首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions of the mRNAs encoding the l -glutamate transporters GLT1 and GLAST were examined in the rat brain by in situ hybridization using 35S-labelled oligonucleotide probes. Probes directed to GLT1 produced dense labelling in the hippocampus, neocortex and neostriatum, and weak labelling in the cerebellum. In contrast, GLAST mRNA appeared to be greatly enriched in the cerebellum compared to other brain regions. While the intensity of the labelling for GLAST and GLT1 varied among different regions, their cellular distributions appeared to coincide inasmuch as both mRNAs were mainly expressed by glial cells. Labelling occurred, inter alia , in glial cells throughout the hippocampus, and in Golgi epithelial cells in the Purkinje cell layer of the cerebellum.  相似文献   

2.
Kugler P  Schleyer V 《Hippocampus》2004,14(8):975-985
Glutamate is the major excitatory transmitter in the CNS and plays distinct roles in a number of developmental events. Its extracellular concentration, which mediates these activities, is regulated by glutamate transporters in glial cells and neurons. In the present study, we have used nonradioactive in situ hybridization, immunocytochemistry, and immunoblotting to show the cellular and regional expression of the high-affinity glutamate transporters GLAST (EAAT1) and generic GLT1 (EAAT2; glial form of GLT1) in the rat hippocampus during postnatal development (P1-60). The results of transporter expression were compared with the localization and activity pattern of glutamate dehydrogenase (GDH), an important glutamate-metabolizing enzyme. The study showed that both transporters and GDH were demonstrable at P1 (day of birth). The expression of GLAST (detected by in situ hybridization and immunocytochemistry) in the early postnatal development was higher than GLT1. Thereafter, the expression of both transporters increased, showing adult levels at between P20 and P30 (detected by in situ hybridization and immunoblotting). At these time points, the expression of GLT1 appeared to be significantly higher than the GLAST expression. GLT1 and GLAST proteins were demonstrable only in astrocytes. The increase of GDH activities (steepest increase from P5-P8), which were localized preferentially in astrocytes, was in agreement with the increase of transporter expression, preferentially with that of GLT1. These observations suggest that the extent of glutamate transporter expression and of glutamate-metabolizing GDH activity in astrocytes is intimately correlated with the formation of glutamatergic synapses in the developing hippocampus.  相似文献   

3.
The presence of glia and glial glutamate transporters seems to modify glutamate-mediated toxicity in neuronal cultures. In this work we cultured cortical cells in serum-containing medium and in a serum-free medium (Neurobasal medium + B27 supplement) and studied the expression of the glutamate transporters GLAST, GLT, and EAAC by immunocytochemistry and RT-PCR. The proportion of glial cells was below 10% in the Neurobasal medium and 46% in the serum-containing medium. Semiquantitative evaluation of the mRNA for the glutamate transporters showed similar amounts in cells grown in serum-free and serum-containing media. We detected immunoreactivity for the three transporters in both media, but EAAC was coexpressed with the neuronal marker MAP2, whereas GLAST and GLT predominated in nonneuronal cells. When the cultures were treated with glutamate for 15 min, the cultures in serum-containing medium showed a clear concentration-dependent neuronal death, whereas cells primed in this medium and switched to Neurobasal medium, as well as cells grown only in the latter, were less sensitive to glutamate concentrations up to 1 mM. A similar difference in the sensitivity to excitotoxicity was observed when the glutamate uptake inhibitor L-trans-2,4-pyrrolidine-dicarboxylate was applied during 6 hr, although the accumulation of extracellular glutamate was similar in the two media. We conclude that glutamate transporters with the culture conditions studied are sensitive to glutamate uptake inhibition and that Neurobasal/B27 medium protects cells against excitotoxicity.  相似文献   

