首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We utilised retrograde and anterograde tracing procedures to study the origin and termination of prefrontal cortical (PFC) projections to the periaqueductal gray (PAG) in the rat. A previous study, in the primate, had demonstrated that distinct subgroups of PFC areas project to specific PAG columns. Retrograde tracing experiments revealed that projections to dorsolateral (dlPAG) and ventrolateral (vlPAG) periaqueductal gray columns arose from medial PFC, specifically prelimbic, infralimbic, and anterior cingulate cortices. Injections made in the vlPAG also labeled cells in medial, ventral, and dorsolateral orbital cortex and dorsal and posterior agranular insular cortex. Other orbital and insular regions, including lateral and ventrolateral orbital, ventral agranular insular, and dysgranular and granular insular cortex did not give rise to appreciable projections to the PAG. Anterograde tracing experiments revealed that the projections to different PAG columns arose from specific PFC areas. Projections from the caudodorsal medial PFC (caudal prelimbic and anterior cingulate cortices) terminated predominantly in dlPAG, whereas projections from the rostroventral medial PFC (rostral prelimbic cortex) innervated predominantly the vlPAG. As well, consistent with the retrograde data, projections arising from select orbital and agranular insular cortical areas terminated selectively in the vlPAG. The results indicate: (1) that rat orbital and medial PFC possesses an organisation broadly similar to that of the primate; and (2) that subdivisions within the rat orbital and medial PFC can be recognised on the basis of projections to distinct PAG columns.  相似文献   

2.
We investigated regional cerebral blood flow (rCBF) using three-dimensional stereotactic surface projection (3D-SSP) analysis in 30 patients initially diagnosed as Parkinson's disease (PD), and compared differences in rCBF between patients with and without PD-related manifestations. 3D-SSP analysis of cerebral perfusion was performed by use of a control database. Compared to age-matched controls, there were multiple hypoperfusion areas in cases where the original diagnosis was PD. Temporal bases showed the lowest perfusion; frontal bases and medial parietal lobes the second; visual cortices the third; and parietal association areas exhibited the fourth lowest. During the clinical course, 10 of the patients suffered dementia, 9 had fluctuating cognition, and 19 experienced repeated visual hallucinations. Significant negative correlations were observed between dementia and the bilateral posterior cingulate area, and among fluctuating cognition and bilateral medial parietal lobes, parietal association areas, and dorsal occipital lobes. Repeated visual hallucinations did not show any correlation with any region of interest. We concluded that multiple hypoperfusion areas were observed in the 3D-SSP SPECT analysis. Although the presence of dementia showed a significant relationship with the bilateral posterior cingulate areas, perfusion in the frontal bases, temporal bases, or parietal lobes was markedly more reduced than that seen in the bilateral posterior cingulate areas.  相似文献   

3.
This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH), mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus, nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC). High-resolution flat-map density distributions of retrogradely labelled neurons indicated that specific PFC regions were differentially involved in the projections studied, with medial (m)PFC divided into dorsal and ventral sectors. The percentages that WGA-HRP retrogradely labelled neurons composed of the projection neurons in individual layers of infralimbic (IL; area 25) prelimbic (PL; area 32), and dorsal anterior cingulate (ACd; area 24b) cortices were calculated. Among layer 5 pyramidal cells, approximately 27.4% in IL/PL/ACd cortices projected to LH, 22.9% in IL/ventral PL to VS, 18.3% in ACd/dorsal PL to DS, and 8.1% in areas IL/PL to BLA; and 37% of layer 6 pyramidal cells in IL/PL/ACd projected to MD. Data for other projection pathways are given. Multiple dual retrograde fluorescent tracing studies indicated that moderate populations (<9%) of layer 5 mPFC neurons projected to LH/VS, LH/SC, or VS/BLA. The data provide new quantitative information concerning the density and distribution of neurons involved in identified projection pathways from defined areas of the rat PFC to specific subcortical targets involved in dynamic goal-directed behavior.  相似文献   

