首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica   总被引:3,自引:0,他引:3  
The anti-inflammatory activity of nine isoflavonoids 5,7-dihydroxy-3-(3'-hydroxy-4',5'dimethoxy)-8-methoxy-4H-1-benzopyran-4-one 1, 5,7-dihydroxy-3-(3'-hydroxyl-4', 5'-dimethoxy)-6-methoxy-4H-1-benzopyran-4-one 2, 5, 7-dihydroxy-3-(4'-hydroxy)-6-methoxy-4H-1-benzopyrane-4-one 3, 5-hydroxy-3-(4'-hydroxy)-6,7-methylenedioxy-4H-1-benzopyran-4-one 4, 5-hydroxy-3-(4'-methoxy)-6,7-methylenedioxy-4H-1-benzopyran-4-one 5, 5-methoxy-3-(4'-hydroxy)-6,7-methyenedioxy-4H-1-benzopyran-4-one 6, 5,7-dihydroxy-3-(3'-hydroxy-4'-methoxy)-6-methoxy-4H-1-benzopyran-4-one 7, 5,7-dihydroxy-3-(3'-methoxy-4'-hydroxy)-6-methoxy-4H-1-benzopyran-4-one 8, and isopeonol 9 determined by a spectrophotometric assay using the activated human neutrophils. These isoflavonoids were isolated from an important folkloric medicinal plant Irsa (Iris germanica L.), a member of the family Iridaceae. Structures of these compounds were identified by spectral comparison with the reported data and active members of this group adds into the growing number of non-steroidal anti-inflammatory agents.  相似文献   

2.
Four monoterpene hydroperoxides were isolated from aerial parts of Chenopodium ambrosioides along with ascaridole (1), the anthelmintic principle of this plant, as anti-trypanosomal compounds. The structures of these monoterpenes were determined to be (-)-(2S,4S)- and (-)-(2R,4S)-p-mentha-1(7),8-dien-2-hydroperoxide (2a and 3a) and (-)-(1R,4S)- and (-)-(1S,4S)-p-mentha-2,8-dien-1-hydroperoxide (4a and 5a) on the basis of spectroscopic methods and chemical correlations. In vitro trypanocidal activities of ascaridole (1) and these hydroperoxides (2a-5a) against epimastigotes of Trypanosoma cruzi were 23, 1.2, 1.6, 3.1, and 0.8 microM, respectively. Fresh leaves of C. ambrosioides also contained isomeric hydroperoxides 6a and 7a, and the content ratio of 2a-7a suggested that these hydroperoxides were formed through the singlet-oxygen oxidation of limonene.  相似文献   

3.
From Penicillium janczewskii, obtained from a marine sample, two new diastereomeric quinolinones, 3S,4R-dihydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (1) and 3R,4R-dihydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (2), were identified, along with two known alkaloids, peniprequinolone (3) and 3-methoxy-4-hydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (4). Cytotoxicity testing on eight tumor cell lines revealed a moderate specificity of 2 on SKOV-3 cells.  相似文献   

4.
From the ethanolic extract of the roots of Ficus beecheyana, threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol (1), erythro-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol (2), trans-4,5-bis(4-hydroxy-3-methoxyphenyl)-1,3-dioxacyclohexane (3), threo-3-(4-hydroxy-3,5-dimethoxyphenyl)-3-ethoxypropane-1,2-diol (4), 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (5), and 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (6) were isolated. The structures of the new compounds 1-5 were elucidated by the analysis of their spectroscopic data.  相似文献   

5.
From the roots of Nylandtia spinosa, four new triterpene saponins, 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-galactopyranosyl-(1-->4)-[alpha- l-arabinopyranosyl-(1-->3)]-beta- d-xylopyranosyl-(1-->4)-[beta- d-apiofuranosyl-(1-->3)]-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 1), 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-galactopyranosyl-(1-->4)-[alpha- l-arabinopyranosyl-(1-->3)]-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 2), 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-apiofuranosyl-(1-->4)-[beta- d-galactopyranosyl-(1-->2)]-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 3), and 3- O-beta- d-glucopyranosylpresenegenin 28- O-beta- d-apiofuranosyl-(1-->3)-beta- d-xylopyranosyl-(1-->4)-alpha- l-rhamnopyranosyl-(1-->2)-beta- d-fucopyranosyl ester ( 4), were isolated, together with the known tenuifolin. Their structures were established mainly by 2D NMR techniques and mass spectrometry. Compounds 1- 4 were evaluated for cytotoxicity against HCT 116 and HT-29 human colon cancer cells, but were inactive (IC50 > 5 microg/mL).  相似文献   

