首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammatory mediators have been implicated in the pathophysiology of neurodegenerative diseases. Here we report the presence of the chemokine receptor CXCR3 and its ligand, IP-10, in normal and Alzheimer's disease (AD) brains. CXCR3 was detected constitutively on neurons and neuronal processes in various cortical and subcortical regions; IP-10 was observed in a subpopulation of astrocytes in normal brain, and was markedly elevated in astrocytes in AD brains. Many IP-10(+) astrocytes were associated with senile plaques and had an apparently coordinated upregulation of MIP-1beta. Moreover, we showed that CXCR3 ligands, IP-10 and Mig, were able to activate ERK1/2 pathway in mouse cortical neurons, suggesting a novel mechanism of neuronal-glial interaction.  相似文献   

2.
Several studies have suggested that activated caspase-3 has properties of a cell death executioner protease. In this study, we examined the expression of activated caspase-3 in AD and aged control brains. Activated caspase-3 immunoreactivity was seen in neurons, astrocytes, and blood vessels, was elevated in AD, and exhibited a high degree of colocalization with neurofibrillary tangles and senile plaques. These data suggest that activated caspase-3 may be a factor in functional decline and may have an important role in neuronal cell death and plaque formation in AD brain.  相似文献   

3.
Several studies have suggested that activated caspase-3 has properties of a cell death executioner protease. In this study, we examined the expression of activated caspase-3 in AD and aged control brains. Activated caspase-3 immunoreactivity was seen in neurons, astrocytes, and blood vessels, was elevated in AD, and exhibited a high degree of colocalization with neurofibrillary tangles and senile plaques. These data suggest that activated caspase-3 may be a factor in functional decline and may have an important role in neuronal cell death and plaque formation in AD brain.  相似文献   

4.
TGR5 (Gpbar‐1) is a membrane‐bound bile acid receptor in the gastrointestinal tract and immune cells with pleiotropic actions. As shown in the present study, TGR5 is also expressed in astrocytes and neurons. Here, TGR5 may act as a neurosteroid receptor, which is activated by nanomolar concentrations of 5β‐pregnan‐3α‐ol‐20‐one and micromolar concentrations of 5β‐pregnan‐3α‐17α‐21‐triol‐20‐one and 5α‐pregnan‐3α‐ol‐20‐one (allopregnanolone). TGR5 stimulation in astrocytes and neurons is coupled to adenylate cyclase activation, elevation of intracellular Ca2+ and the generation of reactive oxygen species. In cultured rat astrocytes, TGR5 mRNA is downregulated in the presence of neurosteroids and ammonia already at concentrations of 0.5 mmol L−1. Furthermore, TGR5 protein levels are significantly reduced in isolated rat astrocytes after incubation with ammonia. A marked downregulation of TGR5 mRNA is also found in cerebral cortex from cirrhotic patients dying with hepatic encephalopathy (HE) when compared with brains from noncirrhotic control subjects. It is concluded that TGR5 is a novel neurosteroid receptor in brain with implications for the pathogenesis of HE. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
J. Satoh, H. Tabunoki, T. Ishida, Y. Saito and K. Arima (2013) Neuropathology and Applied Neurobiology 39, 109–120 Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: a possible hallmark of regenerative failure in Alzheimer's disease brains Aims: RGMa is a repulsive guidance molecule that induces the collapse of axonal growth cones by interacting with the receptor neogenin in the central nervous system during development. It remains unknown whether RGMa plays a role in the neurodegenerative process of Alzheimer's disease (AD). We hypothesize that RGMa, if it is concentrated on amyloid plaques, might contribute to a regenerative failure of degenerating axons in AD brains. Methods: By immunohistochemistry, we studied RGMa and neogenin (NEO1) expression in the frontal cortex and the hippocampus of 6 AD and 12 control cases. The levels of RGMa expression were determined by qRT‐PCR and Western blot in cultured human astrocytes following exposure to cytokines and amyloid beta (Aβ) peptides. Results: In AD brains, an intense RGMa immunoreactivity was identified on amyloid plaques and in the glial scar. In the control brains, the glial scar and vascular foot processes of astrocytes expressed RGMa immunoreactivity, while oligodendrocytes and microglia were negative for RGMa. In AD brains, a small subset of amyloid plaques expressed a weak NEO1 immunoreactivity, while some reactive astrocytes in both AD and control brains showed an intense NEO1 immunoreactivity. In human astrocytes, transforming growth factor beta‐1 (TGFβ1), Aβ1–40 or Aβ1–42 markedly elevated the levels of RGMa, and TGFβ1 also increased its own levels. Coimmunoprecipitation analysis validated the molecular interaction between RGMa and the C‐terminal fragment β of amyloid beta precursor protein (APP). Furthermore, recombinant RGMa protein interacted with amyloid plaques in situ. Conclusions: RGMa, produced by TGFβ‐activated astrocytes and accumulated in amyloid plaques and the glial scar, could contribute to the regenerative failure of degenerating axons in AD brains.  相似文献   

