首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington's disease (HD) is a genetically transmitted neurodegenerative disorder. The neuropathology in HD is a selective neuronal cell death in several brain regions including cortex. Although changes in synaptic plasticity were shown within the hippocampus and striatum of HD transgenic mice, there are no studies considering neocortical synaptic plasticity abnormalities in HD. We examined the impact of the HD transgene upon learning-dependent plasticity of cortical representational maps. The effect of associative learning, in which stimulation of a row of vibrissae was paired with appetitive stimulus, upon functional representations of vibrissae in the barrel cortex, was investigated with 2-deoxyglucose brain mapping in presymptomatic R6/1 HD mice. In wild-type mice, cortical representation of the row of vibrissae involved in the training was expanded, while in HD mice the representation of this row was not expanded. The results suggest that presymptomatic R6/1 HD transgenic mice show deficits in plasticity of primary somatosensory cortex.  相似文献   

2.
Previous reports have highlighted a possible link between Huntington's disease (HD) and diabetes mellitus (DM), but the association has not been characterised in detail. A transgenic mouse model for HD, the R6/2 mouse, also develops diabetes. In the present study, we examined the R6/1 mouse, which carries a shorter CAG repeat than the R6/2 mouse, and found that, although not diabetic, the mice showed several signs of impaired glucose tolerance. First, following i.p. glucose injection, the blood glucose concentration was approximately 30% higher in young R6/1 mice (10 weeks) compared to wild-type mice (P = 0.004). In older mice (38 weeks), glucose tolerance was further impaired in both R6/1 and wild-type animals. Second, during glucose challenge, the R6/1 mice reached higher plasma insulin levels than wild-type mice, but the peripheral insulin sensitivity was normal as measured by injection of human or mouse insulin or when evaluated by the quantitative insulin sensitivity check index (QUICKI). Third, the beta cell volume was 17% and 39% smaller at 10 and 38 weeks of age, respectively, compared to age-matched wild-type littermates and the reduction was not caused by apoptosis at either age. Finally, we demonstrated the presence of the HD gene product, huntingtin (htt), in both alpha- and beta-cells in R6/1 islets of Langerhans. Since pancreatic beta cells and neurons share several common traits, clarification of the mechanism associating neurodegenerative diseases with diabetes might improve our understanding of the pathogenic events leading to both groups of diseases.  相似文献   

3.
We investigated whether cell proliferation and neurogenesis are altered in R6/2 transgenic Huntington's disease mice. Using bromodeoxyuridine (BrdU), we found a progressive decrease in the number of proliferating cells in the dentate gyrus of R6/2 mice. This reduction was detected in pre-symptomatic mice, and by 11.5 weeks, R6/2 mice had 66% fewer newly born cells in the hippocampus. The results were confirmed by immunohistochemistry for the cell cycle markers Ki-67 and proliferating cell nuclear antigen (PCNA). We did not observe changes in cell proliferation in the R6/2 subventricular zone, indicating that the decrease in cell proliferation is specific for the hippocampus. This decrease corresponded to a reduction in actual hippocampal neurogenesis as assessed by double immunostaining for BrdU and the neuronal marker neuronal nuclei (NeuN) and by immunohistochemistry for the neuroblast marker doublecortin. Reduced hippocampal neurogenesis may be a novel neuropathological feature in R6/2 mice that could be assessed when evaluating potential therapies.  相似文献   

4.
Bolivar VJ  Manley K  Messer A 《Brain research》2004,1005(1-2):29-35
The Huntington's disease (HD) R6/1 transgenic mouse model, containing a human huntington gene exon-1 with approximately 115 CAG repeats, has multiple biochemical and neuroanatomical abnormalities. Overt neurological symptoms have a relatively late onset (15-21 weeks of age). In this paper, we report exploratory behavior abnormalities that appear well before the onset of obvious pathology. The first differences in exploratory behaviors were evident by 4 weeks of age, when R6/1 mice were hyperactive relative to wild-type controls. However, by 6-7 weeks of age, R6/1 mice were less active than controls. R6/1 mice traveled less in the activity monitor, engaged in fewer stereotypic movements, spent more time resting, and traveled less distance per movement than did wild-type controls. R6/1 mice also displayed intersession habituation abnormalities over the 3 days of testing. These behavioral abnormalities precede the earliest neurochemical and molecular changes reported in the literature to date, and thus indicate subtle early pathology that has not yet been documented. These behavioral abnormalities also occur prior to weight loss in the transgenic mice. Since we were able to detect an abnormal phenotype at an early age in R6/1 mice, this assay may be a useful tool for evaluating therapeutic agents.  相似文献   