6.
欧阳明安  杨崇仁  汪汉卿 《中草药》1999,30(12):881-887
中药黄花远志 Polygala arillata Buch.-Ham.远志科远志属植物,为落叶灌木或小乔木,分布于西南、华东、陕西、湖北等地。其根具有祛风除湿,补虚消肿,调经活血等功效。我们对采自云南省文山县黄花远志的皂苷成分进行了研究,从甲醇提取物中分得7个单体三萜皂昔,经波谱和文献分析确定了它们的结构,其中有 6个新三萜皂苷并命名为arilloside A~F。  相似文献   

7.
Volatiles from the metasternal glands of two species of true bugs of the Triatominae subfamily, Triatoma brasiliensis and Triatoma infestans, were analyzed by SPME-GC/MS. Two sets of new natural products were found: (4S,5S)- and (4R,5R)-2,2,4-triethyl-5-methyl-1,3-dioxolane (1) (major component) and (4S*,5S*)-2,4-diethyl-2,5-dimethyl-1,3-dioxolane (2) (trace component), (2R/S,4S,5S)- as well as (2R/S,4R,5R)-4-ethyl-5-methyl-2-(1-methylethyl)-1,3-dioxolane (3) (minor component), (2R/S,4S*,5S*)-4-ethyl-5-methyl-2-(1-methylpropyl)-1,3-dioxolane (4) (trace component), and (2R/S,4S*,5S*)-4-ethyl-5-methyl-2-(2-methylpropyl)-1,3-dioxolane (5) (trace component). Syntheses of optically active 1 and 3 were carried out by reacting pure enantiomers of 2,3-pentanediol with 3-pentanone or 2-methylpropanal. The preparation of pure stereoisomers of 2,3-pentanediol involved a novel key step for the synthesis of secondary alcohols: the reduction of a carboxylic ester by means of DIBAH and in situ alkylation of the intermediate by Grignard reaction at low temperature. Starting from the pure enantiomers of methyl lactate, all four stereoisomers of 2,3-pentanediol were synthesized and transformed to the corresponding isomers of 1 and 2. Relative configurations of the natural products and enantiomeric compositions of naturally occurring 1 and 2 were determined by comparison of their mass spectra and gas chromatographic retention times (co-injection) with those of authentic reference samples.  相似文献   

8.
玉簪花的抗肿瘤活性甾体皂苷成分研究   总被引:1,自引:0,他引:1  
目的为实现对药用植物的可持续利用,对玉簪Hosta plantaginea的花进行了甾体皂苷类成分及其体外抗肿瘤作用的研究。方法应用常规柱色谱(包括正相、反相和凝胶柱色谱)分离和波谱分析方法对玉簪花进行分离和结构鉴定;以3种悬浮肿瘤细胞白血病肿瘤细胞株(HL-60、Jurkat、K562)和3种贴壁实体瘤细胞株(肝癌HepG2、乳腺癌MCF7、胃癌SGC7901)为研究对象,采用MTT法对化合物进行体外抗肿瘤活性筛选研究。结果从玉簪花中分离鉴定了10个化合物,其中3个化合物为首次从该植物中分离得到,分别为吉托皂苷元(1)、吉托皂苷元-3-O-β-D-葡萄糖(1→4)-β-D-半乳糖苷(3)、吉托皂苷元-3-O-{β-D-木糖(1→4)-β-D-葡萄糖(1→2)-[β-D-木糖(1→3)]-O-β-D-葡萄糖(1→4)-β-D-半乳糖苷}(10);7个已知化合物,分别是吉托皂苷元-3-O-β-D-半乳糖苷(2)、吉托皂苷元-3-O-α-L-鼠李糖(1→2)-β-D-半乳糖苷(4)、吉托皂苷元-3-O-β-D-葡萄糖(1→2)-β-D-葡萄糖(1→4)-β-D-半乳糖苷(5)、吉托皂苷元-3-O-β-D-葡萄糖(1→4)-O-[α-L-鼠李糖(1→2)]-β-D-半乳糖苷(6)、替告皂苷元-3-O-β-D-葡萄糖(1→4)-O-[α-L-鼠李糖(1→2)]-β-D-半乳糖苷(7)、吉托皂苷元-3-O-{β-D-葡萄糖(1→2)-O-[β-D-木糖(1→3)]-O-β-D-葡萄糖(1→4)-β-D-半乳糖苷}(8)、吉托皂苷元-3-O-β-D-葡萄糖(1→2)-O-[α-L-鼠李糖(1→4)-β-D-木糖(1→3)]-O-β-D-葡萄糖(1→4)-β-D-半乳糖苷(9)。体外抗肿瘤活性实验结果显示化合物5,6,8~10对肝癌HepG2、乳腺癌MCF7和胃癌SGC7901肿瘤细胞毒活性较强。结论玉簪花中的甾体化合物对不同肿瘤细胞具有细胞毒选择性,有一定的抗癌活性,同时利用地上部分的花作为药用资源,可以实现对该药用植物的可持续利用。  相似文献   

