首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Prader-Willi (PWS) and Angelman (AS) syndromes are two clinically distinct syndromes which result from lack of expression of imprinted genes within chromosome 15q11-q13. These two syndromes result from 15q11-q13 deletions, chromosome 15 uniparental disomy (UPD), imprinting centre mutations and, for AS, probable mutations in a single gene. The differential phenotype results from a paternal genetic deficiency in PWS patients and a maternal genetic deficiency in AS patients. Within 15q11-q13, four genes (SNRPN, IPW, ZNF127, FNZ127) and two expressed sequence tags (PAR1 and PAR5) have been found to be expressed only from the paternally inherited chromosome, and therefore all must be considered candidate genes involved in the pathogenesis of PWS. A candidate AS gene (UBE3A) has very recently been identified. The mechanisms of imprinted gene expression are not yet understood, but it is clear that DNA methylation is involved in both somatic cell expression and inheritance of the imprint. The presence of DNA methylation imprints that distinguish the paternally and maternally inherited alleles is a common characteristic of all known imprinted genes which have been studied extensively, including SNRPN and ZNF127. Recently, several PWS and AS patients have been found that have microdeletions in a region upstream of the SNRPN gene referred to as the imprinting centre, or IC. Paternal IC deletions in PWS patients and maternal IC deletions in AS patients result in uniparental DNA methylation and uniparental gene expression at biparentally inherited loci. The IC is a novel genetic element which controls initial resetting of the parental imprint in the germline for all imprinted gene expression over a 1.5-2.5 Mb region within chromosome 15q11-q13.   相似文献   

2.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with a loss of function of imprinted genes in the 15q11-q13 region mostly due to deletions or uniparental disomies (UPD). These anomalies usually occur de novo with a very low recurrence risk. However, in rare cases, familial translocations are observed, giving rise to a high recurrence risk. We report on the difficulties of genetic counseling and prenatal diagnosis in a family segregating for a translocation (14;15)(q11;q13) where two consanguineous parents carry the same familial translocation in this chromosome 15 imprinting region. Both children of the couple inherited a chromosomal anomaly leading to PWS. However, a paternal 15q11-q13 deletion was responsible for PWS in the first child, whereas prenatal diagnosis demonstrated that PWS was associated with a maternal 15q11-q13 UPD in the fetus. This report demonstrates that both conventional and molecular cytogenetic parental analyses have to be performed when a deletion is responsible for PWS or AS in order not to overlook a familial translocation and to insure reliable diagnosis and genetic counseling.  相似文献   

3.
4.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that can result either from a 15q11-q13 deletion, paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. A small cytogenetic subset of PWS and AS patients are carriers of a so-called small supernumerary marker chromosome (sSMC). Here, we report on an previously unreported PWS case with a karyotype 47,XY,+min(15)(pter->q11.1:) plus maternal heterodisomic UPD 15. A review of the literature revealed, that for both, PWS and AS patients, cases with (1) a sSMC plus microdeletion of the PWS/AS critical region, (2) inv dup(15) plus uniparental disomy (UPD) 15 and (3) cases without exclusion of a microdeletion an UBE3A mutation or UPD are described. The present case as well as the review of similar cases provides further evidence for the necessity to test UPD in prenatal cases with a de novo sSMC and in postnatal cases with otherwise unexplainable clinical phenotype.  相似文献   

5.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurodevelopmental disorders, each caused by several genetic and epigenetic mechanisms involving the proximal long arm of chromosome 15. Lack of a functional paternal copy of 15q11-q13 causes PWS; lack of a functional maternal copy of UBE3A, a gene within 15q11-q13, causes AS. This region of chromosome 15 contains a number of imprinted genes that are coordinately regulated by an imprinting center (PWS/AS-IC) that contains two functional elements, the PWS-SRO and the AS-SRO. A chromosome lacking the PWS-SRO has the maternal state of gene activity and epigenetic modification after either maternal or paternal transmission; a chromosome lacking the AS-SRO but containing the PWS-SRO has the paternal state of gene activity and epigenetic modification after either maternal or paternal transmission. The maternal state of chromosome 15q11-q13 is associated with methylation of the PWS-SRO, while the paternal state is associated with lack of methylation of the PWS-SRO. Although most models of PWS/AS region imprinting assume that the PWS-SRO is methylated during oogenesis and that this methylation of the maternal PWS-SRO is maintained after fertilization, several lines of evidence suggest that the maternal PWS-SRO is in fact not methylated until after fertilization. Imprinting defects affecting the PWS/AS region can arise from failure to demethylate the PWS-SRO in the male germ line, from failure to methylate the maternal PWS-SRO, or from failure to maintain PWS-SRO methylation after fertilization.  相似文献   

