首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes in chronic liver disease: from old concepts to new evidence   总被引:4,自引:0,他引:4  
The liver is one of the principal organs involved in glucose metabolism together with skeletal muscle and adipose tissue. A link between diabetes and chronic liver disease (CLD) was first observed in the early half of the last century, but to date several questions remain unsolved. Altered glucose tolerance has been well described in alcoholic CLD, non-alcoholic fatty liver disease, chronic hepatitis C and portal hypertension. Moreover, insulin resistance is assuming an ever-growing importance in CLD; chronic hepatitis C has recently been proposed as a metabolic disease and insulin sensitivity as a predictive factor for liver fibrosis.CLD is also complicated by acquired growth hormone (GH) resistance, characterized by low concentrations of insulin-like growth factor-1 (IGF-1) with respect to normal or elevated GH levels. GH resistance in CLD is determined by several factors, including malnutrition, impaired liver function and reduced expression of hepatic GH receptors. We recently described the possible role of tumour necrosis factor-alpha (TNF-alpha) in blunting the hepatic response to GH in patients with chronic hepatitis C. The role of GH in impaired glucose metabolism is well known, and recent evidence suggests a receptor and/or post-receptor modulation of insulin signalling. Moreover, as in other chronic inflammatory conditions, pro-inflammatory cytokines may directly modulate the signal cascade that follows insulin binding to its receptor in the course of CLD.In this review, the proposed links between impaired glucose tolerance and CLD are analysed, special emphasis being focussed on the most recent findings concerning the interplay of chronic inflammation, GH resistance and insulin resistance.  相似文献   

2.
目的探讨LPS在慢性乙型肝炎肝内血管病变中的作用。方法将120例慢性乙型肝炎患者按肝内血管病变级别分为1、2、3级3组,另设10例大致正常肝组织作为对照组。采用ELISA法定量检测血清LPS水平。采用免疫组化染色法检测肝组织TLR4的表达,采用综合评分法判断结果。结果①健康对照组血清LPS水平较低(0.30±0.13ng/ml)。肝内血管病变1级组血清LPS水平为0.32±0.14ng/ml,与正常对照组比较无明显差异(P>0.05)。而肝内血管病变2级、3级组血清LPS水平分别为0.71±0.14ng/ml,1.10±0.15ng/ml,明显高于正常对照组(P<0.01)。慢性乙型肝炎患者血清LPS水平与肝内血管病变严重程度呈正相关(r=0.892,P<0.01)。②不同肝内血管病变级别的慢性乙型肝炎肝组织TLR4阳性表达与对照组比较均有差异(P<0.05)。TLR4主要表达在胞膜上及部分胞浆内,细胞核无表达。TLR4在慢性乙型肝炎肝组织的表达强度与肝内血管病变分级呈正相关(r=0.728,P<0.01)。结论 LPS及其受体TLR4在慢性乙型肝炎肝内血管病变中起着重要作用。血清LPS水平可作为判断肝内血管病变程度的指标之一。  相似文献   

3.
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.  相似文献   

4.
Oxidative stress plays an important role in the pathogenesis of various chronic liver diseases (CLD) and increasing evidence have confirmed the contributory role of oxidative stress in the pathogenesis of drugs and chemical-induced CLD. Chronic liver injury is manifested as necrosis, cholestasis, fibrosis, and cirrhosis. Chronic administration of anti-tubercular, anti-retroviral, immunosuppressive drugs is reported to induce free radical generation during their biotransformation in the liver. Further, these reactive intermediates are said to induce profibrogenic cytokines, several inflammatory markers, collagen synthesis during the progression of hepatic fibrosis. Oxidative stress and free radicals are reported to induce activation and proliferation of hepatic stellate cells in the injured liver leading to the progression of CLD. Hence, to counteract or to scavenge these reactive intermediates, several plant-derived antioxidant principles have been effectively employed against oxidative stress and came out with promising results in human and experimental models of CLD. This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.  相似文献   