6.
Prostaglandin (PG) D2 is produced in activated microglia by the action of hematopoietic PGD synthase (HPGDS) and plays important roles in neuroinflammation. Because the fact that neuroinflammation accelerates progression of Alzheimer disease (AD) has been documented, we investigated whether PGD2 is also involved in the pathology of AD. Here, we report that the level of the mRNA of the receptor for PGD2 (DP1) was increased in AD brains compared with the level in non-AD brains. Immunocytochemical analysis showed HPGDS expression to be localized in the microglia surrounding senile plaques. In situ hybridization studies revealed that DP1 mRNA was specifically localized in microglia and reactive astrocytes within senile plaques of AD brains. In the brain of Tg2576 mice, a model of AD, HPGDS and DP1 proteins were mainly localized immunocytochemically in microglia and astrocytes in the plaques, and the levels of their mRNAs increased in parallel with amyloid beta deposition. These results indicate that PGD2 may act as a mediator of plaque-associated inflammation in AD brain and may explain the pharmacologic mechanisms underlying the favorable response of patients with AD to nonsteroidal anti-inflammatory drugs.  相似文献   

7.
The enzyme argininosuccinate synthetase (ASS) is the rate limiting enzyme in the metabolic pathway leading from L-citrulline to L-arginine, the physiological substrate of all isoforms of nitric oxide synthases (NOS). ASS and inducible NOS (iNOS) expression in neurons and glia was investigated by immunohistochemistry in brains of Alzheimer disease (AD) patients and nondemented, age-matched controls. In 3 areas examined (hippocampus, frontal, and entorhinal cortex), a marked increase in neuronal ASS and iNOS expression was observed in AD brains. GFAP-positive astrocytes expressing ASS were not increased in AD brains versus controls, whereas the number of iNOS expressing GFAP-positive astrocytes was significantly higher in AD brains. Density measurements revealed that ASS expression levels were significantly higher in glial cells of AD brains. Colocalization of ASS and iNOS immunoreactivity was detectable in neurons and glia. Occasionally, both ASS-and iNOS expression was detectable in CD 68-positive activated microglia cells in close proximity to senile plaques. These results suggest that neurons and astrocytes express ASS in human brain constitutively, whereas neuronal and glial ASS expression increases parallel to iNOS expression in AD. Because an adequate supply of L-arginine is indispensable for prolonged NO generation, coinduction of ASS enables cells to sustain NO generation during AD by replenishing necessary supply of L-arginine.  相似文献   

8.
Aquaporin-1 (AQP1), a membrane water channel protein, is expressed exclusively in the choroid plexus epithelium in the central nervous system under physiological conditions. However, AQP1 expression is enhanced in reactive astrocytes, accumulating in brain lesions of Creutzfeldt-Jakob disease and multiple sclerosis, suggesting a role of AQP1-expressing astrocytes in brain water homeostasis under pathological conditions. To clarify a pathological implication of AQP1 in Alzheimer disease (AD), we investigated the possible relationship between amyloid-beta (Abeta) deposition and astrocytic AQP1 expression in the motor cortex and hippocampus of 11 AD patients and 16 age-matched other neurological disease cases. In all cases, AQP1 was expressed exclusively in a subpopulation of multipolar fibrillary astrocytes. The great majority of AQP1-expressing astrocytes were located either on the top of or in close proximity to Abeta plaques in AD brains but not in non-AD cases, whereas those independent of Abeta deposition were found predominantly in non-AD brains. By Western blot, cultured human astrocytes constitutively expressed AQP1, and the levels of AQP1 protein expression were not affected by exposure to Abeta(1-42) peptide, but were elevated by hypertonic sodium chloride. By immunoprecipitation, the C-terminal fragment-beta (CTFbeta) of amyloid precursor protein interacted with the N-terminal half of AQP1 spanning the transmembrane helices H1, H2 and H3. These observations suggest the possible association of astrocytic AQP1 with Abeta deposition in AD brains.  相似文献   