9.
From the dried leaves, flowers, and twigs of Adina racemosa, five new flavonoid glycosides, quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (1), quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1-->2)]-(4-O-trans-p-coumaroyl)-beta-d-galactopyranoside (2), kaempferol 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1--> 2)]-(4-O-trans-p-coumaroyl)-beta-d-galactopyranoside (3), quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-p-coumaroyl)-alpha-l-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (4), and quercetin 3-O-alpha-l-rhamnopyranosyl(1-->6)-[(4-O-trans-caffeoyl)-alpha-l-rhamnopyranosyl(1-->2)]-(3-O-trans-p-coumaroyl)-beta-d-galactopyranoside (5), and eight known compounds were isolated. The structures of the new compounds were determined by spectroscopic and chemical means. Their inhibitory activities on protein synthesis were assessed. The new glycosides were found to be inhibitors of eukayrotic, but not prokaryotic, protein synthesis.  相似文献   

10.
Eight bioactive triterpenoid saponins (1-8) were isolated from the seeds of Aesculus chinensis, four of which are novel compounds. The major saponins were identified as escin Ia (1), Ib (2), isoescin Ia (3) and Ib (4), while the new compounds were identified as 22alpha-tigloyl-28-acetylprotoaescigenin-3beta-O-?beta -D-glucopyranos yl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVc, 5), 22alpha-angeloyl-28-acetylprotoaescigenin-3beta-O-?bet a-D-glucopyrano syl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVd, 6), 28-tigloylprotoaescigenin-3beta-O-?beta-D-glucopyranosyl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVe, 7), and 28-angeloylprotoaescigenin-3beta-O-?beta-D-glucopyranosyl (1-2) ?beta-D-glucopyranosyl (1-4)-beta-D-glucopyranosiduronic acid (escin IVf, 8). The structures were determined by chemical and spectroscopic methods. All the above compounds were evaluated for their inhibitory activity against HIV-1 protease.  相似文献   

11.
Three new diarylpropanes (1-3), a new arylpropyl quinone (4), and the known 1-(2-hydroxy-4-methoxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)propane (5) were isolated from a methanol extract of stems of Combretum griffithii. Their structures were elucidated by spectroscopic methods. Compounds 1, 2, 4, and 5 showed cytotoxicity against one or more cancer cell lines (KB, MCF7, and NCI-H187), and compound 5 exhibited activity against Mycobacterium tuberculosis (MIC 3.13 μg/mL).  相似文献   

