。结果(1)三七及其7种常见伪品的核糖体18SrRNA基因序列存在很大的差异。(2)不同产地的三七的核糖体18SrRNA和叶绿体matK基因序列特征完全一致,分别与GenBank上已报道的R1型(D85171)和M1型(AB027526)序列吻合。(3)不同产地的三七HPLC指纹图谱相似。(4)三七不同部位均具有其相对稳定的HPLC指纹特征,其中花、叶具有特有的指纹区,根、须根、剪口、筋条等不同商品规格的HPLC指纹图谱比较相似。结论基因序列标记能从分子水平定性分辨三七及其伪品的遗传背景差异,为中药品种标准化提供了先进可行、稳定可靠的分子标准;HPLC指纹图谱分析可以直观地为三七的化学成分定性,三七不同商品规格的特征性指纹有望成为以其为原材料的各种产品的质控标准,而三七不同部位(尤其是花和叶)的HPLC指纹图谱将有望成为制定三七花、三七叶新药用资源质控标准的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号