6.
7.
Prader–Willi syndrome (PWS) is a prototypic genetic condition related to imprinting. Causative mechanisms include paternal 15q11‐q13 deletion, maternal chromosome 15 uniparental disomy (UPD15), Prader–Willi Syndrome/Angelman Syndrome (PWS/AS) critical region imprinting defects, and complex chromosomal rearrangements. Maternal UPD15‐related PWS poses risks of concomitant autosomal recessive (AR) disorders when the mother carries a pathogenic variant in one of the genes on chromosome 15 associated with autosomal recessive inherited disease. Co‐occurrence of autosomal recessive conditions in the setting of UPD leads to increased complexity of the clinical phenotype, and may delay the diagnosis of PWS. We report a patient with PWS and associated congenital ichthyosis due to maternal UPD15, and a homozygous novel pathogenic variant in ceramide synthase 3 (CERS3). We also review the literature of associated disorders reported in the setting of maternal UPD15‐related PWS and provide a summary of the previously described CERS3 variants. This represents the second case of autosomal recessive congenital ichthyosis (ARCI) in the setting of PWS and UPD15. There needs to be a high index of suspicion of this genetic mechanism when there is unexpected phenotype or evolution of the clinical course in a patient with PWS.  相似文献   

8.
Paternal or maternal deletions in the 15q11.2-q13 region are known to result in Prader-Willi syndrome (PWS) or Angelman syndrome (AS), respectively. Maternal duplications in 15q11.2-q13 have been found in patients with autism. A population of adults with moderate to profound mental retardation was studied to examine the usefulness of PCR based molecular methods in screening for proximal chromosome 15 abnormalities. Two hundred and eighty-five subjects were initially screened at five microsatellite markers with average heterozygosity values of 0.74 (range 0.54-0.82). Of these subjects, four had a single allele at all five loci, suggestive of a deletion or uniparental isodisomy. The four samples were further screened with additional markers located within 15q11.2-q13 as well as markers telomeric to this region. One subject had uniparental disomy (UPD) and three subjects had a deletion. To determine the parental origin of the 15q11-q13 region containing the single haplotype, samples were analysed with a newly developed methylation specific PCR technique at the SNRPN locus. Each of the four subjects showed presence of the paternal allele and absence of the maternal allele. All cases had a phenotype consistent with Angelman syndrome as expected for the level of mental retardation, but the subject with UPD was distinct from the other subjects with an absence of a history of seizures and presence of bilateral undescended testes and Parkinsonism. Although Angelman syndrome has an estimated population prevalence of 0.008%, at least 1.4% of the moderately to profoundly mentally retarded subjects screened were found to have Angelman syndrome.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinctmental retardation disorders caused by a deficiency of paternal(PWS) or maternal (AS) contributions for chromosome 15 by eitherdeletion or uniparental disomy (UPD). To further study the molecularmechanisms involved in these disorders and to improve moleculardiagnostic methods, we have isolated three dinucleotide repeatmarkers in the PWS/AS critical region. An Alu-CA PCR methodwas used to isolate CA-repeat markers directly from yeast artificialchromosome (YAC) clones identified by probes IR4–3R (D15S11),LS6–1 (D15S113), and GABAA receptor B3 (GABRB3). Threemarkers with 6–11 alleles and 73–83% heterozygositieswere identified and analyzed by multiplex PCR. Gene-centromeremapping was performed on a panel of ovarian teratomas of knownmeiotic origin, and showed the most proximal marker, IR4–3R,to be 13 cM (95% confidence limits: 7–19 cM) from thecentromere of chromosome 15. Molecular diagnostic studies wereperformed on 20 PWS and 9 AS patients. In 17 patients with deletions,the parental origin of deletion was determined. Ten PWS patientswere shown to have maternal heterodisomy. Since these markersare only 13 cM from the centromere, heterodisomy indicates thatmaternal meiosis I nondisjunction is involved in the originof UPD. In contrast, two paternal disomy cases of AS showedisodisomy for all markers tested along the length of chromosome15. This suggests a paternal meiosis II nondisjunction event(without crossing over) or, more likely, monosomic conception(due to maternal nondisjunction) followed by chromosome duplication.This latter mechanism would indicate that UPD in PWS and ASmay initiate as reciprocal products of maternal nondisjunctionevents.  相似文献   