4.
Common efferent projections of the dorsolateral prefrontal cortex and posterior parietal cortex were examined in 3 rhesus monkeys by placing injections of tritiated amino acids and HRP in frontal and parietal cortices, respectively, of the same hemisphere. Terminal labeling originating from both frontal and parietal injection sites was found to be in apposition in 15 ipsilateral cortical areas: the supplementary motor cortex, the dorsal premotor cortex, the ventral premotor cortex, the anterior arcuate cortex (including the frontal eye fields), the orbitofrontal cortex, the anterior and posterior cingulate cortices, the frontoparietal operculum, the insular cortex, the medial parietal cortex, the superior temporal cortex, the parahippocampal gyrus, the presubiculum, the caudomedial lobule, and the medial prestriate cortex. Convergent terminal labeling was observed in the contralateral hemisphere as well, most prominently in the principal sulcal cortex, the superior arcuate cortex, and the superior temporal cortex. In certain common target areas, as for example the cingulate cortices, frontal and parietal efferents terminate in an array of interdigitating columns, an arrangement much like that observed for callosal and associational projections to the principal sulcus (Goldman-Rakic and Schwartz, 1982). In other areas, frontal and parietal terminals exhibit a laminar complementarity: in the depths of the superior temporal sulcus, prefrontal terminals are densely distributed within laminae I, III, and V, whereas parietal terminals occupy mainly laminae IV and VI directly below the prefrontal bands. Subcortical structures also receive apposing or overlapping projections from both prefrontal and parietal cortices. The dorsolateral prefrontal and posterior parietal cortices project to adjacent, longitudinal domains of the neostriatum, as has been described previously (Selemon and Goldman-Rakic, 1985); these projections are also found in close apposition in the claustrum, the amygdala, the caudomedial lobule, and throughout the anterior medial, medial dorsal, lateral dorsal, and medial pulvinar nuclei of the thalamus. In the brain stem, both areas of association cortex project to the intermediate layers of the superior colliculus and to the midline reticular formation of the pons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The purpose of the present investigation was to examine the topographical organization of efferent projections from the cytoarchitectonic divisions of the mPFC (the medial precentral, dorsal anterior cingulate and prelimbic cortices). We also sought to determine whether the efferents from different regions within the prelimbic division were organized topographically. Anterograde transport of Phaseolus vulgaris leucoagglutinin was used to examine the efferent projections from restricted injection sites within the mPFC. Major targets of the prelimbic area were found to include prefrontal, cingulate, and perirhinal cortical structures, the dorsomedial and ventral striatum, basal forebrain nuclei, basolateral amygdala, lateral hypothalamus, mediodorsal, midline and intralaminar thalamic nuclei, periaqueductal gray region, ventral midbrain tegmentum, laterodorsal tegmental nucleus, and raphe nuclei. Previously unreported projections of the prelimbic region were also observed, including efferents to the anterior olfactory nucleus, the piriform cortex, and the pedunculopontine tegmental-cuneiform region. A topographical organization governed the efferent projections from the prelimbic area, such that the position of terminal fields within target structures was determined by the rostrocaudal, dorsoventral, and mediolateral placement of the injection sites. Efferent projections from the medial precentral and dorsal anterior cingulate divisions (dorsomedial PFC) were organized in a similar topographical fashion and produced a pattern of anterograde labeling different from that seen with prelimbic injection sites. Target structures innervated primarily by the dorsomedial PFC included certain neocortical fields (the motor, somatosensory, and visual cortices), the dorsolateral striatum, superior colliculus, deep mesencephalic nucleus, and the pontine and medullary reticular formation. Previously unreported projections to the paraoculomotor central gray area and the mesencephalic trigeminal nucleus were observed following dorsomedial PFC injections. These results indicate that the efferent projections of the mPFC are topographically organized within and across the cytoarchitectonic divisions of the medial wall cortex. The significance of topographically organized and restricted projections of the rat mPFC is discussed in light of behavioral and physiological studies indicating functional heterogeneity of this region.  相似文献   