4.
Glutamate is the main neurotransmitter in the olfactory bulb. Therefore, glutamate transporters, which regulate the concentration of extracellular glutamate, might play pivotal roles in odor processing. In this study, we examined expressions of three glutamate transporters (GLAST, GLT1 and EAAC1) in the olfactory bulb using in situ hybridization and immunohistochemistry. EAAC1 mRNA was expressed in neurons, such as periglomerular cells, tufted cells, mitral cells and granule cells as shown before in other brain areas. In contrast, GLAST and GLT1 were found in glial cells throughout the olfactory bulb, with intenser expressions in the glomerular layer, external plexiform layer and internal plexiform layer where glutamatergic synapses are concentrated. In addition, using double staining immunohistochemistry we clearly showed that GLAST and GLT1 were expressed in astrocytes. Furthermore, we found that GLAST was also intensely expressed in the subependymal layer where precursor cells exist. These results suggest each glutamate transporter plays its unique role not only in glutamatergic neurotransmission but also in cell differentiation and migration in the olfactory bulb.  相似文献   

5.
The extracellular concentrations of glutamate and its co-agonist for the N-methyl-d-aspartate (NMDA) receptor, glycine, may be under the control of amino acid transporters in the ischemic brain. However, there is little information on changes in glycine and glutamate transporters in the hippocampal CA1 field of gerbils with transient forebrain ischemia. This study investigated the spatial and temporal expressions of glycine transporter 1 (GLYT1) and three glutamate transporter (excitatory amino acid carrier 1, EAAC1; glutamate/aspartate transporter, GLAST; glutamate transporter 1, GLT1) mRNA in the gerbil hippocampus after 3 minutes of ischemia. The GLYT1 mRNA was transiently upregulated by the second day after ischemia in astrocytelike cells in close vicinity to hippocampal CA1 pyramidal neurons, possibly to reduce glycine concentration in the local extracellular spaces. The EAAC1 mRNA was abundantly expressed in almost all pyramidal neurons and dentate granule cells in the control gerbil hippocampus, whereas the expression level in CA1 pyramidal neurons started to decrease by the fourth day after ischemia in synchrony with degeneration of the CA1 neurons. The GLAST and GLT1 mRNA were rather intensely expressed in the dentate gyrus and CA3 field of the control hippocampus, respectively, but they were weakly expressed in the CA1 field before and after ischemia. As GLAST and GLT1 play a major role in the control of extracellular glutamate concentration, the paucity of these transporters in the CA1 field may account for the vulnerability of CA1 neurons to ischemia, provided that the functional GLAST and GLT1 proteins are also less in the CA1 field than in the CA3 field. This study suggests that the amino acid transporters play pivotal roles in the process of delayed neuronal death in the hippocampal CA1 field.  相似文献   

6.
The extracellular glutamate concentration is kept low by glutamate transporters in the plasma membranes. Here we have studied the expression of the glutamate transporters GLAST, GLT and EAAC during the in vitro development of embryonic hippocampal neurons grown in a defined (serum free) medium. Immunochemistry studies showed that both the GLAST and GLT proteins are expressed in a subpopulation of neurons at the early, but not at the later stages of the cultures. Glial cells expressing the GLAST and GLT proteins were found at all stages. EAAC was only detected in neurons. This is one of the first evidence of a neuronal ability to express GLAST.  相似文献   

7.
Overactivity of glutamatergic neurotransmission in the basal ganglia is known to be closely related to the onset and pathogenesis of Parkinson's disease. Glutamate homeostasis around glutamatergic synapses is tightly regulated by two groups of glutamate transporters: glial glutamate transporters GLT1 (EAAT2) and GLAST (EAAT1), and neuronal glutamate transporter EAAC1. In order to investigate the changes of glutamate transporters after the onset of Parkinson's disease, unilateral 6-hydroxydopamine-lesioned rat, an animal model of Parkinson's disease, was employed. By immunofluorescence and Western blot analyses, GLT1 and GLAST proteins were significantly reduced in the striatum with lesion. No change in GLT1 and GLAST protein was found in the substantia nigra. The reduction of GLT1 protein in the striatum was more prominent than that of GLAST protein (approximately 40% vs. 20%). In addition, EAAC1 protein was found to be increased in the substantia nigra pars reticulata of the lesioned rats but not in the striatum. The present results indicate that reductions of GLT1 and GLAST may impair glutamate homeostasis around glutamatergic synapses in the striatum and contribute to over-spills of glutamate in the system. An increase in the EAAC1 level in the substantia nigra pars reticulata may increase GABA synthesis and enhance GABAergic neurotransmission. These results indicate that there are differential and distinct modulations of glutamate transporters after dopamine denervation in the 6-hydroxydopamine-lesioned rat.  相似文献   