9.
Astrocytes are closely associated with Alzheimer's disease(AD). However, their precise roles in AD pathogenesis remain controversial. One of the reasons behind the different results reported by different groups might be that astrocytes were targeted at different stages of disease progression. In this study, by crossing h APP(human amyloid precursor protein)-J20 mice with a line of GFAP-TK mice, we found that astrocytes were activated specifically at an early stage of AD before the occurrence of amyloid plaques, while microglia were not affected by this crossing. Activation of astrocytes at the age of 3–5 months did not affect the proteolytic processing of hAPP and amyloid plaque loads in the brains of hAPP-J20 mice. Our data suggest that early activation of astrocytes does not affect the deposition of amyloid b in an animal model of AD.  相似文献   

10.
Frontotemporal dementia (FTD) is a neurodegenerative disease which affects mainly the frontal and anterior temporal cortex. It is associated with neuronal loss, gliosis, and microvacuolation of lamina I to III in these brain regions. In previous studies we have described neurons with DNA damage in the absence of tangle formation and suggested this may result in tangle-independent mechanisms of neurodegeneration in the AD brain. In the present study, we sought to examine DNA fragmentation and activated caspase-3 expression in FTD brain where tangle formation is largely absent. The results demonstrate that numerous nuclei were TdT positive in all FTD brains examined. Activated caspase-3 immunoreactivity was detected in both neurons and astrocytes and was elevated in FTD cases as compared to control cases. A subset of activated caspase-3-positive cells were also TdT positive. In addition, the cell bodies of a subset of astrocytes showed enlarged, irregular shapes, and vacuolation and their processes appeared fragmented. These degenerating astrocytes were positive for activated caspase-3 and colocalized with robust TdT-labeled nuclei. These findings suggest that a subset of astrocytes exhibit degeneration and that DNA damage and activated caspase-3 may contribute to neuronal cell death and astrocyte degeneration in the FTD brain. Our results suggest that apoptosis may be a mechanism of neuronal cell death in FTD as well as in AD (228).  相似文献   

11.
Nonsteroidal anti-inflammatory drugs, such as cyclooxygenase (COX)-2 inhibitors, have been unsuccessful in slowing or reversing Alzheimer's disease (AD). Thus, understanding the expression patterns of the downstream effectors for the regulation of prostaglandin synthesis may be important for understanding the pathological processes involved in AD and formulating more effective pharmacotherapeutics for this disease. In this study, we used immunofluorescence, immunohistochemistry, and Western blot analysis to compare patterns of microsomal prostaglandin E synthase (mPGES)-2 expression in the middle frontal gyrus (MFG) of AD patients and age-matched controls. In control human brain sections, mPGES-2 immunoreactivity was observed in neurons, activated microglia, and endothelium, but not in resting microglia, astrocytes, or smooth muscle cells. Microsomal PGES-2 immunoreactivity was particularly elevated in the pyramidal neurons of brains from three of five sporadic and four of five familial AD patients compared with four of five age-matched control brains that showed minimal immunoreactivity. In contrast, Western blot analysis revealed no difference in mPGES-2 levels between end-stage AD brain tissue and control brain tissue. These results suggest that in human cortex, mPGES-2 is constitutive in neurons and endothelium and induced in activated microglia. Furthermore, the high immunoreactivity of mPGES-2 in pyramidal neurons of AD brains indicates that it might have a potential role in the functional replacement of cytosolic PGES or inactive mPGES-1 in later stages of AD.  相似文献   

12.
BACKGROUND: Alterations in the gamma-amino-butyric acid (GABA) neurotransmitter system have been identified in some populations with posttraumatic stress disorder (PTSD). METHODS: To further investigate factors of relevance to GABAergic neurotransmission in PTSD, we measured cerebrospinal fluid (CSF) levels of allopregnanolone and pregnanolone combined (ALLO: congeners that potently and positively modulate effects of GABA at the GABA(A) receptor), 5alpha-dihydroprogesterone (5alpha-DHP: the immediate precursor for allopregnanolone), dehydroepiandrosterone (DHEA: a negative modulator of GABA(A) receptor function), and progesterone with gas chromatography, mass spectrometry in premenopausal women with (n = 9) and without (n = 10) PTSD. Subjects were free of psychotropic medications, alcohol, and illicit drugs; all were in the follicular phase of the menstrual cycle except three healthy and four PTSD subjects receiving oral contraceptives. RESULTS: There were no group differences in progesterone, 5alpha-DHP, or DHEA levels. The PTSD group ALLO levels were < 39% of healthy group levels. The ALLO/DHEA ratio correlated negatively with PTSD re-experiencing symptoms (n = -.82, p < 008; trend) and with Profile of Mood State depression/dejection scores (n = -0.70, p < 0008). CONCLUSION: Low CSF ALLO levels in premenopausal women with PTSD might contribute to an imbalance in inhibitory versus excitatory neurotransmission, resulting in increased PTSD re-experiencing and depressive symptoms.  相似文献   