5.
In early adult-onset Huntington's disease (HD), enkephalinergic striatopallidal projection neurons show preferential loss, reduced preproenkephalin (PPE) expression in surviving striatopallidal neurons, and loss of fibers in their projection target area. We examined PPE and PPT (preprotachykinin) gene expression in striatal projection neurons and in striatal projection fibers immunoreactive for the PPE product enkephalin (ENK) and the PPT product substance P (SP) in a transgenic HD model, the R6/2 mouse, to see if changes occur in these neuron types similar to those seen in early adult-onset HD. The results show that PPE mRNA level, the number of striatal neurons expressing PPE, and the staining intensity of fibers immunoreactive for ENK in the pallidum were all decreased. By contrast, the SP-containing striatal projection systems to the pallidum and substantia nigra were relatively normal in R6/2 mice. The selective reduction in striatal PPE in R6/2 mice is reminiscent of adult-onset HD, but the preservation of the striatonigral projection system is not. Thus, R6/2 mice do not strictly mimic adult-onset HD in their striatal pathology.  相似文献   

6.
Genetic murine models play an important role in the study of human neurological disorders by providing accurate and experimentally accessible systems to study pathogenesis and to test potential therapeutic treatments. One of the most widely employed models of Huntington's disease (HD) is the R6/2 transgenic mouse. To characterize this model further, we have performed behavioral and neuropathological analyses that provide a foundation for the use of R6/2 mice in preclinical therapeutic trials. Behavioral analyses of the R6/2 mouse reveal age-related impairments in dystonic movements, motor performance, grip strength, and body weight that progressively worsen until death. Significant neuropathological sequela, identified as increasing marked reductions in brain weight, are present from 30 days, whereas decreased brain volume is present from 60 days and decreased neostriatal volume and striatal neuron area, with a concomitant reduction in striatal neuron number, are present at 90 days of age. Huntingtin-positive aggregates are present at postnatal day 1 and increase in number and size with age. Our findings suggest that the R6/2 HD model exhibits a progressive HD-like behavioral and neuropathological phenotype that more closely corresponds to human HD than previously believed, providing further assurance that the R6/2 mouse is an appropriate model for testing potential therapies for HD.  相似文献   

7.
The present multidisciplinary study examined nigrostriatal dopamine and striatal amino acid transmission in the R6/1 line of transgenic Huntington's disease (HD) mice expressing exon 1 of the HD gene with 115 CAG repeats. Although the number of tyrosine hydroxylase-positive neurons was not reduced and nigrostriatal connectivity remained intact in 16-week-old R6/1 mice, the size of tyrosine hydroxylase-positive neurons in the substantia nigra was reduced by 15%, and approximately 30% of these cells exhibited aggregated huntingtin. In addition, using in vivo microdialysis, we found that basal extracellular striatal dopamine levels were reduced by 70% in R6/1 mice compared to their wild-type littermates. Intrastriatal perfusion with malonate in R6/1 mice resulted in a short-lasting, attenuated increase in local dopamine release compared to wild-type mice. Furthermore, the size of the malonate-induced striatal lesion was 80% smaller in these animals. Taken together, these findings suggest that a functional deficit in nigrostriatal dopamine transmission may contribute to the behavioral phenotype and the resistance to malonate-induced neurotoxicity characteristic of R6/1 HD mice.  相似文献   

8.
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion coding for an expanded polyglutamine tract in the huntingtin protein. Dendritic abnormalities occur in human HD patients and in several transgenic mouse models of the disease. In this study, we examine, for the first time, dendrite and spine pathology in the R6/1 mouse model of HD, which mimics neurodegeneration seen in human HD. Enriching the environment of HD transgenic mice delays the onset of symptoms, so we also examine the effects of enrichment on dendrite pathology. Golgi-impregnated tissue from symptomatic R6/1 HD mice reveals a decrease in dendritic spine density and dendritic spine length in striatal medium spiny neurons and cortical pyramidal neurons. HD also causes a specific reduction in the proportion of bifurcated dendritic spines on basal dendrites of cortical pyramidal neurons. No differences in soma size, recurving distal dendrites, or dendritic branching were observed. Although home-cage environmental enrichment from 1 to 8 months of age increases spine density in wild-type mice, it has no effect on the spine pathology in HD mice. These results show that dendritic spine pathology in R6/1 HD mice resembles degenerative changes seen in human HD and in other transgenic mouse models of the disease. We thus provide further evidence that the HD mutation disrupts the connectivity in both neostriatum and cerebral cortex, which will contribute to motor and cognitive disease symptoms. Furthermore, we demonstrate that Huntington's disease pathology interferes with the normal plastic response of dendritic spines to environmental enrichment.  相似文献   