8.
Glutamate transporters have the important function of removing glutamate released from synapses and keeping extracellular glutamate concentrations below excitotoxic levels. Extracellular glutamate increases in portocaval anastomosis (PCA), so we used a portacaval anastomosis model in rats to analyze the expression of glutamate transporters (GLAST, GLT-1 and EAAC1) in rat cerebellum, 1 and 6 months after PCA, using immunohistochemical methods. In controls, EAAC1 immunoreactivity in Purkinje cells and glial GLAST and GLT-1 immunoreactivities in the molecular layer (ML) increased from young to old rats. One month after PCA, Purkinje cell bodies were not immunostained for neuronal EAAC1 glutamate transporter, whereas glial glutamate transporter expressions (GLAST and GLT-1) were decreased when compared to young controls. In rats with long-term PCA (6 months post-PCA), neuronal and glial glutamate transporter expressions were increased. The expression of the neuronal glutamate transporter EAAC1 was less intense than old controls, whereas glial glutamate transporters (GLAST and GLT-1) increased more than their controls. Since the level of the neuronal glutamate transporter (EAAC1) in long-term PCA did not reach that of the controls, GLAST and GLT-1 glutamate transporters seemed to be required to ensure the glutamate uptake in this type of encephalopathy. EAAC1 immunoreactivity also was expressed by Bergmann glial processes in long-term PCA, but this increase did not suffice to reverse the alterations caused at the early stage. The present findings provide evidence that transitory alteration of glutamate transporter expressions could be a significant factor in the accumulation of excess glutamate in the extracellular space in PCA, which probably makes Purkinje cells more vulnerable to glutamate effect.  相似文献   

9.
The maintenance of synaptic functions is essential for neuronal information processing in the adult brain. Astrocytes express glutamate transporters that rapidly remove glutamate from the extracellular space and they play a critical role in the precise operation of glutamatergic transmission. However, how the glutamate clearance function of astrocytes is maintained remains elusive. Here, we describe a maintenance mechanism for the glutamate uptake capacity of Bergmann glial cells (BGs) in the cerebellum. When inositol 1,4,5-trisphosphate (IP(3) ) signaling was chronically and selectively inhibited in BGs in vivo, the retention time of glutamate around parallel fiber-Purkinje cell synapses was increased. Under these conditions, a decrease in the level of the glutamate/aspartate transporter (GLAST) in BGs was observed. The same effects were observed after chronic in vivo inhibition of purinergic P2 receptors in the cerebellar cortex. These results suggest that the IP(3) signaling cascade is involved in regulating GLAST levels in BGs to maintain glutamate clearance in the mature cerebellum.  相似文献   

10.
Glutamate uptake into nerve cells and astrocytes via high-affinity transporters controls the extracellular glutamate concentration in the brain, with major implications for physiological excitatory neurotransmission and the prevention of excitotoxicity. We report here that three recently cloned rat glutamate transporter subtypes, viz. EAAC1 (neuronal), GLT1 and GLAST (glial), possess a redox-sensing property, undergoing opposite functional changes in response to oxidation or reduction of reactive sulphydryls present in their structure. In particular, thiol oxidation with 5,5'-dithio-bis(2–nitrobenzoic) acid (DTNB) and disulphide reduction with dithiothreitol (DTT) result, respectively, in reduced and increased uptake capacity by a preparation of partially purified brain transporters as well as by the three recombinant proteins reconstituted into liposomes. In this model system, EAAC1, GLT1 and GLAST react similarly to DTT/DTNB exposures despite their different contents of cysteines, suggesting that only the conserved residues might be involved in redox modulation. Redox sensitivity is a property of the glutamate transporters also when present in their native cell environment. Thus, by using cultured cortical astrocytes and the whole-cell patch-clamp technique we were able to observe dynamic increase and decrease of the glutamate uptake current in response to application of DTT and DTNB in sequence. Moreover, in the same paradigm, DDT-reversible current inhibition was observed with hydrogen peroxide instead of DTNB, indicating that the SH-based redox modulatory site is targeted by endogenous oxidants and might constitute an important physiological or pathophysiological regulatory mechanism of glutamate uptake in vivo  相似文献   