12.
肉豆蔻中新的新木脂素类化合物   总被引:2,自引:1,他引:2  
目的:研究肉豆蔻Myristica fragrans种仁的化学成分。方法:采用硅胶柱色谱方法进行分离、纯化,NMR和MS等方法进行结构鉴定。结果:从肉豆蔻种仁氯仿提取物中得到15个化合物,分别鉴定为肉豆蔻醚(1)、甲基丁香油酚(2)、黄樟醚(3)、2,3-二氢-7-甲氧基-2-(3,4-亚甲二氧基苯基)-3-甲基-5-(E)-丙烯基-苯骈呋喃(4)、去氢二异丁香油酚(5)、2,3-二氢-7-甲氧基-2-(3-甲氧基-4,5-亚甲二氧基苯基)-3-甲基-5-(E)-丙烯基-苯骈呋喃(6)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3,4-二甲氧基苯基)-丙烷(7)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3,4,5-三甲氧基苯基)-丙烷(8)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3,4-二甲氧基苯基)-丙烷-1-醇乙酯(9)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3,4-二甲氧基苯基)-丙烷-1-醇(10)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3,4,5-三甲氧基苯基)-丙烷-1-醇(11)、5-甲氧基去氢二异丁香油酚(12)、赤式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(4-羟基-3-甲氧基苯基)-丙烷-1-醇(13)、愈创木素(14)、苏式-2-(4-烯丙基-2,6-二甲氧基苯氧基)-1-(3-甲氧基-5-羟基-苯基)-丙烷-1-醇(15)。结论:化合物15为新化合物,命名为肉豆蔻异木脂素(myr-isisolignan);化合物7为首次从肉豆蔻属植物中分离得到。  相似文献   

13.
目的对多穗金粟兰Chloranthus multistachys中倍半萜类化学成分进行研究。方法利用多种色谱方法进行分离纯化,然后利用1D-NMR、2D-NMR、单晶X射线衍射等方法进行结构鉴定。结果从多穗金粟兰二氯甲烷部位中分离得到10个倍半萜类化合物,分别鉴定为(1R,4R,5R,8S,10R)-1-羟基-4-乙氧基桉叶-7(11)-烯-12,8-内酯(1a)、(1S,4S,5S,8R,10S)-1-羟基-4-乙氧基桉叶-7(11)-烯-12,8-内酯(1b)、(9S,10S)-(-)-9β-hydroxycyclocolorenon(2)、myrrhterpenoidN(3)、1α,8α,9α-三羟基桉叶-3(4),7(11)-二烯-8β,12-内酯(4)、dihydrocurcolone(5)、curvularin(6)、neolitacumone A(7)、银线草内酯F(8)和苍术内酯Ⅲ(9)。结论其中化合物1a和1b为1对新的倍半萜对映异构体,分别命名为(+)-多穗金粟兰内酯M和(-)-多穗金粟兰内酯M;化合物2为1个新的天然产物,化合物3~6为首次从该属植物中分离得到,其余化合物均为首次从该植物中分离得到。  相似文献   

14.
辽西蜂胶黄酮类化学成分的研究   总被引:16,自引:0,他引:16       下载免费PDF全文
 目的:开发辽西蜂胶的药用资源,寻找具有药理活性的成分,分离鉴定辽西蜂胶中的黄酮类化合物。方法:采用加压硅胶柱层析等方法提取分离辽西蜂胶中黄酮类成分,用紫外、红外、核磁、质谱4种光谱法对其成分进行分析鉴定。结果:从辽西蜂胶中分离到7种黄酮类化合物,经光谱鉴定分别为白杨素(chrysin Ⅰ;4H-1-benzopyran-4-one,5,7-dihydroxy-2-phenyl-Ⅰ)、良姜素(izatpinin Ⅱ;4H-1-benzopyran-4-one,3,5-dihydroxy-7-methoxy-2-phenyl-Ⅱ)、高良姜素(galangin Ⅲ;4H-1-benzopyran-4-one,3,5,7-trihydroxy-2-phenyl-Ⅲ)、金合欢素[acacetin Ⅳ;4H-1-benzopyran-4-one,5,7-dihydroxy-2-(4-methoxyphenyl)-Ⅳ]、洋芹素[apigenin Ⅴ;4H-1-benzopyran-4-one,5,7-dihydroxy-2-(4-hydroxyphenyl)-Ⅴ]、山萘素[kaempferol Ⅵ;4H-1-benzopyran-4-one,3,5,7-trihydroxy-2-(4-hydroxy-phenyl)-Ⅵ]、鼠李素[rhamnetin Ⅶ;4H-1-benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-Ⅶ]。结论:首次报道了辽西蜂胶黄酮类化学成分,其中化合物Ⅱ,Ⅳ,Ⅴ,Ⅵ,Ⅶ为首次从蜂胶中发现。  相似文献   

