首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven patients with acute respiratory failure due to diffuse and fairly uniform lung disease were studied during mechanical ventilation in the lateral decubital position with: (a) zero end-expiratory pressure (ZEEP) through a double-lumen oro-bronchial tube to permit a recording of the ventilation to each lung; (b) bilateral positive end-expiratory pressure (PEEP) of 1.2 kPa, with maintenance of ventilation distribution between lungs as observed during ZEEP; (c) selective PEEP of 1.2 kPa, applied to the dependent lung only, with ventilation as during ZEEP; and (d) conventional PEEP of 1.2 kPa applied to both lungs through a single-lumen tube, with free distribution of ventilation between the lungs. During ZEEP, 69% of ventilation was distributed to the non-dependent and 31% to the dependent lung; cardiac output was 6.51 X min-1, venous admixture (QS/QT) 40% and arterial oxygen tension (PaO2) 8.3 kPa. With bilateral PEEP, functional residual capacity (FRC) increased by 0.331, cardiac output was reduced to 5.11 X min-1 and venous admixture to 32%. PaO2 increased to 10.1 kPa. With selective PEEP the dependent lung FRC increased by 0.211 and the FRC of the non-dependent lung decreased by 0.081. Cardiac output increased to 6.11 X min-1, which was no longer significantly different from that during ZEEP. Venous admixture remained at the same level as with bilateral PEEP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Eight patients were studied under general anaesthesia for elective pulmonary lobectomy to see if intrinsic positive end-expired pressure (PEEPi) would appear or increase in the dependent lung during one-lung ventilation (OLV) or if application of external PEEP equal to individually measured PEEPi would produce better arterial oxygenation, haemodynamic state and oxygen delivery than either zero PEEP (ZEEP) or an external PEEP 5 cm H2O greater than PEEPi. Patients were non-obese, without obstructive airways disease, aged 53-76 yr and ASA < III. They received standardized anaesthesia with fentanyl, 50% nitrous oxide in oxygen and isoflurane; monitoring included radial and fibreoptic pulmonary arterial catheters and intermittent positive pressure ventilation with a tidal volume of 8 ml kg-1, 16 bpm, and an I:E ratio of 1:2. PEEPi was measured during two-lung ventilation (TLV) and OLV, using rapid airway occlusion at end-expiration. There was no PEEPi during TLV, but 2-6 mm Hg of PEEPi appeared during OLV. Applying external PEEP equal to individually measured PEEPi reduced venous admixture and increased PaO2 without a decrease in cardiac index (thus increasing oxygen delivery) compared with ZEEP, but the improvement in pulmonary gas exchange was lost and an additional penalty of reduced cardiac output was imposed when external PEEP was increased to 5 mm Hg above PEEPi.   相似文献   

3.
Patients without respiratory symptoms were studied awake and during general anesthesia with mechanical ventilation prior to elective surgery. Ventilation-perfusion (VA/Q) relationships, gas exchange and atelectasis formation were studied during five different conditions: 1) supine, awake; 2) supine during anesthesia with conventional mechanical ventilation (CV); 3) in the left lateral position during CV; 4) as 3) but with 10 cm of positive end-expiratory pressure (PEEP) and 5) as 3) but using differential ventilation with selective PEEP (DV + SPEEP) to the dependent lung. Atelectatic areas and increases of shunt blood flow and blood flow to regions with low VA/Q ratios appeared after induction of anesthesia and CV. With the patients in the lateral position, further VA/Q mismatch with a fall in PaO2 and increased dead space ventilation was observed. Atelectatic lung areas were still present, although the total atelectatic area was slightly decreased. Some of the effects caused by the lateral position could be counteracted by adding PEEP. Perfusion of regions with low VA/Q ratios and venous admixture were then diminished, while PaO2 was slightly increased; shunt blood flow and dead space ventilation were essentially unchanged. During CV + PEEP, there was a decrease in cardiac output, compared to CV in the lateral position. DV + SPEEP was more effective than CV + PEEP in decreasing shunt flow and increasing PaO2 in the lateral position; in addition to this, cardiac output was not affected.  相似文献   