6.
The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.  相似文献   

7.
The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust prefrontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex.  相似文献   

8.
BACKGROUND: Even in remission, patients with bipolar disorder (BD) remain sensitive to external stressors that can trigger new episodes. Imitating such stressors by the controlled transient exposure to an emotional stimulus may help to identify brain regions modulating this sensitivity. METHODS: Transient sadness was induced in 9 euthymic and in 11 depressed subjects with BD. Regional blood flow (rCBF) changes were measured using (15)O-water positron emission tomography. RESULTS: Common changes in both groups were increased rCBF in anterior insula and cerebellum and decreased rCBF in dorsal-ventral-medial frontal cortex, posterior cingulate, inferior parietal, and temporal cortices. Decreases in dorsal ventral medial frontal cortices occurred in both groups, but subjects in remission showed a greater magnitude of change. Unique to remitted subjects with BD were rCBF increases in dorsal anterior cingulate and in premotor cortex. Lateral prefrontal rCBF decreases were unique to depressed subjects with BD. At baseline, remitted subjects showed a unique increase in dorsal anterior cingulate and orbitofrontal cortex. CONCLUSIONS: Common rCBF changes in remitted and depressed subjects identifies potential sites of disease vulnerability. Unique cingulate and orbitofrontal changes both at baseline and with induced sadness seen in the absence of prefrontal rCBF decreases may identify regional interactions important to the euthymic state in this population.  相似文献   

9.
The corticobulbar projection to the hypoglossal nucleus was studied from the frontal, parietal, cingulate, and insular cortices in the rhesus monkey by using high‐resolution anterograde tracers and stereology. The hypoglossal nucleus received bilateral input from the face/head region of the primary (M1), ventrolateral pre‐ (LPMCv), supplementary (M2), rostral cingulate (M3), and caudal cingulate (M4) motor cortices. Additional bilateral corticohypoglossal projections were found from the dorsolateral premotor cortex (LPMCd), ventrolateral proisocortical motor area (ProM), ventrolateral primary somatosensory cortex (S1), rostral insula, and pregenual region of the anterior cingulate gyrus (areas 24/32). Dense terminal projections arose from the ventral region of M1, and moderate projections from LPMCv and rostral part of M2, with considerably fewer hypoglossal projections arising from the other cortical regions. These findings demonstrate that extensive regions of the non‐human primate cerebral cortex innervate the hypoglossal nucleus. The widespread and bilateral nature of this corticobulbar connection suggests recovery of tongue movement after cortical injury that compromises a subset of these areas, may occur from spared corticohypoglossal projection areas located on the lateral, as well as medial surfaces of both hemispheres. Since functional imaging studies have shown that homologous cortical areas are activated in humans during tongue movement tasks, these corticobulbar projections may exist in the human brain. J. Comp. Neurol. 522:3456–3484, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Postnatal volumetric development of the prefrontal cortex in the rat   总被引:5,自引:0,他引:5  
The medial and orbital parts of the prefrontal cortex (PFC) increase in volume during the first weeks of postnatal life. At the end of this period, however, the volumes of both parts of the PFC reach a significantly higher value than in adulthood. Subsequently the volumes decrease until the adult volume is attained. The three subareas of the medial PFC (i.e., the medial precentral area, the dorsal anterior cingulate, and the prelimbic area) reach a maximum volume around day 24, while the two orbital PFC subareas (i.e., the dorsal and ventral agranular insular areas) attain their maximum value around day 30. The differences found in the growth pattern of the five PFC subareas, which are innervated by specific subnuclei of the mediodorsal nucleus of the thalamus, suggest a role of these subnuclei in the PFC development.  相似文献   