5.
Inflammatory cell and cytokine cascade activation is present in humans with alcoholic liver disease as well as in animal models of alcohol-induced liver damage. Gut-derived lipopolysaccharide (LPS), a ligand of the Toll-like receptor 4 (TLR4), plays a central role in triggering and maintaining activation of Kupffer cells in alcoholic hepatitis. In this mini-review, we describe molecular mechanisms that lead to increased inflammatory cell activation by alcohol and LPS and discuss the mechanism for activation in alcohol-exposed macrophages. In alcohol-induced liver disease we discuss the role of MyD88-independent but IRF3-mediated TLR4 signaling in alcohol-related liver inflammation and liver damage.  相似文献   

6.
'Detoxification' of gut-derived toxins and microbial products from gut-derived microbes is a major role of the liver. While the full repertoire of gut-derived microbial products that reach the liver in health and disease is yet to be explored, the levels of bacterial lipopolysaccharide (LPS), a component of Gram-negative bacteria, is increased in the portal and/or systemic circulation in several types of chronic liver diseases. Increased gut permeability and LPS play a role in alcoholic liver disease where alcohol impairs the gut epithelial integrity through alterations in tight junction proteins. In addition, non-alcoholic fatty liver disease is also associated with increased serum LPS levels and activation of the pro-inflammatory cascade plays a central role in disease progression. Microbial danger signals are recognized by pattern recognition receptors such as the Toll-like receptor 4 (TLR4). Increasing evidence suggests that TLR4-mediated signaling via the MyD88-dependent or MyD88-independent pathways may play different roles in liver diseases associated with increased LPS exposure of the liver as a result of gut permeability. For example, we showed that in alcoholic liver disease, the MyD88-independent, IRF3-dependent TLR4 cascade plays a role in steatosis and inflammation. Our recent data demonstrate that chronic alcohol exposure in the liver leads to sensitization of Kupffer cells to LPS via a mechanism involving upregulation of microRNA-155 in Kupffer cells. Thus, understanding the cell-specific recognition and intracellular signaling events in sensing gut-derived microbes will help to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases.  相似文献   

7.
Alcohol synergistically enhances the progression of liver disease and the risk for liver cancer caused by hepatitis C virus (HCV). However, the molecular mechanism of this synergy remains unclear. Here, we provide the first evidence that Toll-like receptor 4 (TLR4) is induced by hepatocyte-specific transgenic (Tg) expression of the HCV nonstructural protein NS5A, and this induction mediates synergistic liver damage and tumor formation by alcohol-induced endotoxemia. We also identify Nanog, the stem/progenitor cell marker, as a novel downstream gene up-regulated by TLR4 activation and the presence of CD133/Nanog-positive cells in liver tumors of alcohol-fed NS5A Tg mice. Transplantation of p53-deficient hepatic progenitor cells transduced with TLR4 results in liver tumor development in mice following repetitive LPS injection, but concomitant transduction of Nanog short-hairpin RNA abrogates this outcome. Taken together, our study demonstrates a TLR4-dependent mechanism of synergistic liver disease by HCV and alcohol and an obligatory role for Nanog, a TLR4 downstream gene, in HCV-induced liver oncogenesis enhanced by alcohol.  相似文献   

8.
Bacterial lipopolysaccharide (LPS) stimulates Kupffer cells and participates in the pathogenesis of alcohol-induced liver injury. However, it is unknown whether LPS directly affects hepatic stellate cells (HSCs), the main fibrogenic cell type in the injured liver. This study characterizes LPS-induced signal transduction and proinflammatory gene expression in activated human HSCs. Culture-activated HSCs and HSCs isolated from patients with hepatitis C virus-induced cirrhosis express LPS-associated signaling molecules, including CD14, toll-like receptor (TLR) 4, and MD2. Stimulation of culture-activated HSCs with LPS results in a rapid and marked activation of NF-kappaB, as assessed by in vitro kinase assays for IkappaB kinase (IKK), IkappaBalpha steady-state levels, p65 nuclear translocation, NF-kappaB-dependent luciferase reporter gene assays, and electrophoretic mobility shift assays. Lipid A induces NF-kappaB activation in a similar manner. Both LPS- and lipid A-induced NF-kappaB activation is blocked by preincubation with either anti-TLR4 blocking antibody (HTA125) or Polymyxin B. Lipid A induces NF-kappaB activation in HSCs from TLR4-sufficient (C3H/OuJ) mice but not from TLR4-deficient (C3H/HeJ) mice. LPS also activates c-Jun N-terminal kinase (JNK), as assessed by in vitro kinase assays. LPS up-regulates IL-8 and MCP-1 gene expression and secretion. LPS-induced IL-8 secretion is completely inhibited by the IkappaB super repressor (Ad5IkappaB) and partially inhibited by a specific JNK inhibitor, SP600125. LPS also up-regulates cell surface expression of ICAM-1 and VCAM-1. In conclusion, human activated HSCs utilize components of TLR4 signal transduction cascade to stimulate NF-kappaB and JNK and up-regulate chemokines and adhesion molecules. Thus, HSCs are a potential mediator of LPS-induced liver injury.  相似文献   