9.
Huntington's disease (HD) is an inherited neurodegenerative disorder resulting in neuronal cell death in discrete brain regions due to an expanded CAG repeat of the huntingtin gene. The transgenic mouse model R6/2 expresses exon 1 of the human huntingtin gene with >150 CAG repeats, which produces mutant HD protein with an expanded poly-glutamine tract. We have established a neuronal stem cell system deriving from transgenic HD R6/2 neonatal brains as a renewable source for neurons and glia to facilitate studies of HD neuropathology and therapies. These R6/2 stem cell cultures can be cryopreserved and revived. Thawed neural progenitors can be expanded, established as continuous cell lines, and induced to differentiate into glia and neurons. Using standard culture conditions, there was no detectable morphological difference between wild type and HDR6/2 cells. Western analysis reveals that R6/2, but not wild type neurospheres, express the expanded repeat transgenic protein. Immunocytochemistry reveals that at a higher antibody concentration, huntingtin can be localized in the nucleus and the cytoplasm of wild type and R6/2 cells. We conclude that the R6/2 neuronal stem cell culture is a valuable tool for investigating HD pathogenesis and potential genetic or pharmacological interventions.  相似文献   

10.
Striatal degeneration in Huntington's disease (HD) is associated with increases in perikaryal calbindin immunolabeling in yet-surviving striatal projection neurons. Since similar increases have also been observed in surviving striatal projection neurons after intrastriatal injection of the excitotoxin quinolinic acid, the increased calbindin in HD striatum has been interpreted to suggest an excitotoxic process in HD. We used immunolabeling to assess if calbindin is elevated in striatal projection neurons of R6/2 HD transgenic mice. These mice bear exon 1 of the human huntingtin gene with 144 CAG repeats and show some of the neuropathological signs (e.g., neuronal intranuclear inclusions) and clinical traits (e.g., wasting prior to early death) of HD. We found an increased frequency of calbindin-immunoreactive neuronal perikarya in the striatum of 6- and 12-week-old R6/2 mice compared to wild-type controls. This increase was most notable in the normally calbindin-poor dorsolateral striatum. We found no significant changes in the total area of striatum occupied by the calbindin-negative striosomes and no consistent changes in striatal calbindin mRNA. The increase in calbindin in R6/2 striatal neurons was thus limited to the matrix compartment, and it may be triggered by increased Ca2+ entry due to the demonstrated heightened NMDA sensitivity of these neurons. The data further support the similarity of R6/2 mice to HD, and are consistent with the occurrence of an excitotoxic process in striatum in both.  相似文献   

11.
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by progressive neuronal dysfunction and cell loss, especially striatal GABAergic neurons, generating motor, cognitive and affective problems. Although the disease-causing gene is known, the exact mechanism by which it induces its pathological effect remains unknown, and no cure is currently available for this disease. Interestingly, striatal neurons that express neuropeptide Y (NPY) are preferentially spared in HD and the number of such cells is increased in the striatum of HD patients. Furthermore, neurogenesis in the subventricular zone (SVZ) also appears to be up-regulated in HD patients, and previously we also demonstrated in wild-type mice that intracerebroventricular (ICV) NPY promotes SVZ neurogenesis with migration of the newborn cells towards the striatum where they differentiate into GABAergic neurons.Therefore, we sought to determine whether NPY could be of therapeutic benefit in a transgenic mouse model of HD (R6/2) through an action on SVZ neurogenesis. We found that a single ICV injection of NPY in R6/2 mice increased survival time through reduced weight loss as well as having a beneficial effect on motor function as evidenced by improving rotarod performance and reducing paw-clasping. We also demonstrated that the degree of cerebral and striatal atrophy was reduced following such a single NPY injection and that whilst the peptide also increased the number of BrdU-positive cells in the SVZ (but not in the dentate gyrus) of R6/2 mice, this was not sufficient to account for the changes in anatomy and function that we found.. These results suggest that NPY may be of some therapeutic interest in patients with HD, although further work is needed to ascertain exactly how it mediates its beneficial effects.  相似文献   