4.
BACKGROUND AND OBJECTIVE: The aim of this study was to test the efficacy of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation, taking into consideration underlying lung function in order to select responders to PEEP. METHODS: Forty-six patients undergoing open-chest thoracic surgical procedures were studied in an operating room of a university hospital. Patients were randomized to receive zero end-expiratory pressure (ZEEP) or 10 cmH2O of PEEP to the dependent lung during one-lung ventilation in lateral decubitus. The patients were stratified according to preoperative forced expiratory volume in 1 s (FEV1) as an indicator of lung function (below or above 72%). Oxygenation was measured in the supine position, in the lateral decubitus with an open chest, and after 20 min of ZEEP or PEEP. The respiratory system pressure-volume curve of the dependent hemithorax was measured in supine and open-chest lateral decubitus positions with a super-syringe. RESULTS: Application of 10 cmH2O of PEEP resulted in a significant increase in PaO2 (P < 0.05). This did not occur in ZEEP group, considered as a time matched control. PEEP improved oxygenation only in patients with high FEV1 (from 11.6+/-4.8 to 15.3+/-7.1 kPa, P < 0.05). There was no significant change in the low FEV1 group. Dependent hemithorax compliance decreased in lateral decubitus, more in patients with high FEV1 (P < 0.05). PEEP improved compliance to a greater extent in patients with high FEV1 (from 33.6+/-3.6 to 48.4+/-3.9 mLcmH2O(-1), P < 0.05). CONCLUSIONS: During one-lung ventilation in lateral decubitus, PEEP applied to the dependent lung significantly improves oxygenation and respiratory mechanics in patients with rather normal lungs as assessed by high FEV1.  相似文献   

5.
Oleic acid (0.12 ml/kg) was used to induce pulmonary edema in 10 mongrel dogs. To treat the consequent hypoxaemia we used either positive end expiratory pressure (PEEP) ventilation (n = 5) or zero end expiratory pressure ventilation (ZEEP) plus additional high frequency jet support (n = 5). Hypoxaemia, which paralleled the dramatic increase in lung water, was significantly improved (aADO2) by PEEP but not by ZEEP plus jet. Also venous admixture was significantly lowered by PEEP only. Cardiac output and pulmonary arterial pressure in the two groups were not significantly different. This demonstrates that ZEEP plus jet is not superior to PEEP in the case of oleic acid induced edema, though we obtained good clinical results with the former system in the treatment of atelectasis. In addition, histological evaluation of the dog lungs showed emphysematous lung injury by the jet system, which indicates that such a jet system should be used with caution.  相似文献   

6.
Body position can significantly alter the efficiency of gas exchange following unilateral lung injury. We systematically examined three positions during differential lung ventilation with unilateral positive end-expiratory pressure (PEEP) following unilateral hydrochloric acid aspiration in the dog. Twelve mongrel dogs were intubated with a double-lumen endobronchial tube and mechanically ventilated with a microcomputer-controlled pair of ventilators. A tidal volume of 7.5 ml/kg was delivered to each lung. The PaCO2 was maintained at 4.67 kPa. A unilateral injury was induced with an injection of 0.1 N hydrochloric acid (2.5 ml/kg) into one lumen of the endobronchial tube. 0.984 kPa PEEP was applied to the injured lung and the dogs were placed sequentially in one of three positions (supine, lateral decubitus with injured lung non-dependent, and lateral decubitus with injured lung dependent) for 1 h apiece. There was no significant difference between the three positions with regard to PaO2 (F (2, 10) = 1.60, P = 0.25) of venous admixture (F (2, 10) = 0.49, P = 0.63). Our data indicated that position did not alter oxygenation. This was probably due to the use of differential ventilation with unilateral PEEP which eliminated redistribution of ventilation between the two lungs and minimized position-dependent changes in pulmonary blood flow.  相似文献   