9.
BACKGROUND/AIMS: An impaired immunologic response to infection has been recognized as a major defect in the pathogenesis of sepsis and multi-organ failure. Sepsis-associated liver dysfunction and damage are main determinants for the course of the disease. CpG-motif-containing DNA-sequences (CpG-ODN) were previously shown to confer protection in models of infection by stimulating both innate and specific immune responses. Herein, we studied the effect of CpG-ODN in lipopolysaccharide (LPS)-associated hepatotoxicity. METHODS: Sprague Dawley rats pre-treated at day 6 with either CpG-ODN or inert DNA were challenged with E. coli LPS and subsequently studied for liver injury at 6 and 16 h using in vivo fluorescence microscopy and immunohistochemistry. Western blot protein analysis served for assessment of expression of TLR4, TNF receptor-associated factor 6 (TRAF6), NFkappaB and caspase-3. To evaluate CpG-ODN effects during non-septic conditions, additional animals were solely exposed to CpG-ODN and studied after 1 and 6 days. RESULTS: CpG-ODN application induced marked hepatic microcirculatory deterioration and liver dysfunction at day 1, however, with almost complete recovery to normal at day 6. Interestingly, CpG-ODN pre-treatment decreased LPS-induced leukocyte-endothelial cell interaction, sinusoidal perfusion failure and caspase-3-dependent apoptotic cell death. Although Kupffer cell phagocytic activity was not affected, CpG-ODN pre-treatment in LPS-challenged animals attenuated hepatic protein expression of TRAF6 and NFkappaB and increased TLR4 by almost 100%. CONCLUSIONS: CpG-containing DNA-sequences induce early hepatic injury, but mediate long-term protection against LPS hepatotoxicity. The mechanism of protection is based on the induction of cross-tolerance, probably via inhibition of the downstream TRAF6-NFkappaB signaling pathway and upregulation of the TLR4 surface receptor.  相似文献   

10.
11.
A structured literature review was performed to detail the frequency and etiology of chronic liver disease (CLD) in Aboriginal North Americans. CLD affects Aboriginal North Americans disproportionately and is now one of the most common causes of death. Alcoholic liver disease is the leading etiology of CLD, but viral hepatitis, particularly hepatitis C, is an important and growing cause of CLD. High rates of autoimmune hepatitis and primary biliary cirrhosis (PBC) are reported in regions of coastal British Columbia and southeastern Alaska. Non-alcoholic liver disease is a common, but understudied, cause of CLD. Future research should monitor the incidence and etiology of CLD and should be geographically inclusive. In addition, more research is needed on the treatment of hepatitis C virus (HCV) infection and non-alcoholic fatty liver disease (NAFLD) in this population.  相似文献   

12.
At present chronic liver disease(CLD),the third commonest cause of premature death in the United Kingdom is detected late,when interventions are ineffective,resulting in considerable morbidity and mortality.Injury to the liver,the largest solid organ in the body,leads to a cascade of inflammatory events.Chronic inflammation leads to the activation of hepatic stellate cells that undergo transdifferentiation to become myofibroblasts,the main extra-cellular matrix producing cells in the liver;over time increased extra-cellular matrix production results in the formation of liver fibrosis.Although fibrogenesis may be viewed as having evolved as a“wound healing”process that preserves tissue integrity,sustained chronic fibrosis can become pathogenic culminating in CLD,cirrhosis and its associated complications.As the reference standard for detecting liver fibrosis,liver biopsy,is invasive and has an associated morbidity,the diagnostic assessment of CLD by non-invasive testing is attractive.Accordingly,in this review the mechanisms by which liver inflammation and fibrosis develop in chronic liver diseases are explored to identify appropriate and meaningful diagnostic targets for clinical practice.Due to differing disease prevalence and treatment efficacy,disease specific diagnostic targets are required to optimally manage individual CLDs such as non-alcoholic fatty liver disease and chronic hepatitis C infection.To facilitate this,a review of the pathogenesis of both conditions is also conducted.Finally,the evidence for hepatic fibrosis regression and the mechanisms by which this occurs are discussed,including the current use of antifibrotic therapy.  相似文献   