12.
Huntington's disease is a genetic disorder that causes motor dysfunction, personality changes, dementia, and premature death. There is currently no effective therapy. Several transgenic models of Huntington's disease are available, the most widely used of which is the R6/2 mouse, because of its rapid disease progression. Environmental enrichment alters gene expression in the normal mouse brain, and modulates the course of several neurological disorders. Environmentally enriched mice may actually mimic human disease more accurately. We found that even limited environmental enrichment slows decline in RotaRod performance in R6/2 mice, despite rapid disease progression, whereas in normal littermates, maximal enrichment was required to induce a marked improvement in behavioral tests. Enrichment also delayed the loss of peristriatal cerebral volume in R6/2 brains. These results could provide the basis for a rational approach to ameliorate the effects of Huntington's disease.  相似文献   

13.
Motor and cognitive deficits in Huntington's disease (HD) are likely caused by progressive neuronal dysfunction preceding neuronal cell death. Synapsin I is one of the major phosphoproteins regulating neurotransmitter release. We report here an abnormal phosphorylation state of synapsin I in the striatum and the cerebral cortex of R6/2 transgenic mice expressing the HD mutation. These changes are mostly characterized by an early overphosphorylation at sites 3-5, whereas phosphorylation at site 1 remains unchanged and at site 6 becomes reduced only close to the end stage of the disease. Such changes do not result from modification in protein expression levels. However, we show a decreased expression of the calcineurin regulatory subunit-B, which may contribute to an imbalance between kinase and phosphatase activities. Together the results suggest that an early impairment in synapsin phosphorylation-dephosphorylation may alter synaptic vesicle trafficking and lead to defective neurotransmission in HD.  相似文献   

14.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion of CAG repeats in the Htt gene. Examination of the post-mortem brains of HD patients shows the presence of diffuse nuclear htt immunoreactivity and intra-nuclear inclusions. The aim of this study was to produce a detailed characterization of the neuronal pathology in the R6/1 transgenic mouse model. The R6/1 carrier mice demonstrate intra-nuclear and extra-nuclear inclusions with the S830 htt antibody at 2-11 months of age. The distribution pattern of neuronal intra-nuclear inclusions (NIIs) was irregular in several brain regions including the striatum, cortex and hippocampus. A greater number of NIIs were found in the ventral striatum than in the dorsal striatum. In the globus pallidus, cerebellum and thalamus the pattern of inclusion formation was relatively consistent over time. At 4 and 6 months of age, the R6/1 mice showed increased glial fibrillary acid protein (GFAP) immunoreactivity in the cortex compared to their wildtype littermates, yet no difference was found in the striatum. Analysis by electron microscopy found that neurons from the R6/1 carriers contained a densely packed cytoplasm at 1.5 months of age, with some neurons displaying structural abnormalities including vacuolization and nuclear membrane folding. No NIIs were detected at this age, but by 7 months of age, NIIs were present with severe cellular vacuolization. The present study indicates that a decrease in striatal volume with cell loss is present in young (2 months) R6/1 mice, and the distribution of NIIs is robust and widespread, with considerably temporal and spatial variation in NII development between mice.  相似文献   

15.
Huntington's disease is caused by a single mutation on the HTT gene which produces an expansion in the number of glutamine repeats present in the huntingtin protein. This mutation results in an array of motor, cognitive and behavioural problems mediated by a progressive loss of striatal neurons and brain atrophy. The identification of behavioural phenotypes in mouse models of the disease provides a baseline of efficacy for therapeutic interventions. The R6/1 mouse line carries ~115 CAG repeats and has an aggressive form of the disease. The aim of the present study was to undertake longitudinal behavioural characterisation of this mouse line in order to quantify the time course and severity of disease progression. In the present study, when compared to wildtype littermates, male R6/1 heterozygous mice demonstrated a progressive weight loss from 3 months of age. The R6/1 carriers also demonstrated a relatively stable motor coordination deficit on the rotarod, and progressive impairments on each aspect of the balance beam test: latency to orientate and traverse the beam; number of fore- and hind-limb footslips. The R6/1 carriers were less reactive to acoustic startle stimuli and displayed less inhibition to prepulse warning stimuli than their wildtype littermates. In the Morris water maze, the R6/1 carriers demonstrated a deficit on latency to find the platform and path length measures, which was apparent by 3 months of age but not further progressive. They also demonstrated fewer entries into the target zone during probe trials. The data from the present study demonstrate that the R6/1 mouse has a profound behavioural phenotype that includes motor and cognitive deficits, but that not all of these deficits were robustly progressive in nature.  相似文献   