13.
Assimilated evidence indicates that the neurotoxic potential of amyloid beta (Abeta) peptide and an alteration in the level of growth factor(s) may possibly be involved in the loss of neurons observed in the brain of patients suffering from Alzheimer disease (AD), the prevalent cause of dementia in the elderly. In the present study, using receptor binding assays and immunocytochemistry, we evaluated the pharmacological profile of insulin-like growth factor-I (IGF-I) receptors and the distribution of IGF-I immunoreactivity in the frontal cortex, hippocampus, and cerebellum of AD and age-matched control brains. In control brains, [(125)I]IGF-I binding was inhibited more potently by IGF-I than by Des(1-3)IGF-I, IGF-II or insulin. The IC(50) values for IGF-I in the frontal cortex, hippocampus, and cerebellum of the normal brain did not differ significantly from the corresponding regions of the AD brain. Additionally, neither K(D) nor B(max) values were found to differ in the hippocampus of AD brains from the controls. At the regional levels, [(125)I]IGF-I binding sites in the AD brain also remained unaltered compared to the controls. As for the peptide itself, IGF-I immunoreactivity, in normal control brains, was evident primarily in a subpopulation of astrocytes in the frontal cortex and hippocampus, and in certain Purkinje cells of the cerebellum. In AD brains, a subset of Abeta-containing neuritic plaques, apart from astrocytes, exhibit IGF-I immunoreactivity. These results, taken together, suggest a role for IGF-I in compensatory plasticity and/or survival of the susceptible neurons in AD brains.  相似文献   

14.
In the present study, we have investigated the expression of nicotinic acetylcholine receptors (nAChRs) on astrocytes and neurons in the hippocampus and temporal cortex of subjects carrying the Swedish amyloid precursor protein (APP) 670/671 mutation (APPswe), patients with sporadic Alzheimer's disease (AD), and age-matched control subjects. Significant increases in the total numbers of astrocytes and of astrocytes expressing the alpha7 nAChR subunit, along with significant decreases in the levels of alpha7 and alpha4 nAChR subunits on neurons, were observed in the hippocampus and temporal cortex of both APPswe and sporadic AD brains. Both of these phenomena were more pronounced in APPswe than sporadic AD cases. Furthermore, the number of [(125)I]alpha-BTX binding sites (alpha7 nAChR) in the temporal cortex of the APPswe brain was significant lower than in the younger control group, reflecting the lower neuronal level of alpha7 nAChR. The increase in the level of expression of alpha7 nAChR on astrocytes was positively correlated with the extent of neuropathological alternations, especially the number of neuritic plaques, in the AD brain. The elevated expression of alpha7 nAChR on astrocytes might participate in Abeta cascade and formation of neuritic plaques, thereby playing an important role in the pathogenesis of AD.  相似文献   

15.
Hyperphosphorylation of tau protein occurs during the formation of paired helical filament (PHF) in the brain with Alzheimer's disease. As previously reported, cyclin-dependent kinase (cdk) 5 can phosphorylate tau at the site of abnormally phosphorylated in PHF. To characterize the relationship between cdk5 and PHF-tau, we investigated the localization of cdk5 and its regulator, p67 (munc 18), in the hippocampus and temporal lobes from 12 Alzheimer type dementia (ATD) patients and 5 controls using immunohistochemical procedures. The specificity of antibodies was confirmed with Western blot analysis. Anti-cdk5 antibody diffusely stained the perikarya of some tau2-positive or neurofibrillary tangle (NFT)-bearing neurons in ATD brains, while cdk5-positive staining was scarcely found in control brains. Anti-p67 antibody also showed stronger immunoreactivity of pyramidal neurons in ATD brains than in control brains. Double immunostaining with anti-cdk5 and anti-p67 antibodies revealed co-localization of both molecules in some pyramidal neurons. These findings suggest that cdk5 is activated by p67 at the early stage of NFT formation and accelerates NFT formation. In cdk5-positive and p67-negative neurons, cdk5 may be activated by other regulator molecules such as p35. In addition, cdk5-positive reactive astrocytes were found close to cdk5-positive NFT-bearing neurons m ATD brains but not in control brains, suggesting a correlation between NFT and reactive astrocytes.  相似文献   