15.
Microbial transformation of the sesquiterpene (-)-caryophyllene oxide (1) [(1R,4R,5R,9S)-4,5-epoxycaryophyllan-8(13)-ene] by a number of fungi, using a standard two-stage fermentation technique, has afforded as products (1R,4R,5R,9S)-4,5-dihydroxycaryophyllan-8(13)-ene (2), (1S,4R,5R,8S,9S)-clovane-5,9-diol (3), (1R,4R,5R,9S,11R)-4,5-epoxycaryophyllan-8(13)-en-15-ol (4), (1R,4R,5R,9S,11S)-4,5-epoxycaryophyllan-8(13)-en-14-ol (5), (1R,2S,4R,5R,9S)-4,5-epoxy-13-norcaryophyllan-8-one (6), (1R,4R,5R,8S,9S)-4,5-epoxycaryophyllan-13-ol (7), (1R,4R,5R,8S, 9S,13S)-caryolane-5,8,13-triol (8), (1R,3R,4R,5R,8S,9S)-4,5-epoxycaryophyllan-3,13-diol (9), and (1S,4R,5R,8S,9S)-clovane-5,9,12-triol (10). Metabolites 6 and 8-10 were found to be new compounds, as deduced on the basis of spectroscopic techniques. Compounds 1-10 were evaluated for butyrylcholinesterase inhibitory activity, and compound 5 exhibited an IC50 value of 10.9 +/- 0.2 microM.  相似文献   

16.
Aromatase inhibitors from Broussonetia papyrifera.   总被引:9,自引:0,他引:9  
Bioassay-guided fractionation of an ethyl acetate-soluble extract from the whole plants of Broussonetia papyrifera, using an in vitro aromatase inhibition assay, led to the isolation of five new active compounds, 5,7,2',4'-tetrahydroxy-3-geranylflavone (1), isogemichalcone C (8), 3'-[gamma-hydroxymethyl-(E)-gamma-methylallyl]-2,4,2',4'-tetrahydroxychalcone 11'-O-coumarate (9), demethylmoracin I (10), and (2S)-2',4'-dihydroxy-2' '-(1-hydroxy-1-methylethyl)dihydrofuro[2,3-h]flavanone (11), and 10 known (12-21) compounds which were also found to be active. Of these compounds, the most potent were 9 (IC(50) 0.5 microM), 11 (IC(50) 0.1 microM), isolicoflavonol (12, IC(50) 0.1 microM), and (2S)-abyssinone II (13, IC(50) 0.4 microM). Additionally, six new compounds, 5,7,3',4'-tetrahydroxy-6-geranylflavonol (2), 5,7,3',4'-tetrahydroxy-3-methoxy-6-geranylflavone (3), (2S)-7,4'-dihydroxy-3'-prenylflavan (4), 1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)propane (5), 1-(2,4-dihydroxy-3-prenylphenyl)-3-(4-hydroxyphenyl)propane (6), and 1-(4-hydroxy-2-methoxyphenyl)-3-(4-hydroxy-3-prenylphenyl)propane (7), were isolated and characterized, but proved to be inactive as aromatase inhibitors, as were an additional 21 known compounds. The structures of the new compounds (1-11) were elucidated by spectroscopic methods. Structure-activity relationships in the aromatase assay were determined for the benzofurans, biphenylpropanoids, coumarins, and various types of flavonoids (chalcones, flavans, flavanones, and flavones) obtained among a total of 42 constituents of B. papyrifera.  相似文献   

17.
In a chemical study of taxonomically related Taxaceae plants of Yunnan Province, China, seven compounds, including a new amentoflavone biflavonoid, 2,3-dihydro-7,7' '-dimethoxyamentoflavone (1), were isolated from Amentotaxus yunnanensis, and 12 isolates were obtained from Torreya yunnanensis. From the latter plant, a new abietane diterpene, torreyayunnin (7), is reported for the first time. The known isolates from A. yunnanensis have been identified as sequoiaflavone (3), sotetsuflavone (4), 7,7' '-dimethoxyamentoflavone (5), lutein, beta-sitosterol, and sequoyitol. Amentoflavone (2), sotetsuflavone (4), sciadopitysin (6), 12-hydroxydehydroabietinol, meridinol, balanophonin, (+)-pinoresinol monomethyl ether, (+)-pinoresinol monomethyl ether glucoside, erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-[2-formyl-(E)-vinyl]-2- methoxyphenoxy]propane-1,3-diol, threo-1-(4-hydroxy-3-methoxyphenyl)-2- [4-[2-formyl-(E)-vinyl]-2-methoxyphenoxy] propane-1,3-diol, and (E)-2-butenedioic acid were identified as known isolates from T. yunnanensis. The presence of the amentoflavone biflavonoids (1, 3-5) in A. yunnanensis supports its placement in the Taxaceae. The occurrence of the biflavonoid sotetsuflavone (4) in both A. yunnanensis and T. yunnanensis suggests that these two genera are closely related. The identification and structural elucidation of these isolates were based on spectral data analysis including 1D and 2D NMR.  相似文献   