16.
Huntington's disease (HD) is a genetic neurodegenerative condition characterized by abnormal dopamine (DA)–glutamate interactions, severe alterations in motor control, and reduced behavioral flexibility. Experimental models of disease show that during symptomatic phases, HD shares with other hyperkinetic disorders the loss of synaptic depotentiation in the striatal spiny projection neurons (SPNs). Here we test the hypothesis that corticostriatal long-term depression (LTD), a well-conserved synaptic scaling down response to environmental stimuli, is also altered in symptomatic male R6/1 mice, a HD model with gradual development of symptoms. In vitro patch-clamp and intracellular recordings of corticostriatal slices from R6/1 mice confirm that, similar to other models characterized by hyperkinesia and striatal DA D1 receptor pathway dysregulation, once long-term potentiation (LTP) is induced, synaptic depotentiation is lost. Our new observations show that activity-dependent LTD was abolished in SPNs of mutant mice. In an experimental condition in which N-methyl-d -aspartate (NMDA) receptors are normally not recruited, in vitro bath application of DA revealed an abnormal response of D1 receptors that caused a shift in synaptic plasticity direction resulting in an NMDA-dependent LTP. Our results demonstrate that corticostriatal LTD is lost in R6/1 mouse model and confirm the role of aberrant DA–glutamate interactions in the alterations of synaptic scaling down associated with HD symptoms.  相似文献   

17.
18.
Huntington's disease (HD) is an autosomal dominant disorder involving progressive neurodegeneration of the corpus striatum and cerebral cortex. Transgenic mice, in which exon 1 of the human HD gene with an expanded trinucleotide repeat is expressed, develop a neurodegenerative syndrome that closely models human HD. Transplantation of wild-type donor cortex into the anterior cingulate cortex of neonatal HD mice (R6/1 line) was found to delay the onset of a specific motor deficit, rear-paw clasping. However, transplantation did not significantly enhance motor performance on a suspended horizontal rod, a behavioural measure of fine motor co-ordination. Control experiments in which the anterior cingulate cortex was resected, but no donor cortical tissue was transplanted, showed no behavioural benefit. In fact, wild-type littermate mice that also underwent this surgical resection, were found to develop motor deficits similar to those exhibited by non-resected HD mice. These results suggest that the anterior cingulate cortex is an important area of pathology in this HD model, and that therapeutic approaches to HD may need to target cortical, as well as striatal areas.  相似文献   

19.
Previous work has demonstrated that the transgenic R6/1 mouse model of Huntington's disease has decreased proliferation of neural precursor cells (NPCs) in the dentate gyrus of the hippocampus. This study therefore examined the survival and differentiation of NPCs in presymptomatic and symptomatic R6/1 mice and the effects of environmental enrichment on these variables. Here it is demonstrated that the survival of bromodeoxyuridine-positive (BrdU+) NPCs in the dentate gyrus is decreased in the transgenic mice. In addition, the number of doublecortin-positive (DCX+) cells is greatly reduced in these mice, as is the total number of new mature neurons, while the proportion of BrdU+ cells differentiating into mature neurons was not significantly different between genotypes. Furthermore, the DCX+ cells in the R6/1 mice had smaller and irregular-shaped somas, shorter neurites, and migrated a shorter distance into the granular cell layer compared with wild-type mice. Older symptomatic mice housed in an enriched environment had an increased number of BrdU+ and DCX+ cells as well as longer neurites and increased migration of DCX+ cells. There was no significant difference between genotypes or environments in the number of BrdU+ cells in the subventricular zone. These results suggest that decreased neurogenesis might be responsible, in part, for the hippocampal deficits observed in these mice and that environmental enrichment produces morphological changes in newborn granule neurons in both wild-type and R6/1 mice, which could underlie some of the beneficial effects of enrichment.  相似文献   

20.
Daily, systemic injections of a positive AMPA-type glutamate receptor modulator (ampakine) have been shown to reduce synaptic plasticity defects in rodent models of aging and early-stage Huntington's disease (HD). Here we report that long-term ampakine treatment markedly slows the progression of striatal neuropathology and locomotor dysfunction in the R6/2 HD mouse model. Remarkably, these effects were produced by an ampakine, CX929, with a short half-life. Injected once daily for 4-7 weeks, the compound increased protein levels of brain-derived neurotrophic factor (BDNF) in the neocortex and striatum of R6/2 but not wild-type mice. Moreover, ampakine treatments prevented the decrease in total striatal area, blocked the loss of striatal DARPP-32 immunoreactivity and reduced by 36% the size of intra-nuclear huntingtin aggregates in R6/2 striatum. The CX929 treatments also markedly improved motor performance of R6/2 mice on several measures (rotarod, vertical pole descent) but did not influence body weight or lifespan. These findings describe a minimally invasive, pharmacologically plausible strategy for treatment of HD and, potentially, other neuropathological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号