首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The developmental changes in the levels of amino acid neurotransmitters were analyzed by high pressure liquid chromatography during mouse olfactory bulb neurogenesis, from embryonic day (E)13 until the young adult age, between postnatal days (P)30 and P40. During the embryonic period, high levels of glutamate, aspartate and GABA were observed, with the values of GABA about 2-fold higher than those of glutamate and aspartate. At P0, the production of these neurotransmitters experienced birth stress as shown by a significant 2-fold reduction in their levels. During the first two postnatal weeks, a progressive increase in the glutamate content was detected diminishing slightly in the adult stage. The aspartate concentrations showed a maximal value at P3 and then decreased gradually until the second postnatal week; in the young adult age, its concentration was comparable with that of glutamate. The postnatal GABA contents increased progressively from birth to maturity, showing maximal levels at P3, P11 and in the adult. Throughout the studied developmental period, the concentration of glycine remained relatively low. With regard to taurine, very low concentrations were detected during the prenatal period but after birth, the taurine content gradually increased with age, and in the adult animal, its concentration was comparable with those of GABA and glutamate. Our data demonstrate the predominance of GABA and glutamate during olfactory bulb synaptogenesis, however, in the adult animal, both glutamate and aspartate exert the same influence in the excitatory synaptic transmission; in the adult inhibitory synaptic transmission, taurine appears to play an important neuromodulatory or neurotransmitter role as that of GABA. To determine the intrinsic neurotransmitter production, primary histotypic olfactory bulb cultures were prepared from mice at P10. The comparative analysis of in vitro neurotransmitter contents with those in in situ adult animal showed higher levels of endogenously produced glutamate, glycine and GABA in the olfactory bulb than the extrinsic ones coming from olfactory nerve axons and higher olfactory brain centers. On the other hand, most of aspartate and taurine neurotransmitters apparently come from extrinsically located neurons.  相似文献   

2.
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR‐eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl‐ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl‐ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse‐chase approach, we show that peripheral treatment of adult rats with acyl‐ghrelin did not increase the number of new adult‐born neurones in the granule cell layer of the OB. These data demonstrate that acyl‐ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult‐born cells in the OB. Overnight CR induced c‐Fos expression in new adult‐born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re‐feeding. These effects were not present in ghrelin?/? mice, suggesting that adult‐born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re‐feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult‐born OB cells are activated by CR in a ghrelin‐dependent manner.  相似文献   

3.
4.
Interneurons in the granule cell layer (GCL) and glomerular layer (GL) of the olfactory bulb (OB) are generated from progenitors in the subventricular zone (SVZ) of the lateral ventricle. However, little is known about the origin of interneurons in the external plexiform layer (EPL) of the OB. On the basis of the concept of corticogenesis, I hypothesized that interneurons in the EPL of the rodent OB also originate in the SVZ. In the present study, replication-incompetent retroviruses encoding a marker gene, human placental alkaline phosphatase (AP), were injected into the lateral ventricles of postnatal day 4 Wistar rats to label dividing cells in the SVZ. Two days after injection, some of the AP-labeled cells had migrated into the OB. Five weeks after injection, AP/NeuN double-labeled cells were found not only in the GCL and GL but also in the EPL of the OB. In the EPL, most AP-labeled cells were calcium-binding protein parvalbumin (PV)-immunoreactive (+) interneurons. A subset of these cells was made up of calcium-binding protein calretinin (CR)(+) interneurons. According to their structural features, AP-labeled cells in the EPL were Van Gehuchten cells, multipolar cells, and superficial short-axon cells. Thus, postnatal SVZ progenitors give rise not only to granular and periglomerular interneurons but also to interneurons in the EPL of the OB. Furthermore, these results suggest that SVZ progenitors give rise to virtually all subpopulations of interneurons in the OB.  相似文献   

5.
Earlier studies in our laboratory have demonstrated that a discrete region of the anterior part of the neonatal subventricular zone (SVZa) contains exclusively neuronal progenitor cells. The descendants of the SVZa progenitor cells are destined for the granule cell and glomerular layers of the olfactory bulb, where they differentiate into granule and periglomerular cells, the interneurons of the olfactory bulb, respectively. In the present set of experiments we examined the neurotransmitter phenotype of the SVZa-derived cells. In order to label SVZa-derived cells, the cell proliferation marker bromodeoxyuridine (BrdU) was injected into the SVZa of postnatal day 2 (P2) rats. After 3 weeks, by which time most of the SVZ-aderived cells have migrated to their final destination in the bulb, the animals were perfused and their brains processed for immunohistochemistry. To identify the neurotransmitter phenotype of the SVZa-derived cells, sagittal sections of the forebrain, including the olfactory bulb, were double-labeled with an antibody to BrdU in conjunction with an antibody to γ-amino-butyric acid (GABA) or tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. Using simultaneous indirect immunofluorescence to detect the presence of single- and double-labeled cells, we found that 59% and 51% of the BrdU-positive cells were immunoreactive for GABA in the granule cell and glomerular layers, respectively. In addition, 10% of the BrdU-positive periglomerular cells were immunoreactive for TH. The presence of double-labeled (BrdU-positive/GABA-positive and BrdU-positive/TH-positive) cells in the olfactory bulb, demonstrates that the SVZa is a source of the GABAergic and dopaminergic interneurons of the olfactory bulb during postnatal development.  相似文献   