10.
Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. Am. J. Med. Genet. 68:195–206, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

11.
In order to further our understanding of the epigenetic modifications of DNA and its role in imprinting, we examined DNA methylation patterns of human tissues of uniparental origin. We used complete hydatidiform moles (CHM), which are totally androgenetic conceptions, to examine the paternal methylation pattern in the absence of a maternal contribution and we used ovarian teratomas to represent the maternal counterpart. We carried out an analysis of DNA methylation of a gene which has been shown to contain sites which are differentially methylated in a parent-specific fashion. The gene, ZNF127, is located on chromosome 15q11-q13 in the region associated with Prader-Willi and Angelman syndromes. The parent-of-origin DNA methylation has been postulated to reflect the presence of an imprint and recent studies have confirmed that ZNF127 is differentially expressed only from the paternal chromosome. We identified a unique pattern of hyper- and hypomethylated sites in androgenetic conceptions which was nearly identical to the paternal pattern found in sperm. This may represent the paternal germ-line methylation imprint. We also studied partial hydatidiform moles, non-molar triploid conceptions, normal chorionic villi, and somatic tissue. These all demonstrated a modified DNA methylation pattern characteristic of normal chorionic villi with only limited findings of the imprint. Our results suggest that human androgenetic conceptions may provide an excellent model to analyze epigenetic DNA modifications, such as methylation, in imprinted genes. The paternal allele-specific methylation imprint will also be useful clinically to confirm the androgenetic nature of suspected molar conceptions in which parental blood samples may not be available. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) have become the classical examples of genomic imprinting in man, as completely different phenotypes are generated by the absence of maternal (AS) or paternal (PWS) contributions to the q11-13 region of chromosome 15 as a result of deletion or uniparental disomy. Apparently, most patients are sporadic cases. The genetic mechanism underlying familial AS has remained enigmatic for a long time. Recently, evidence has been emerging suggesting autosomal dominant inheritance of a detectable or undetectable defect in a gene or genes at 15q11-13, subject to genomic imprinting. The present report describes an unusually large pedigree with segregation of AS through maternal inheritance and apparent asymptomatic transmission through several male ancestors. Deletion and paternal disomy at 15q11-13 were excluded. However, the genetic defect is still located in this region, as we obtained a maximum lod score of 5.40 for linkage to the GABA receptor locus GABRB3 and the anonymous DNA marker D15S10, which have been mapped within or adjacent to the AS critical region at 15q11-13. The size of the pedigree allowed calculation of an odds ratio in favour of genomic imprinting of 9.25 x 10(5). This family illustrates the necessity of extensive pedigree analysis when considering recurrence risks for relatives of AS patients, those without detectable deletion or disomy in particular.  相似文献   