7.
STUDY OBJECTIVE: To evaluate the effect of positive end-expiratory pressure (PEEP) and continuous positive airway pressure (CPAP) on the oxygenation and shunt fraction during one-lung ventilation (OLV). DESIGN: Prospective clinical study. SETTING: Inpatient thoracic surgery and anesthesia clinic at an University hospital. PATIENTS: 15 patients with esophageal cancer who were scheduled for radical surgery. INTERVENTIONS: Arterial oxygenation, shunt fraction, and hemodynamics were evaluated at 20 min after the start of operation, at 20 minutes after the initiation of OLV under zero end-expiratory pressure (ZEEP), 20 minutes after the application of 4 cm PEEP to the dependent lung, at 20 minutes after OLV under ZEEP, 20 minutes after the application of 4 cm CPAP to the nondependent lung, and again under ZEEP, and after the combined application of PEEP and CPAP to the dependent and nondependent lungs. MEASUREMENTS AND MAIN RESULTS: There were no significant changes in mean pulmonary artery pressure, mean arterial blood pressure, heart rate, mixed venous partial pressure of oxygen, or arterial and mixed venous saturation of oxygen (SVO(2)) during this study. Arterial partial pressure of oxygen (pO(2)) increased and shunt fraction values decreased significantly after the application of PEEP (pO(2); 197.8 +/- 32.9 mmHg, Qs/Qt; 22.9 +/- 5.6%), CPAP (pO(2); 212.6 +/- 15.9 mmHg, Qs/Qt; 22.8 +/- 5.9%), and combination of PEEP and CPAP (pO(2); 222.0 +/- 42.8 mmHg, Qs/Qt; 24.1 +/- 6.4%) compared with ZEEP (pO(2); 128.1 +/- 37.5 mmHg, Qs/Qt; 33.2 +/- 6.8% ). But there were no significant differences regarding oxygenation and shunt fraction during PEEP, CPAP, or the combination of PEEP and CPAP. CONCLUSIONS: The application of PEEP to the dependent lung, CPAP to the nondependent lung, and the combination of PEEP and CPAP, are useful for improving oxygenation and decreasing Qs/Qt.  相似文献   

8.
Aim of the study was to test individual mechanical and functional responses to open chest lateral decubitus during one lung ventilation. We measured dependent lung pressure volume (P-V) curves of 19 patients during supine and lateral decubitus. We found that patients characterized by high FEV1 developed greater changes in P-V curve shape than those characterized by low FEV1. Based on these results we decided to test a ventilation strategy characterized by the use of ZEEP or PEEP = 10 cm H2O applied to the dependent lung. In a preliminary set of patients stratified by FEV1 we found that PEEP deteriorated PaO2/FiO2 in patients with low FEV1, while there was a trend towards improvement in patients with high FEV1. It is possible that dependent lung PEEP counteracts atelectasias in normal lungs, while it may divert blood flow or create dead space in patients with sick and stiff lungs. We conclude that during one lung ventilation in open chest lateral decubitus, ventilatory setting need to be individually tailored.  相似文献   

9.
BACKGROUND AND OBJECTIVE: This prospective, randomized, controlled study evaluated the effects on oxygenation by applying a selective and patient-specific value of positive end-expiratory pressure (PEEP) to the dependent lung during one-lung ventilation. METHODS: Fifty patients undergoing thoracic surgery under combined epidural/general anaesthesia were randomly allocated to receive zero PEEP (Group ZEEP, n = 22), or the preventive application of PEEP, optimized on the best thoracopulmonary compliance (Group PEEP, n = 28). Patients' lungs were mechanically ventilated with the same setting during two- and one-lung ventilation (FiO2 = 0.5; VT = 9mL kg(-1), inspiratory :expiratory time = 1 : 1, inspiratory pause = 10%). RESULTS: Lung-chest wall compliance decreased in both groups during one-lung ventilation, but patients of Group PEEP had 10% higher values than patients with no end-expiratory pressure (ZEEP) applied--Group ZEEP (P < 0.05). During closed chest one-lung ventilation, the PaO2 : FiO2 ratio was lower in Group PEEP (232 +/- 88) than in Group ZEEP (339 +/- 97) (P < 0.05); but no further differences were reported throughout the study. No differences were reported between the two groups in the need for 100% oxygen ventilation (10 patients of Group ZEEP (45%) and 14 patients of Group PEEP (50%) (P = 0.78)) or re-inflation of the operated lung during surgery (two patients of Group ZEEP (9%) and three patients of Group PEEP (10%) (P = 0.78)). Postanaesthesia care unit discharge required 48 min (25th-75th percentiles: 32-58 min) in Group PEEP and 45 min (30-57 min) in Group ZEEP (P = 0.60). CONCLUSIONS: The selective application of PEEP to the dependent, non-operated lung increases the lung-chest wall compliance during one-lung ventilation, but does not improve patient oxygenation.  相似文献   