11.
The origin and termination of prefrontal cortical projections to the periaqueductal gray (PAG) were defined with retrograde axonal tracers injected into the PAG and anterograde axonal tracers injected into the prefrontal cortex (PFC). The retrograde tracer experiments demonstrate projections to the PAG that arise primarily from the medial prefrontal areas 25, 32, and 10m, anterior cingulate, and dorsomedial areas 24b and 9, select orbital areas 14c, 13a, Iai, 12o, and caudal 12l, and ventrolateral area 6v. Only scattered cells were retrogradely labeled in other areas in the PFC. Caudal to the PFC, projections to the PAG also arise from the posterior cingulate cortex, the dorsal dysgranular, and granular parts of the temporal polar cortex, the ventral insula, and the dorsal bank of the superior temporal sulcus. Cells were also labeled in subcortical structures, including the central nucleus and ventrolateral part of the basal nucleus of the amygdala. The anterograde tracer experiments indicate that projections from distinct cortical areas terminate primarily in individual longitudinal PAG columns. The projections from medial prefrontal areas 10m, 25, and 32 end predominantly in the dorsolateral columns, bilaterally. Fibers from orbital areas 13a, Iai, 12o, and caudal 12l terminate primarily in the ventrolateral column, whereas fibers from dorsomedial areas 9 and 24b terminate mainly in the lateral column. The PFC areas that project to the PAG include most of the areas previously defined as the “medial prefrontal network.” The areas that comprise this network represent a visceromotor system, distinct from the sensory related “orbital network.” J. Comp. Neurol. 401:455–479, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2-17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4-16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable "sparing" of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months-3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues.  相似文献   

13.
To compare brain perfusion between corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), we investigated regional cerebral blood flow (rCBF) semiquantitatively with single-photon emission computed tomography and [123I]iodoamphetamine in six patients with CBD and five with PSP. Compared with 12 age-matched control subjects, the average of the left and right rCBF values for the CBD patients was significantly reduced in the inferior prefrontal, anterior cingulate, medial premotor, sensorimotor, posterior parietal, and superior temporal cortices as well as in the basal ganglia and thalamus, whereas only the medial premotor cortex was significantly hypoperfused in the PSP patients. Compared with the PSP patients, the CBD patients showed significantly decreased rCBF in the inferior prefrontal, sensorimotor, and posterior parietal cortices, but not in the subcortical regions. Compared with the controls, interhemispheric differences of rCBF were significant in the inferior prefrontal, sensorimotor, and posterior parietal cortices of the CBD patients but in only the medial prefrontal cortex of the PSP patients. These results indicate that rCBF reductions are more extensive and asymmetric in CBD than in PSP, although the two diseases share medial frontal involvement.  相似文献   

14.
BACKGROUND: Using positron emission tomography (PET) with (15)O water, we compared regional cerebral blood flow (rCBF) patterns induced by clozapine or haloperidol in individuals with schizophrenia. Based on the known clinical characteristics of each drug, we hypothesized that brain regions where the drugs show similar rCBF patterns are among those mediating their antipsychotic actions; whereas, regions where the drugs produce different rCBF patterns are among those mediating their different drug actions, namely, haloperidol's motor side effects or clozapine's unique therapeutic action. METHODS: Persons with schizophrenia were scanned using PET with (15)O water, first after withdrawal of all psychotropic medication (n = 6), then again after treatment with therapeutic doses of haloperidol (n = 5) or clozapine (n = 5). RESULTS: Both drugs increased rCBF in the ventral striatum and decreased rCBF in hippocampus and ventrolateral frontal cortex. The rCBF increase associated with haloperidol was greater than that with clozapine in the dorsal and ventral striatum; the rCBF increase with clozapine was greater than that with haloperidol in cortical regions, including anterior cingulate and dorsolateral frontal cortex. CONCLUSIONS: These data suggest that the rCBF increase in ventral striatum and/or the decrease in hippocampus and/or ventrolateral frontal cortex mediate a common component of antipsychotic action of these drugs. The increased rCBF in dorsal striatum by haloperidol could well be associated with its prominent motor side effects, whereas the increased rCBF in the anterior cingulate or dorsolateral frontal cortex may mediate the superior antipsychotic action of clozapine. The proposals based on these preliminary observations require further study.  相似文献   