6.
Neural stem/progenitor cells (NSPCs) in the mammalian brain retain the ability to generate new neurones throughout life in discrete brain regions, through a process called adult neurogenesis. Adult neurogenesis, a dramatic form of adult brain circuitry plasticity, has been implicated in physiological brain function and appears to be of pivotal importance for certain forms of learning and memory. In addition, failing or altered neurogenesis has been associated with a variety of brain diseases such as major depression, epilepsy and age‐related cognitive decline. Here we review recent advances in our understanding of the basic biology underlying the neurogenic process in the adult brain, focusing on mechanisms that regulate quiescence, proliferation and differentiation of NSPCs. In addition, we discuss how neurogenesis influences normal brain function, and in particular its role in memory formation, as well as its contribution to neuropsychiatric diseases. Finally, we evaluate the potential of targeting endogenous NSPCs for brain repair.  相似文献   

7.
In adults, the subventricular zone is known to contain undifferentiated neural progenitor cells that proliferate and generate the olfactory bulb (OB) interneurons throughout life. We earlier showed that trimethyltin (TMT) causes neuronal damage in the granular cell layer of the OB in adult mice. In the current study, we examined neurogenesis in the OB in adult mice after injury induced by acute treatment with TMT. On day 2 post‐TMT treatment, enhanced incorporation of 5‐bromo‐2′‐deoxyuridine (BrdU) was seen in the granular cell layer of the OB. Many of the BrdU‐labeled cells were undifferentiated cells on day 2 post‐treatment. On day 30 post‐TMT treatment, BrdU‐labeled neuronal cells were dramatically increased in number in the granular cell layer of the OB. However, TMT treatment was ineffective in affecting the migration of BrdU‐labeled cells from the subventricular zone to the OB. The results of a neurosphere assay revealed that the number of neurospheres derived from the OB was significantly increased on day 2 post‐TMT treatment. The neurosphere‐forming neural progenitor cells derived from the OB of TMT‐treated animals were capable of differentiating into neuronal cells as well as into astrocytes. Taken together, our data suggest that the OB has the ability to undergo enhanced neurogenesis following TMT‐induced neuronal injury in adult mice. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies.  相似文献   

9.
目的筛选小鼠嗅球发育中调控同源盒转录因子2(DLX2)的相关基因,探讨室管膜前下区神经干细胞在嗅球中向多巴胺神经元分化的机制。方法利用16844点的高密度Oligo芯片检测发育期嗅球的基因表达情况,采用基因神经网络分析,筛选与DLX2相关的基因。结果从2398个在4个时间点都表达的基因中筛选出623个差异基因,在相关系数设定为0.95水平上,共筛选出29个与DLX2相关的基因。29个基因中,已知功能的基因有13个,主要与代谢、凋亡、发育及信号传导功能相关,未知功能的基因有16个。结论在嗅球中可能有29个基因参与了DLX2的表达调控,对它们进一步的研究将有助于理解室管膜前下区神经干细胞在嗅球中向多巴胺神经元分化的机制。  相似文献   

10.
New neurons are added on a daily basis to the olfactory bulb (OB) of a mammal, and this phenomenon exists throughout its lifetime. These new cells are born in the subventricular zone and migrate to the OB via the rostral migratory stream (RMS). To examine the role of the prokineticin receptor 2 (Prokr2) in neurogenesis, we created a Prokr2 null mouse, and report a decrease in the volume of its OB and also a decrease in the number of bromodeoxyuridine (BrdU)-positive cells. There is disrupted architecture of the OB, with the glomerular layer containing terminal dUTP nick-end labeling (TUNEL) -positive nuclei and also a decrease in tyrosine hydroxylase-positive neurons in this layer. In addition, there are increased numbers of doublecortin-positive neuroblasts in the RMS and increased PSA-NCAM (polysialylated form of the neural cell adhesion molecule) -positive neuronal progenitors around the olfactory ventricle, indicating their detachment from homotypic chains is compromised. Finally, in support of this, Prokr2-deficient cells expanded in vitro as neurospheres are incapable of migrating towards a source of recombinant human prokineticin 2 (PROK2). Together, these findings suggest an important role for Prokr2 in OB neurogenesis.  相似文献   

11.
F‐actin‐binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin‐null‐mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.  相似文献   

12.
Experiments were carried out to examine the topographical projection of the olfactory nerves to the olfactory bulb in the rat, using the Sokoloff [14C]2-deoxyglucose (2-DG) technique. Electrical stimulation of a medially located bundle of olfactory nerves produced a discrete zone of 2-DG uptake at the rostral pole of the bulb. Increasing stimulus strength yielded a slightly larger focus at this site. In contrast, electrical stimulation of laterally situated bundles of olfactory nerves resulted in a broad zone of activity extending along the lateral wall of the bulb, and increasing stimulus intensity produced a more extensive area of uptake. Laminar analyses provided information on the relation between activity in the glomerular layer, where the olfactory nerves terminate, and activity in deeper layers. The results support previous studies of the topographical projections of the olfactory nerves to the olfactory bulb. They also support the hypothesis that odor-induced 2-DG uptake in the olfactory bulb represents activation of groups of receptors in the olfactory epithelium whose axons terminate in activated glomerular regions in the olfactory bulb.  相似文献   