10.
The influence of positive end-expiratory pressure (PEEP) on extravascular lung water measured with the double-indicator dilution technique (EVLWi) has been studied during formation of hydrostatic pulmonary oedema in a canine model. The oedema was created by elevating the mean pulmonary artery pressure (PAP) to 30 mmHg (4.0 kPa) by inflation of a left atrial balloon, and a simultaneous intravenous saline infusion of 15 ml.kg-1.h-1. All dogs were ventilated with zero end-expiratory pressure (ZEEP) until the initial EVLWi had increased by 50%. In one group (n = 5) a PEEP of 10 cmH2O (1.0 kPa) was applied and the dogs were studied for a further 4 h and in the other group (n = 5) ZEEP was maintained throughout the study. During the first 2 h after ZEEP/PEEP application EVLWi increased from 13.7 +/- 2.1 to 20.2 +/- 1.2 ml.kg-1 with ZEEP ventilation and from 13.6 +/- 1.2 to 18.6 +/- 1.9 ml.kg-1 with PEEP ventilation. EVLWi remained unchanged during the last 2 h in both groups. The gas exchange improved with PEEP, arterial oxygen tension increased from 30.4 +/- 8.9 kPa to 38.6 +/- 2.5 kPa (P less than 0.01), and the shunt fraction decreased from 6.0 +/- 3.8% to 1.2 +/- 0.8% (P less than 0.001). There were significant differences (P less than 0.01) in both PaO2 and shunt fraction between the ZEEP and PEEP groups throughout the study. In conclusion, positive end-expiratory pressure improves gas exchange but does not protect against increasing extravascular lung water during the creation of hydrostatic pulmonary oedema.  相似文献   

11.
We investigated the effect of unilateral or bilateral positive end-expiratory pressure (PEEP) on pulmonary perfusion in 12 dogs with a hydrochloric acid aspiration injury of the left lung. The lungs were ventilated separately and PEEP was applied to the left lung at 10 cmH2O (1.0 kPa) in six and at 15 cmH2O (1.5 kPa) in six others. Measurements of the right and left pulmonary arterial blood flows (QR and QL) and venous admixture were made before, during and after PEEP. After this study, 5 and 10 cmH2O (0.5 and 1.0 kPa) PEEP were applied to both lungs in six dogs and measurements were repeated. Following the application of PEEP to the left lung, a significant decrease in QL and increase in QR were observed. However, the application of PEEP to both lungs was followed by significant decreases in both QL and QR. The cardiac output decreased slightly during unilateral PEEP and markedly during bilateral PEEP. The venous admixture decreased significantly during PEEP in all the groups. These findings indicate that selective PEEP causes a transfer of pulmonary blood flow from the injured lung to the normal lung, improving ventilation-perfusion inequality, and improves gas exchange without impeding oxygen delivery.  相似文献   

12.
This study was undertaken to examine the effect of sevoflurane on right ventricular junction, the safety of sevoflurane for onelung ventilation and the effects of PEEP (positive end-expiratory pressure) to the dependent lung in this model using 12 openchest sheep. Haemodynamic variables, including cardiac output, mean arterial blood pressure, right ventricular pressure and pulmonary arterial pressure, and right ventricular segment shortening (sonomicrometry) were measured. First, animals received 2.0, 3.0 or 4.0% sevoflurane for 20 min each, respectively, during two-lung ventilation to measure the dose-dependent haemodynamic effects of sevoflurane. Then one-lung ventilation was performed with a randomized sequence of 0 (ZEEP), 5 and 10 cm H2O PEEP to the dependent lung under 2.0% sevoflurane anaesthesia after one-hour stabilization. A decrease in systolic segment shortening along with increases in both the end-diastolic and end-systolic lengths of the right ventricle were observed at 3.0 and 4.0% sevoflurane, while global right ventricular function remained substantially unchanged during twolung ventilation. During one-lung ventilation the PaO2 was greater with 5 cm H2O PEEP 198 mmHg (± 25 SEM) than with ZEEP 138 mmHg (± 22) or with 10 cm H2O PEEP 153 mmHg (± 23) (P < 0.05). No differences in haemodynamic variables or segment shortening between ZEEP and PEEPs during one-lung ventilation were observed. We conclude that although sevoflurane causes a dose-dependent depression of right ventricular function, sevoflurane anaesthesia can be safely applied to one-lung ventilation, and that 5 cm H2O PEEP to the dependent lung can improve arterial oxygenation without causing changes in right ventricular function.  相似文献   