11.
Glial transporters for glutamate, glycine and GABA I. Glutamate transporters   总被引:11,自引:0,他引:11  
The termination of chemical neurotransmission in the CNS involves the rapid removal of neurotransmitter from synapses by specific transport systems. Such mechanism operates for the three major amino acid neurotransmitters glutamate, gamma-aminobutyric acid (GABA) and glycine. To date, five different high-affinity Na(+)-dependent glutamate (Glu) transporters have been cloned: GLT1, GLAST, EAAC1, EAAT4 and EAAT5. The first two are expressed mainly by glial cells, and seem to be the predominant Glu transporters in the brain. A major function of Glu uptake in the nervous system is to prevent extracellular Glu concentrations from raising to neurotoxic levels in which glial transporters seem to play a critical role in protecting neurons from glutamate-induced excitotoxicity. Under particular conditions, glial GluTs have been shown to release Glu by reversal of activity, in a Ca(2+)--and energy-independent fashion. Furthermore, an activity of these transporters as ion channels or transducing units coupled to G-proteins has recently been reported. The localization, stoichiometry, and regulation of glial GluTs are outlined, as well as their possible contributions to nervous system diseases as ALS, AD and ischemic damage.  相似文献   

12.
We have examined the expression of glutamate transporters in primary and immortalized glial precursors (GRIPs). We subsequently transduced these cells with the GLT1 glutamate transporter and examined the ability of these cells to protect motor neurons in an organotypic spinal cord culture. We show that glial restricted precursors and GRIP-derived astrocytes predominantly express glutamate transporters GLAST and GLT1. Oligodendrocyte differentiation of GRIPs results in downregulation of all glutamate transporter subtypes. Having identified these precursor cells as potential vectors for delivering glutamate transporters to regions of interest, we engineered a line of GRIPS that overexpress the glutamate transporter GLT1. These cells (G3 cells) have a nearly fourfold increase in glutamate transporter expression and at least a twofold increase in the V(max) for glutamate transport. To assess whether G3 seeding can protect motor neurons from chronic glutamate neurotoxicity, G3s were seeded onto rat organotypic spinal cord cultures. These cultures have previously been used extensively to understand pathways involved in chronic glutamate neurotoxicity of motor neurons. After G3 seeding, cells integrated into the culture slice and resulted in levels of glutamate transport sufficient to enhance total glutamate uptake. To test whether neuroprotection was related to glutamate transporter overexpression, we isolated GRIPS from the GLT1 null mouse to serve as controls. The seeding of G3s resulted in a reduction of motor neuron cell death. Hence, we believe that these cells may potentially play a role in cell-based neuroprotection from glutamate excitotoxicity.  相似文献   

13.
Astroglia terminate glutamatergic neurotransmission and prevent excitotoxic extracellular glutamate concentration by clearing synaptically released glutamate through the high-affinity, sodium-dependent glutamate transporters GLT-1 and GLAST. Many brain injures are associated with the disturbed expression of glial glutamate transporters and a subsequent increase of extracellular glutamate to neurotoxic levels. We have now followed up initial hints pointing to endothelins, a family of injury-regulated peptides, as mediators of this injury-induced loss of glial glutamate transporter expression. We observed that, in line with such a role, endothelins not only act as potent inhibitors of basal and exogenously (dbcAMP)-induced expression of GLT-1 in cortical astrocytes as shown before, but likewise inhibit expression of GLT-1 or GLAST in astrocytes cultured from the diencephalon, mesencephalon, cerebellum, and spinal cord. We further demonstrate that endothelins equally inhibit GLT-1 expression in cortical slice cultures, a culture system closely resembling the in vivo situation. Although brain injuries are usually associated with an increase in the expression of the glutamate-converting enzyme glutamine synthetase, cultured cortical astrocytes maintained with endothelins showed an almost complete loss of glutamine synthetase. Interestingly, the inhibitory effects of endothelins on the expression of glutamine synthetase, but not of glutamate transporters, was overridden by high extracellular glutamate, indicating that the primarily inhibitory action of endothelins on the various components of glial glutamate turnover dissociates in the injured brain.  相似文献   