18.
Objective To investigate the chemical constituents from Aidi Injection.Methods The chemical constituents were isolated by chromatography on Sephadex LH-20 gel columns and reverse phase semi-preparative HPLC repeatedly.Their structures were identified by spectroscopic analysis(NMR and MS).Results Twenty-two compounds were isolated and identified to be 3-O-3′,4′-diacetyl-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl- cycloastragenol(1),astragaloside IV(2),astragaloside II(3),astragaloside I(4),isoastragaloside I(5), acetylastragaloside I(6),ginsenosid Re(7),ginsenoside Rf(8),ginsenoside Rg1(9),ginsenoside Rb3(10), notoginsenoside R4(11),ginsenoside Rb1(12),ginsenoside Rc(13),ginsenoside Rb2(14),ginsenoside Rd(15), lucyoside H(16),3-O-β-D-glucopyranosyl(1→4)-β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→2)-α-L- arabinopyranosyl oleanolic acid 28-O-α-L-rhamnopyranosyl(1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranoside (17),3-O-β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl[β-D-glucopyranosyl-(1→4)]-(1→2)-α-L-arabinopyranosyl oleanolic acid 28-O-α-L-arabinopyranosyl(1→4)-β-D-glucopyranosyl(1→6)-β-D-glucopyranoside(18),syringin (19),elentheroside E(20),4-(1,2,3-trihydroxypropyl)-2,6-dimethoxyphenyl-1-O-β-D-glucopyranoside(21),and coniferin(22).Conclusion Compounds 1-6 are originated from Astragalus membranceus,compounds 7-18 are originated from Panax ginseng,and compounds 19-22 are originated from Acanthopanax senticosus by LC-MS analysis.Compound 1 is a new compound.  相似文献   

19.
Bioactivity-guided separation of a CH2Cl2/MeOH extract of Balanites aegyptica afforded four new cytostatic saponins, named balanitins 4 [1], 5 [2], 6 [3], and 7 [4]. On the basis of enzymatic hydrolyses and glycosidation nmr chemical shifts employing the peracetates, structures 1-4 were established as yamogenin 3 beta-O-beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranosyl-(1----4)-[al pha- L-rhamnopyranosyl-(1----2)]-beta-D-glucopyranoside [1], yamogenin 3 beta-O-alpha-L-rhamnopyranosyl-(1----3)-beta-D-glucopyranosyl-(1----4)- [alpha-L-rhamnopyranosyl-(1----2)]-beta-D-glucopyranoside [2], yamogenin 3 beta-O-beta-D-glucopyranosyl-(1----4)-[alpha-L- rhamnopyranosyl-(1----2)]-beta-D-glucopyranoside [3], and diosgenin 3 beta-O-beta-D-xylopyranosyl-(1----3)-beta-D-glucopyranosyl-(1----4)-[alp ha- L-rhamnopyranosyl-(1----2)]-beta-D-glucopyranoside [4].  相似文献   

20.
From Curcuma longa, two novel compounds, 4' '-(3' "-methoxy-4' "-hydroxyphenyl)-2' '-oxo-3' '-enebutanyl 3-(3'-methoxy-4'hydroxyphenyl)propenoate (calebin-A, 1) and 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one (2), and seven known compounds, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin, 3), 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (demethoxycurcumin, 4), 1,7-bis(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione (bisdemethoxycurcumin, 5), 1-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-6-heptene-3,5-dione (6), 1,7-bis(4-hydroxyphenyl)-1-heptene-3,5-dione (7), 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (8), and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one (9), were isolated following a bioassay-guided fractionation scheme utilizing an assay to detect protection of PC12 cells from beta-amyloid insult. Compounds 1, 3-5, and 7 were found to more effectively protect PC12 cells from betaA insult (ED(50) = 0.5-10 microg/mL) than Congo red (10) (ED(50) = 37-39 microg/mL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号