13.
Human chromosome 15q11-q13 contains genes that are imprinted and expressed from only one parental allele. Prader-Willi syndrome (PWS) is due to the loss of expression of one or more paternally expressed genes on proximal human chromosome 15q, most often by deletion or maternal uniparental disomy. Several candidate genes and a putative imprinting centre have been identified in the deletion region. We report that the human necdin-encoding gene (NDN) is within the centromeric portion of the PWS deletion region, between the two imprinted genes ZNF127 and SNRPN. Murine necdin is a nuclear protein expressed exclusively in differentiated neurons in the brain. Necdin is postulated to govern the permanent arrest of cell growth of post-mitotic neurons during murine nervous system development. We have localized the mouse locus Ndn encoding necdin to chromosome 7 in a region of conserved synteny with human chromosome 15q11-q13, by genetic mapping in an interspecific backcross panel. Furthermore, we demonstrate that expression of Ndn is limited to the paternal allele in RNA from newborn mouse brain. Expression of NDN is detected in many human tissues, with highest levels of expression in brain and placenta. NDN is expressed exclusively from the paternally inherited allele in human fibroblasts. Loss of necdin gene expression may contribute to the disorder of brain development in individuals with PWS.   相似文献   

14.
In 2000-2004, we performed a focused search for individuals with Angelman syndrome (AS) and Prader-Willi syndrome (PWS) aiming to establish the prevalence data for the individuals born between 1984 and 2004 in Estonia. All persons with probable AS or PWS (n = 184) were studied using the DNA methylation test. Individuals with abnormal methylation were all further tested by chromosomal and FISH analysis, and if necessary for uniparental disomy and UBE3A gene mutation. Nineteen cases with abnormal methylation test result were identified. Seven of them had AS, including six (85.7%) due to 15q11-13 deletion and one paternal UPD15. Twelve subjects had PWS: 4 (33%) 15q11-13 deletions, 6 (50%) maternal UPD15, 1 unbalanced chromosome 14;15 translocation resulting in a chromosome 15pter-q13 deletion, and 1 Robertsonian 15q;15q translocation. The minimum livebirth prevalence in 1984-2004 for AS was 1:52,181 (95% CI 1:25,326-1:1,29,785) and for PWS 1:30,439 (95% CI 1:17,425-1:58,908). The livebirth prevalence of AS and PWS increased within this period, but the change was statistically significant only for PWS (P = 0.032), from expected 1:88,495 (95% CI 1:24,390-1:3,22,580) to expected 1:12,547 (95% CI 1:540-1:29,154). Six individuals with AS and 11 with PWS were alive on the prevalence day (January 1, 2005), indicating the point prevalence proportion of 1:56,112 (95% CI 1:25,780-1:1,52,899) and 1:30,606 (95% CI 1:17,105-1:61,311), respectively. Our results showing the birth prevalence of AS 1.7 times less than PWS challenge the opinion that both syndromes are equally represented, and are in line with the view that mutations in sperm and oocytes occur at different frequencies.  相似文献   

15.
Human chromosome 15q11–q13 involves a striking imprinted gene cluster of more than 2 Mb that is concomitant with multiple neurological disorders manifested by Prader–Willi syndrome (PWS) and Angelman syndrome (AS). PWS and AS patients with imprinting mutation have microdeletions, which share a 4.3 kb short region of overlap (SRO) at the 5 end of the paternal SNURF-SNRPN gene in PWS, or on the maternal allele, which shares a 880 bp SRO located at the 35 kb upstream of the SNURF-SNRPN promoter in AS. Recent studies have revealed an essential role of PWS-SRO in the postzygotic maintenance of the appropriate epigenotype on the paternal chromosome. For AS-SRO, however, there is insufficient experimental evidence exists to determine the direct functions. Here we show that the complete deletion of AS-SRO does not cause any anomalies of imprinted gene expression or DNA methylation on the mutated human chromosome 15, further supporting the idea that AS-SRO is dispensable for post implantation imprint maintenance. This implies that AS-SRO is not essential for the robust epigenotype preservation in somatic cells.  相似文献   