13.
BACKGROUND AND OBJECTIVE: Late postoperative hypoxaemia after upper abdominal surgery is common even among cardiopulmonary healthy patients. Atelectasis may develop after intubation and persist into or reveal a disposition for atelectasis in the postoperative period. Positive end-expiratory pressure (PEEP) eliminates peroperative atelectasis but the effect on perioperative oxygenation is controversial. This study evaluated the effect of peroperative PEEP optimized pulmonary compliance on perioperative oxygenation and complications. METHODS: Forty patients assessed by electrocardiography, spirometry, functional residual capacity and diffusion capacity were randomly assigned to receive positive end-expiratory pressure (PEEP) or zero end-expiratory pressure (ZEEP) during surgery. PaO2, SPO2 and complications in the postoperative period were evaluated without knowledge of peroperative PEEP or ZEEP application. RESULTS: Peroperative arterial oxygenation improved for all patients receiving PEEP, mean 2.1 kPa (0.7-3.5 kPa). There was no difference in postoperative median PaO2 between the groups. The differences in the incidence of late prolonged postoperative hypoxaemia and complications were 25% (-5% to 55%) and -1% (-31% to 29%) between the ZEEP and the PEEP group, but were not statistically significant.  相似文献   

14.
We studied the effect of positive end-expiratory pressure (PEEP) release and positioning on the occurrence of venous air embolism (VAE). Eighteen consecutive patients (8 women, 10 men; ASA grade I-III) undergoing neurosurgery in the sitting position were studied. After induction of anesthesia ventilation was controlled with a PEEP of 5 cm H(2)O in an oxygen-air gas mixture. A transesophageal echocardiographic (TEE) probe was inserted. Preoperatively, a patent foramen ovale was excluded in all patients. TEE monitoring was performed during surgery, during PEEP release at the end of surgery with the patient still in the sitting position, and during change of the patient position into the supine position. The severity of VAE was differentiated as follows: grade 1 = only microbubbles; grade 2 = microbubbles and decrease of end-tidal carbon dioxide partial pressure (PETCO(2)) by more than 1.5 mm Hg; grade 3 = microbubbles combined with a decrease of PETCO(2) by more than 1.5 mm Hg, and a decrease of mean arterial blood pressure by at least 20 mm Hg. During surgery, VAE with a grade of 1, 2 or 3 occurred in 7, 4, and 2 patients, respectively. After PEEP release, VAE of grades 1, 2, and 3 were observed in 7, 2, and 1 patients, respectively. During repositioning from sitting to supine position, VAE of grades 1, 2, and 3 was observed in 6, 1, and 1 patients, respectively. The patient with VAE grade 3 needed inotropic support until 2 h after surgery to maintain sufficient blood pressure. No patient showed any sign of paradoxical arterial embolism or cardiac dysfunction. We conclude that VAE occurs not only during surgery in the sitting position, but also with release of PEEP and during repositioning to the supine position. IMPLICATIONS: This study shows that venous air embolism (VAE) occurs not only during surgery in the sitting position but also during positive end-expiratory pressure release and repositioning of the patient into the supine position. Continuous monitoring for VAE should be performed until the patient is returned to the supine position.  相似文献   