13.
14.
15.
Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10–30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew ( Sorex araneus ) and pygmy shrew ( S. minutus ). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews.  相似文献   

16.
17.
The rostral migratory stream (RMS) is a well defined migratory pathway for precursors of olfactory bulb (OB) interneurons. Throughout the RMS an intense astroglial matrix surrounds the migratory cells. However, it is not clear to what extent the astroglial matrix participates in migration. Here, we have analyzed the migratory behavior of neuroblasts cultured on monolayers of astrocytes isolated from areas that are permissive (RMS and OB) and nonpermissive (cortex and adjacent cortical areas) to migration. Our results demonstrate robust neuroblast migration when RMS‐explants are cultured on OB or RMS‐astrocytes, in contrast to their behavior on astroglia derived from nonpermissive areas. These differences, mediated by astrocyte‐derived nonsoluble factors, are related to the overexpression of extracellular matrix and cell adhesion molecules, as revealed by real‐time qRT‐PCR. Our results show that astroglia heterogeneity could play a significant role in migration within the RMS and in cell detachment in the OB. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The presence of a germinal layer and the capacity to generate neurons, once thought restricted to the embryonic brain, persists in the forebrain of both postnatal and adult mammals. The two regions in which this phenomenon has been extensively demonstrated are the hippocampal dentate gyrus and the lateral ventricle subventricular zone (SVZ). SVZ-derived cells migrate along the rostral migratory stream into the olfactory bulb, where they differentiate into local interneurons. In this study, using tracer injections into the SVZ at different postnatal ages, we investigated the occurrence of secondary migratory pathways in the mouse subcortical forebrain. During the course of the first week postnatal, in addition to the well-characterized rostral migratory stream, SVZ-derived progenitors migrate in a ventral migratory mass across the nucleus accumbens into the basal forebrain and along a ventrocaudal migratory stream originating at the elbow between the vertical and horizontal limbs of the rostral migratory stream. These cells give rise to granule neurons in the Islands of Calleja and olfactory tubercle pyramidal layer, respectively. In adult, a very small number of cells continue to migrate along the ventrocaudal migratory stream, whereas no migration was observed across the nucleus accumbens. These data demonstrate that in early postnatal and, to a minor extent in adult mice, SVZ-derived cells contribute new neurons to the subcortical forebrain.  相似文献   

19.
Olfactory ensheathing cells (OEC) have the ability to promote regeneration in the nervous system. Hence, they hold promise for cell therapy. Most of the experimental studies have investigated the role of OECs taken from olfactory bulb (OB). However, for a clinical human application, olfactory mucosa (OM) seems to be the only acceptable source for OECs. Many studies have compared the distinct ability of OECs from OB and OM to improve functional nerve regeneration after lesion of the nervous system. Nevertheless, the two populations of OECs may differ in several points, which might affect all fate after transplantation in vivo. We report here the first study which compares gene expression profiling between these two populations of OECs. It appears that OB‐OECs and OM‐OECs display distinct gene expression pattern, which suggest that they may be implicated in different physiological processes. Notably, OM‐OECs overexpress genes characteristic of wound healing and regulation of extra cellular matrix. In contrast, OB‐OECs gene profile suggests a prominent role in nervous system development. Hence, OB‐OECs and OM‐OECs fundamentally differ in their gene expression pattern, which may represent a crucial point for future clinical application. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Life‐long addition and elimination of neurons within the adult olfactory epithelium and olfactory bulb allows for adaptive structural responses to sensory experience, learning, and recovery after injury. The interdependence of the two structures is highlighted by the shortened life span of sensory neurons deprived of bulb contact, and has prompted the hypothesis that trophic cues from the bulb contribute to their survival. The specific identity and source of these signals remain unknown. To investigate the potential role of target neurons in this support, we employed a neurotoxic lesion to selectively remove them while preserving the remaining nerve projection pathway, and examined the dynamics of sensory neuron proliferation and survival. Pulse‐labeling of progenitors with bromodeoxyuridine showed that, as with surgical bulb removal, increased apoptosis in the epithelium triggered accelerated production of new neurons after chemical depletion of target cells. Rather than undergoing premature death, a large subpopulation of these neurons survived long term. The combination of increased proliferation and extended survival resulted in essentially normal numbers of new sensory neurons surviving for as long as 5 weeks, with an accompanying restoration of olfactory marker protein expression. Changes in neurotrophic factor expression levels as measured by quantitative polymerase chain reaction (Q‐PCR), and in bulb cell populations, including the addition of new neurons generated in the subventricular zone, were observed in the injured bulb. These data indicate that olfactory sensory neurons can adapt to reductions in their normal target field by obtaining sufficient support from remaining or alternative cell sources to survive and maintain their projections. J. Comp. Neurol. 515:696–710, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号