16.
17.
We report on a 5-year-old white girl with Prader-Willi syndrome (PWS) and a submicroscopic deletion of 15q11q13 of approximately 100–200 kb in size. High resolution chromosome analysis was normal but fluorescence in situ hybridization (FISH), Southern hybridization, and microsatellite data from the 15q11q13 region demonstrated that the deletion was paternal in origin and included the SNRPN, PAR-5, and PAR-7 genes from the proximal to distal boundaries of the deletion segment. SNRPN and PW71B methylation studies showed an abnormal pattern consistent with the diagnosis of PWS and supported the presence of a paternal deletion of 15q11q13 or an imprinting mutation. Biparental (normal) inheritance of PW71B (D15S63 locus) and a deletion of the SNRPN gene were observed by microsatellite, quantitative Southern hybridization, and/or FISH analyses. Our patient met the diagnostic criteria for PWS, but has no reported behavior problems, hyperphagia, or hypopigmentation. Our patient further supports SNRPN and possibly other genomic sequences which are deleted as the cause of the phenotype recognized in PWS patients. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, speech impairment, ataxia, and happy disposition with frequent smiling. AS results from the loss of expression of a maternal imprinted gene, UBE3A, mapped within 15q11-q13 region, due to different mechanisms: maternal deletion, paternal UPD, imprinting center mutation, and UBE3A mutation. Deletion AS patients may exhibit hypopigmentation of skin, eye, and hair correlating with deletion of P gene localized in the distal part of Prader-Willi (PWS)/AS region. Our patient presented developmental delay, severe mental retardation, absence of speech, outbursts of laughter, microcephaly, ataxia, hyperactivity, seizures, white skin, no retinal pigmentation, and gold yellow hair. His parents were of African ancestry. The SNURF-SNRPN methylation analysis confirmed AS diagnosis and microsatellite studies disclosed deletion with breakpoints in BP2 and BP3. All of the 25 exons and flanking introns of the P gene of the patient, his father, and mother were investigated. The patient is hemizygous for the deleted exon 7 of the P gene derived from his father who is a carrier of the deleted allele. Our patient manifests OCA2 associated with AS due to the loss of the maternal chromosome 15 with the normal P allele, and the paternal deletion in the P gene. As various degrees of hypopigmentation are associated with PWS and AS patients, the study of the P gene in a hemizygous state could contribute to the understanding of its effect on human pigmentation during development and to disclose the presence of modifier pigmentation gene(s) in the PWS/AS region.  相似文献   

19.
The majority of cases of the two distinct disorders Prader–Willisyndrome (PWS) and Angelman syndrome (AS) result from cytogeneticdeletions of chromosome 15q11–q13. These deletions areexclusively of maternal origin in AS but of paternal originin PWS indicating that the 15q11–q13 region is subjectto genomic imprinting. Transmission of a submicroscopic deletionin one three generation family resulted in AS only upon maternaltransmission of the deletion with no clinical phenotype associatedwith paternal transmission (1, 2). The breakpoint of this submicroscopicdeletion has been cloned and sequenced. This is the first deletionjunction from the AS/PWS region which has been so characterized.The nucleotide sequence of the deletion junction revealed a19 bp insertion of unknown origin with no evidence of repetitiveelements. A probe from the proximal deletion breakpoint, PB11,lies within the currently defined minimum region of deletionoverlap in PWS, which contains the SNRPN and D15S63 locl. Ourresults suggest that the imprinted gene(s) responsible for thePWS phenotype are proximal of pB11 in this deletion overlapregion.  相似文献   

20.
We report on a case of Prader-Willi syndrome (PWS) with a true reciprocal unbalanced translocation, 45,XX,-15,der(11)t(11;15)pat. The proposita was diagnosed clinically as having severe PWS. Molecular studies revealed loss of the paternal methylation pattern at locus D15S63 and a deletion encompassing the loci from at least D15S10 to D15S97 of paternal chromosome 15. FISH studies confirmed the deletion of 15q11-q13 region and the presence of two telomeres on all chromosomes. The proposita's father, the father's sister and their mother are all carriers of the same balanced translocation t(11;15)(q25;q13). By genomic imprinting we would expect that if the father's sister were to give birth to a child with the same unbalanced translocation as the proband, it would be affected by Angelman syndrome.
To date, a similar familial unbalanced translocation due to loss of the small chromosome 15 derivative has not been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号