15.
Differential lung ventilation with positive end expiratory pressure (PEEP) improves pulmonary gas exchange when used in the supportive care of patients with severe unilateral or asymmetrical lung disease. Once the provision of selective PEEP to the two lungs is accomplished, the best method of partitioning the tidal volume between the two lungs is unknown. Twelve mongrel dogs were given a unilateral hydrochloric acid (HCl) aspiration injury. A computer controlled differential lung ventilation system was used to ventilate four dogs with equal volumes to each lung, four dogs with equal driving pressure (end inspiratory pressure-PEEP) to each lung, and four dogs with equal end-tidal CO2 fraction from each lung. The respiratory rate was feedback controlled to maintain Paco2 at 4.67 kPa. The dogs were kept supine and ventilated with 30% O2. Following injury, the PEEP was set at 0 kPa for 1 h. The dogs were then given 1.36 kPa and 2.72 kPa PEEP to the injured lung for 2 h in a cross-over fashion. The assignment of the tidal volume controller, the side of injury, and the PEEP sequence was random. Oxygen tension fell and pulmonary venous admixture increased after giving the HCl injury. In all three groups considered simultaneously, unilateral PEEP improved Pao2 and venous admixture. The equal tidal volume distribution was the only group to show a significant improvement in Pao2 at both PEEP increments (0 to 1.36 kPa and 2.72 kPa). There was a significant difference in tidal volume allocation between the three groups with the equal end-tidal and equal pause pressure groups only minimally ventilating the injured lung. With differential lung ventilation and unilateral PEEP, equal partitioning of tidal volume provides the highest Pao2, compared to the other two methods of partitioning tidal volume.  相似文献   

16.
BACKGROUND: It is unclear whether positive end-expiratory pressure (PEEP) is needed to maintain the improved oxygenation and lung volume achieved after a lung recruitment maneuver in patients ventilated after cardiac surgery performed in the cardiopulmonary bypass (CPB). METHODS: A prospective, randomized, controlled study in a university hospital intensive care unit. Sixteen patients who had undergone cardiac surgery in CPB were studied during the recovery phase while still being mechanically ventilated with an inspired fraction of oxygen (FiO2) 1.0. Eight patients were randomized to lung recruitment (two 20-s inflations to 45 cmH2O), after which PEEP was set and kept for 2.5 h at 1 cmH2O above the pressure at the lower inflexion point (14+/-3 cmH2O, mean +/-SD) obtained from a static pressure-volume (PV) curve (PEEP group). The remaining eight patients were randomized to a recruitment maneuver only (ZEEP group). End-expiratory lung volume (EELV), series dead space, ventilation homogeneity, hemodynamics and PaO2 (oxygenation) were measured every 30 min during a 3-h period. PV curves were obtained at baseline, after 2.5 h, and in the PEEP group at 3 h. RESULTS: In the ZEEP group all measures were unchanged. In the PEEP group the EELV increased with 1220+/-254 ml (P<0.001) and PaO2 with 16+/-16 kPa (P<0.05) after lung recruitment. When PEEP was discontinued EELV decreased but PaO2 was maintained. The PV curve at 2.5 h coincided with the curve obtained at 3 h, and both curves were both steeper than and located above the baseline curve. CONCLUSIONS: Positive end-expiratory pressure is required after a lung recruitment maneuver in patients ventilated with high FiO2 after cardiac surgery to maintain lung volumes and the improved oxygenation.  相似文献   

17.
The potential of differential ventilation (DV) with selective positive end-expiratory pressure (PEEP) has been tested versus conventional ventilation with and without general PEEP. Gas exchange and central haemodynamics were studied in 15 subjects with no clinical or radiological signs of pulmonary disease. The rationale of the method was to ensure ventilation of the well-perfused dependent lung and to counteract airway closure within that lung. The subjects were intubated with a double-lumen catheter prior to scheduled abdominal surgery. During general anaesthesia in the lateral posture, they were given DV. The mean inspired oxygen fraction was 0.32. Fifty per cent ("even" tidal volume (VT) distribution) or 70% ("inverted" VT distribution) of the inspired volume was administered to the dependent lung. Two synchronized ventilators were used. In eight subjects DV was also combined with PEEP applied solely to the dependent lung (selective PEEP). The major findings were that DV with even VT distribution reduced venous admixture by 26% ( P <0.05) and the alveolo-arterial oxygen tension gradient (P(A-a)o2) by 30% ( P <0.05) in comparison with conventional ventilation in the lateral position. The addition of selective PEEP further reduced the P(A-a)o2 by 13%. P(A-a)o2 was consequently 43% lower than during conventional ventilation without PEEP in the lateral posture ( P <0.01). Selective PEEP also had less impact on cardiac output than general PEEP (P<0.05). It is concluded that DV with even distribution of VT and selective PEEP can reduce the P(A-a)o2 in anaesthetized lung-healthy subjects in the lateral position.  相似文献   