14.
15.
Inyeong Choi  Shing Yan Chiu 《Glia》1997,20(3):184-192
Recent studies have revealed that a dynamic axon-glial signaling occurs in the rat optic nerve, which is devoid of synapses. This interaction is postulated to be mediated by non-vesicular release of glutamate via a reversal of high-affinity glutamate transporters. Here we examined the expression of glial glutamate transporters (GLAST and GLT-1) and a neuronal transporter (EAAC1) in the rat optic nerve. RT-PCR analysis revealed the presence of mRNAs for GLT-1 and GLAST, but not EAAC1. RNase protection assays showed that of the two glial transporters, mRNA for GLAST was expressed at much higher level than was GLT-1. A similar expression pattern was found in primary astrocyte culture cells. GLAST mRNA level in the optic nerve was comparable to that in the cerebellum. Developmentally, GLAST mRNA level was highest at P2 and dropped slightly by adulthood. Nerve transection resulted in little or no change in mRNA levels for GLAST and GLT-1 assayed at 4 to 14 days post-transection, but GLAST mRNA level was decreased at 64 days. Western blot analysis revealed that the rat optic nerve showed immunoreactivity to antibodies against GLT-1, GLAST, and EAAC1. In conclusion, we suggest that glial and neuronal transporters are present in the rat optic nerve, where dynamic axon-glial interaction has been known to occur. In particular, the unusually high level of expression of GLAST in the optic nerve suggests a possible role for this glial transporter in protecting optic nerves from neurotoxicity during postnatal development. GLIA 20:184–192, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Cervical nerve root injury commonly leads to radicular pain. Normal sensation relies on regulation of extracellular glutamate in the spinal cord by glutamate transporters. The goal of this study was to define the temporal response of spinal glutamate transporters (glial glutamate transporter 1 [GLT‐1], glutamate‐aspartate transporter [GLAST], and excitatory amino acid carrier 1) following nerve root compressions that do or do not produce sensitivity in the rat and to evaluate the role of glutamate uptake in radicular pain by using ceftriaxone to upregulate GLT‐1. Compression was applied to the C7 nerve root. Spinal glutamate transporter expression was evaluated at days 1 and 7. In a separate study, rats underwent a painful root compression and were treated with ceftriaxone or the vehicle saline. Glial glutamate transporter expression, astrocytic activation (glial fibrillary acidic protein [GFAP]), and neuronal excitability were assessed at day 7. Both studies measured behavioral sensitivity for 7 days after injury. Spinal GLT‐1 significantly decreased (P < 0.04) and spinal GLAST significantly increased (P = 0.036) at day 7 after a root injury that also produced sensitivity to both mechanical and thermal stimuli. Within 1 day after ceftriaxone treatment (day 2), mechanical allodynia began to decrease; both mechanical allodynia and thermal hyperalgesia were attenuated (P < 0.006) by day 7. Ceftriaxone also reduced (P < 0.024) spinal GFAP and GLAST expression, and neuronal hyperexcitability in the spinal dorsal horn, restoring the proportion of spinal neurons classified as wide dynamic range to that of normal. These findings suggest that nerve root‐mediated pain is maintained jointly by spinal astrocytic reactivity and neuronal hyperexcitability and that these spinal modifications are associated with reduced glutamate uptake by GLT‐1. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
CNS region-specific regulation of glial glutamate transporter expression   总被引:5,自引:0,他引:5  
The neuronal cell death associated with certain neurodegenerative disorders as well as acute brain injuries is in part due to the reduced expression of glial glutamate transporters and the subsequent accumulation of toxic extracellular glutamate concentrations. Extracellular factors previously found to potently stimulate the expression of the glial glutamate transporters, GLT-1/EAAT2 and GLAST/EAAT1, in astroglial cultures of rat cerebral hemispheres are PACAP, TGF alpha, and EGF. In the present study, we sought to determine whether similar stimulatory influences apply for astroglia from other areas of the central nervous system (CNS). Immunoblot and real-time RT-PCR analysis of striatal astroglial cultures maintained for 72 h with PACAP, TGF alpha, or EGF revealed a prominent increase in GLT-1 and GLAST expression. In apparent contrast, all factors completely failed to affect GLT-1 and GLAST expression in astroglial cultures from the cerebellum, mesencephalon, and spinal cord between 36 h and 7 days. This failure was not due to the absence of functional recognition or transduction machineries for the extracellular factors as suggested by the additional observations that cerebellar, mesencephalic and spinal cord glia were capable of responding to stimulation with PACAP, TGF alpha, or EGF for 10 min with activation of CREB. Moreover, dibutyryl cyclic AMP (dbcAMP) potently promoted GLT-1 and/or GLAST expression in mesencephalic, cerebellar and spinal cord glia, further indicating that extracellular factors regulate glial glutamate transporter expression throughout the CNS. Together these findings identify PACAP, TGF alpha and EGF as potent regulators of glutamate transporter expression in striatal glia. In addition, these findings provide evidence for a CNS region-specific regulation of glial glutamate transport.  相似文献   