13.

Background

Chronic liver disease (CLD) is a global medical problem. This disease is associated with increased hepatic oxidative stress. One of the antioxidant enzymes that protect cells against this stress is heme oxygenase-1 (HO-1).

Objectives

This study aimed to investigate the mRNA expression of HO-1 in Egyptian patients with CLD and its relation to oxidative stress biomarkers.

Patients and Methods

Levels of serum ferritin, carboxyhemoglobin, malondialdehyde (MDA), and erythrocyte-reduced glutathione (GSH) were measured, and HO-1 mRNA expression was detected in 45 CLD patients (15 with nonalcoholic steatohepatitis [NASH], 15 with chronic hepatitis C, and 15 with liver cirrhosis) and 15 healthy controls.

Results

HO-1 mRNA expression was increased in patients with NASH, chronic hepatitis C, and liver cirrhosis compared to controls. The expression in cirrhotic patients was significantly higher than that in patients with NASH and chronic hepatitis C. Compared to controls, patients with NASH, chronic hepatitis C, and liver cirrhosis had higher levels of ferritin, carboxyhemoglobin, and MDA and lower levels of GSH. HO-1 mRNA expression was positively correlated with levels of carboxyhemoglobin, serum ferritin, and serum MDA and negatively correlated with levels of erythrocyte GSH in CLD patients.

Conclusions

HO-1 mRNA expression was significantly increased in CLD patients, and the increase reflected the severity of the disease. The significant relationship between the increased HO-1 expression and oxidative stress biomarkers in patients with CLD suggests that HO-1 may play an important role in protecting the liver from oxidative stress-dependent damage. Therefore, induction of HO-1 could be a novel therapeutic option for CLD.  相似文献   

14.
Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease(CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.  相似文献   

15.
Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases.  相似文献   

16.
This study demonstrates that pretreatment with polyinosinic-polycytidylic acid (poly I:C) significantly decreased the mortality and liver injury caused by injection of lipopolysaccharide (LPS) in the presence of d-galactosamine (d-GalN) in C57BL/6 mice. Depletion of natural killer, natural killer T, and T cells did not change the protective effect of poly I:C on LPS/d-GalN-induced liver injury in vivo. However, depletion of macrophages abolished LPS/d-GalN-induced fulminant hepatitis, which could be restored by adoptive transfer of macrophages but not by transfer of poly I:C-treated macrophages. Treatment with poly I:C down-regulated the expression of the toll-like receptor 4 (TLR4) on macrophages and reduced the sensitivity of macrophages (Kupffer cells and peritoneal macrophages from C57BL/6 mice, or RAW264.7 cells) to LPS stimulation. Poly I:C pretreatment also impaired the signaling of mitogen-activated protein kinases and NF-kappaB induced by LPS in RAW264.7 cells. Blockade of TLR3 with a TLR3 antibody abolished poly I:C down-regulation of TLR4 expression and LPS stimulation of TNF-alpha production in RAW264.7 cells. Taken together, our findings suggest that activation of TLR3 by its ligand, poly I:C, induced LPS tolerance by down-regulation of TLR4 expression on macrophages.  相似文献   