18.
We have studied prospectively the effect of 10 cm H2O of PEEP on the incidence of venous air embolism and on the cardiovascular response to change from the supine to the seated position in a large neurosurgical population. Patients were allocated randomly to receive either PEEP (10 cm H2O, n = 45) or conventional (control, n = 44) ventilation. Cardiovascular and respiratory variables were measured in the supine and sitting positions, and monitoring included precordial Doppler probe, pulmonary artery pressure and expiratory carbon dioxide concentration. Venous air embolism was assumed if changes in precordial Doppler sounds occurred, end-tidal carbon dioxide concentration decreased or air could be retrieved from a central venous multi-orifice catheter. The incidence of venous air embolism (26%) did not differ between patients undergoing conventional ventilation and those undergoing ventilation with 10 cm H2O of PEEP. Venous air embolism was always detected first by alterations in Doppler sounds. Cardiac output was significantly higher in patients undergoing conventional ventilation than in those undergoing ventilation with PEEP in the supine but not in the sitting position. Furthermore, pulmonary vascular resistance increased significantly only in the upright position in those undergoing ventilation with PEEP. The pulmonary artery wedge pressure to central venous pressure gradient did not attain negative values with PEEP or with upright positioning. We conclude that the use of PEEP during neurosurgical procedures performed in the sitting position should be abandoned as it does not decrease the incidence of venous air embolism but is associated with significant adverse cardiovascular effects.   相似文献   

19.
Effect of body position on gas exchange after thoracotomy.   总被引:1,自引:0,他引:1       下载免费PDF全文
D Seaton  N L Lapp    W K Morgan 《Thorax》1979,34(4):518-522
To determine the effect of change in body position on gas exchange after thoracotomy, 12 patients with potentially resectable lung tumours were studied before and 24 hours after operation. Measurements of arterial blood gas tension (PaO2, PaCO2), alveolar-arterial oxygen difference (A--adO2), venous admixture effect (Qs/Qt percent), and physiological dead space to tidal volume ratio (Vd/Vt), were made in the supine, and left and right lateral decubitus positions. Preoperatively, altering position did not affect gas exchange significantly. After thoracotomy in the lateral position with the unoperated side dependent, PaO2 was significantly higher, and A--adO2 and Qs/Qt percent significantly lower than in the supine position. Postoperatively, the lateral position with the side of thoracotomy dependent was usually associated with the worst gas exchange. Only three patients achieved their best postoperative gas exchange in this position. In two this may have resulted from dependent small airway closure during tidal breathing, due to airways obstruction and old age, and in the third from postoperative atelectasis in this unoperated lung. No significant changes in mean PaCO2, Vd/Vt, or minute ventilation (VE) occurred with different positioning.  相似文献   

20.
The hemodynamic and respiratory effects of spontaneous ventilation with continuous positive airway pressure (CPAP) and mechanical ventilation with positive end-expiratory pressure (PEEP) were compared in nine patients who had adult respiratory distress syndrome. These patients were capable of maintaining spontaneous ventilation (tidal volume above 300 ml. and PaCO2 below 45 torr). Arterial and mixed venous blood gases, cardiac output, oxygen delivery and consumption, pulmonary artery pressure, and pulmonary wedge pressure were measured in 11 instances, with each patient on 5 or 10 cm. H2O CPAP or PEEP, and in nine instances, with each patient on the ventilator but without PEEP (O PEEP). During CPAP, when compared to PEEP at the same level of end-expiratory pressure, mean PaO2 increased significantly (p less than 0.05) and mean physiological shunt decreased (p less than 0.05). In nine of 11 instances, cardiac output was higher on CPAP than on a corresponding level of PEEP. Thus CPAP was more effective than the same amount of PEEP in improving arterial oxygenation by the lung without adversely affecting cardiac output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号