16.
17.
In Alzheimer's disease (AD) brains increased NO synthase (NOS) expression is found in reactive astrocytes surrounding amyloid plaques. We have recently shown that treatment with beta-amyloid peptides or IL-1beta down-regulates NO-sensitive soluble guanylyl cyclase (sGC) in cultured astrocytes and in adult rat brain. In this work, we have examined sGC activity and expression in postmortem brain tissue of AD patients and matched controls. No significant alteration was observed in basal or NO-stimulated sGC activity, nor in sGC beta1 and alpha1 subunit levels in cortical extracts of AD brains. Immunohistochemistry showed intense and widespread labeling of sGC beta1 in cortical and hippocampal neurons and white matter fibrillar astrocytes, while grey matter astrocytes were faintly stained. In AD, expression of sGC in neurons and fibrillar astrocytes is not altered but is markedly reduced in reactive astrocytes surrounding amyloid plaques. Immunostaining for sGC beta1 was also lacking in reactive astrocytes in cortex and subcortical white matter in Creutzfeldt-Jakob disease brains and in subacute and chronic plaques in multiple sclerosis (MS) brains. Thus, induction of astrocyte reactivity is associated with decreased capacity to generate cGMP in response to NO both in vitro and in vivo. This effect may be related to the development of the astroglial inflammatory response.  相似文献   

18.
19.
BACKGROUND: Few data are currently available investigating neurosteroids (NS) in Alzheimer's disease (AD). The NS allopregnanolone may be decreased in serum and plasma in patients with AD, but it is unclear if allopregnanolone is also reduced in brain. Because a number of NS exhibit neuroprotective effects and impact cognitive performance in rodent models, these molecules may be relevant to the pathophysiology of neurodegenerative disorders. We therefore investigated prefrontal cortex (PFC) NS levels in AD. METHODS: Neurosteroid levels (allopregnanolone, pregnenolone, dehydroepiandrosterone [DHEA]) were determined in postmortem PFC in 14 male subjects with AD and 15 cognitively intact male control subjects by gas chromatography/mass spectrometry preceded by high-performance liquid chromatography purification. RESULTS: Subjects with AD exhibit significant reductions in allopregnanolone compared with cognitively intact control subjects (median levels = 2.50 ng/g vs. 5.59 ng/g, respectively; p = .02). Allopregnanolone levels are inversely correlated with neuropathological disease stage (Braak), r = -.49, p = .007. Median DHEA levels are elevated in subjects with AD (p = .01). CONCLUSIONS: Subjects with AD demonstrate significant reductions in PFC allopregnanolone levels, a finding that may be relevant to neuropathological disease stage severity. Neurosteroids may have utility as candidate biomarkers in AD.  相似文献   

20.
Neuroinflammation, a major contributor to neurodegenerative diseases, involves the contribution of activated microglia, reactive astrocytes, and infiltrating inflammatory cells. Stress and various acute or chronic brain injuries stimulate the generation of free radicals and glutamate, triggering inflammatory pathways that lead to increases in chemokines, cytokines, and prostaglandins. Prostaglandins are lipid mediators of inflammation that are produced from arachidonic acid by cyclooxygenase enzymes. They are generally believed to be in all tissues and organs. Their transport through the lipid bilayers of the cell membranes/organelles is facilitated by the prostaglandin transporter (PGT). In this study, middle frontal gyrus brain tissue from patients diagnosed with Alzheimer disease (AD) and that of age-matched control brains were examined to determine the protein expression pattern of PGT and its possible role in modulating neuroinflammation associated with AD. Immunohistochemical and immunofluorescent studies showed that PGT protein was expressed in all the brain tissues examined and was localized in neurons, microglia, and astrocytes. Interestingly, Western blot analysis revealed that the PGT level was significantly less in AD than in age-matched control brain homogenates. Further work is warranted to address the possibility and implications that prostaglandins might not be cleared at a proper rate in AD brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号