18.
Excessive activation of glutamate receptors in spinal dorsal horn neurons is a key mechanism leading to abnormal neuronal activation in pathological pain conditions. Previous studies have shown that activation of glutamate receptors in the spinal dorsal horn is enhanced by impaired glial glutamate transporter functions and proinflammatory cytokines including interleukin‐1 beta (IL‐1β). In this study, we for the first time revealed that spinal glial glutamate transporter activities in the neuropathic animals are attenuated by endogenous IL‐1β. Specifically, we demonstrated that nerve injury results in an increased expression of IL‐1β and activation of PKC in the spinal dorsal horn as well as suppression of glial glutamate uptake activities. We provided evidence that the nerve‐injury induced suppression of glial glutamate uptake is at least in part ascribed to endogenous IL‐1β and activation of PKC in the spinal dorsal horn. IL‐1β reduces glial glutamate transporter activities through enhancing the endocytosis of both GLT‐1 and GLAST glial glutamate transporters. The IL‐1β induced trafficking of glial glutamate transporters is through the calcium/PKC signaling pathway, and the dynamin‐dependent endocytosis, which is dependent on the integrity of actin filaments. The signaling pathway regulating glial glutamate transporters revealed in this study provides novel targets to attenuate aberrant activation of glutamate receptors in the spinal dorsal horn, which could ultimately help the development of analgesics. GLIA 2014;62:1093–1109  相似文献   

19.
The glial glutamate transporters GLAST and GLT-1 are primarily responsible for the removal of glutamate from brain extracellular fluid. This study compares the distribution of GLAST and GLT-1 expression in the circumventricular organs of the brain, in the meninges, and in the dorsal root ganglion. By using a highly sensitive nonisotopic in situ hybridization method and immunostaining, we demonstrate marked differences in the expression patterns for the two transporters. In the three sensory circumventricular organs that contain neuronal elements, i.e., the subfornical organ, the vascular organ of the lamina terminalis, and the area postrema, GLAST is strongly expressed, whereas GLT-1 is faintly expressed or absent. Both transporters are absent from the choroid plexus, and only GLAST mRNA is found in the subcommisural organ. In the pineal gland, GLAST is expressed by astrocytic cells near the pineal stalk, whereas GLT-1 is expressed by pinealocytes throughout the gland. In the pituitary gland, GLAST is likely expressed by folliculo-stellate cells in the anterior lobe, by a group of astrocyte-like cells and by marginal cells in the intermediate lobe, and by pituicytes in the posterior lobe, whereas GLT-1 is expressed only by the astrocyte-like cells in the intermediate lobe. Finally, GLAST, but not GLT-1, is expressed by specific layers of the meninges, and by satellite cells in the dorsal root ganglion. These results show that GLAST is the primary glutamate transporter in the circumventricular organs. The data provide further evidence that these two glutamate transporters fulfill markedly different functions in the nervous system.  相似文献   

20.
The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号