17.
The Toll-like receptor (TLR)4 receptor complex, TLR4/MD-2, plays an important role in the inflammatory response against lipopolysaccharide, a ubiquitous membrane component in Gram-negative bacteria. Ligand recognition by TLR4 initiates multiple intracellular signaling pathways, leading to production of proinflammatory mediators and type I IFN. Ligand interaction also leads to internalization of the surface receptor complex into lysosomes, leading to the degradation of TLR4 and the termination of LPS response. However, surface level of TLR4 receptor complex is maintained via continuous replenishment of TLR4 from intracellular compartments like Golgi and endosomes. Here we show that continuous replenishment of TLR4 from Golgi to plasma membrane is regulated by the small GTPase Rab10, which is essential for optimal macrophage activation following LPS stimulation. Expression of Rab10 is inducible by LPS. Blockade of Rab10 function leads to decreased membrane TLR4 expression and diminished production of inflammatory cytokines and interferons upon LPS stimulation. These findings suggest that Rab10 expression provides a mechanism to refine TLR4 signaling by regulating the trafficking rate of TLR4 onto the plasma membrane. In addition, we show that altered Rab10 expression in macrophages influences disease severity in an in vivo model of LPS-induced acute lung injury, suggesting Rab10 as a possible therapeutic target for human acute respiratory distress syndrome (ARDS).  相似文献   

18.
The innate immune response to invading pathogens is centred upon a family of non-clonal, germline-encoded pattern recognition receptors (PRRs), the Toll-like receptors (TLRs). These provide specificity for a vast range of microbial pathogens, and offer an immediate anti-microbial response system. Thirteen mammalian TLRs have been described; 10 are expressed in humans, each responsible for the recognition of distinct, invariant microbial structures originating from bacteria, viruses, fungi and protozoa. The two most thoroughly studied are TLR4 and TLR2, the PRRs for Gram-negative and Gram-positive bacterial products, respectively. TLR4 is also the major receptor recognising endogenous ligands released from damaged or dying cells. Activation of a TLR by its relevant ligand rapidly ignites a complex intracellular signaling cascade that ultimately results in upregulation of inflammatory genes and production of proinflammatory cytokines, interferons and recruitment of myeloid cells. It also stimulates expression, upon antigen presenting cells, of co-stimulatory molecules required to induce an adaptive immune response. Whilst a robust TLR response is critical for survival and defence against invading pathogens, inappropriate signaling in response to alterations in the local microflora environment can be detrimental. Such 'unhelpful TLR responses' could form the basis for a large number of gastrointestinal and liver disorders, including inflammatory bowel disease, viral hepatitis, autoimmune liver diseases and hepatic fibrosis. As our understanding of TLRs expands, the pathogenesis of a number of gastrointestinal disorders will be further elucidated, and this offers potential for specific therapies aimed directly at TLR signaling.  相似文献   

19.

Background

Toll-like receptor 7 (TLR7) is an endosomal TLR that is activated by single-stranded RNA, including endogenous microRNAs (e.g., let-7b). Increased hepatic expression of TLRs, microRNAs, and inflammatory mediators is linked to ethanol (EtOH) exposure and to alcoholic liver disease (ALD). ALD invovles chronic hepatic inflammation that can progress to alcoholic hepatitis (AH), a particularly severe form of ALD. This study aimed to investigate TLR7 expression in patients with different liver disease phenotypes and in mouse liver following alcohol exposure.

Methods

Hepatic mRNA expression was determined by RNA sequencing of liver tissue from patients with liver disease or normal liver tissue. Mice were exposed to subchronic EtOH followed by administration of the TLR7 agonist imiquimod. Primary human hepatocytes were exposed to EtOH or imiquimod in vitro.

Results

RNAseq analysis revealed that hepatic expression of TLR7 and let-7b microRNA, an endogenous TLR7 ligand, was significantly increased in AH patients. Hepatic expression of TLR7 and let-7b positively correlated with hepatic IL-8 mRNA expression. In mice, EtOH increased hepatic TLR7 mRNA expression and enhanced imiquimod-induced expression of the pro-inflammatory mediators TNFα, MCP-1, and iNOS. In vitro, EtOH significantly increased hepatocyte TLR7 mRNA and the TLR7 agonist, imiquimod, induced hepatocyte expression of TNFα and IL-8 mRNA. EtOH also increased the release of let-7b in microvesicles from hepatocytes, suggesting that EtOH can increase the expression of both the receptor and its endogenous ligand.

Conclusions

These studies suggest that increased TLR7 signaling caused by increased expression of TLR7 and its endogenous ligand let-7b may contribute to the enhanced inflammatory response associated with AH.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号