15.
Connections of the perirhinal cortex in the.rat brain were studied using anterograde (3H-proline/leucine) and retrograde (horseradish peroxidase) tracers. The perirhinal cortex receives major projections from medial precen-tral, anterior cingulate, prelimbic, ventral lateral orbital, ventral and posterior agranular insular, temporal, superior and granular parietal, lateral occipital, agranular retrosplenial, and ectorhinal cortices, and from the pre-subiculum, subiculum, and diagonal band of Broca. Rostral neocortical areas project predominantly to rostral perirhinal regions while more caudal neocortical and subicular areas project predominantly to caudal perirhinal regions. Terminal fields are further segregated within perirhinal cortex to either the dorsal or ventral banks of the rhinal sulcus. All afferents from frontal areas terminate predominantly in the deep layers of its ventral bank; afferents from temporal, parietal, and lateral occipital areas terminate predominantly in the deep and superficial layers along its dorsal bank; and afferents from ectorhinal cortex terminate in a column within its dorsal bank. Cortical cells which project to perirhinal areas are found predominantly in layer II and the superficial part of layer III. However, ventrolateral orbital, parietal, and lateral occipital cortex projections originate predominantly from layer V. Perirhinal areas also receive afferents from the nucleus reuniens of the thalamus, lateral nucleus of the amygdala, claustrum, supramammillary nuclei, and the dorsal raphe nuclei.  相似文献   

16.
The topographical distribution of the cortical afferent connections of the prefrontal cortex (PFC) in adult cats was studied by using the retrograde axonal transport of horseradish peroxidase technique. Small single injections of the enzyme were made in different locations of the PFC, and the areal location and density of the subsequent neuronal labeling in neocortex and allocortex were evaluated in each case. The comparison of the results obtained in the various cases revealed that four prefrontal sectors (rostral, dorsolateral, ventral, and dorsomedial) can be distinguished, each exhibiting a particular pattern of cortical afferents. All PFC sectors receive projections from the ipsilateral insular (agranular and granular subdivisions) and limbic (infralimbic, prelimbic, anterior limbic, cingular, and retrosplenial areas) cortices. These cortices provide the most abundant cortical projections to the PFC, and their various subdivisions have different preferential targets within the PFC. The premotor cortex and the following neocortical sensory association areas project differentially upon the various ipsilateral PFC sectors: the portion of the somatosensory area SIV in the upper bank of the anterior ectosylvian sulcus, the visual area in the lower bank of the same sulcus, the auditory area AII, the temporal area, the perirhinal cortex, the posterior suprasylvian area, area 20, the posterior ectosylvian area, the suprasylvian fringe, the lateral suprasylvian area (anterolateral and posterolateral subdivisions), area 5, and area 7. The olfactory peduncle, the prepiriform cortex, the cortico-amygdaloid transition area, the entorhinal cortex, the subiculum (ventral, posteroventral, and posterodorsal sectors), the caudomedial band of the hippocampal formation and the postsubiculum are the allocortical sources of afferents to the PFC. The dorsolateral PFC sector is the target of the largest insular, limbic, and neocortical sensory association projections. The dorsomedial and rostral sectors receive notably less abundant cortical afferents than the dorsolateral sector. Those to the dorsomedial sector arise from the same areas that project to the dorsolateral sector and are more abundant to the dorsal part, where the medial frontal eye field cortex is located. The rostral sector receives projections principally from all other PFC sectors, and from the limbic and insular cortices. The projections from the allocortex reach preferentially the ventral PFC sector. Intraprefrontal connections are most abundant within each PFC sector. Commissural interprefrontal connections are largest from the site homotopic to the HRP injection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Positron emission tomography was used to evaluate 3 Alzheimer's disease (AD) patients: 1 with major depression, 1 with emotional lability, and 1 with apathy. Compared with 5 non-mood-disordered AD patients, the patient with depression had diminished relative regional cerebral blood flow (rel-CBF) in the anterior cingulate and superior temporal cortices, bilaterally. This patient also showed diminished rel-CBF in the left dorsolateral prefrontal and right medial temporal and parietal cortices. The patient with emotional lability had diminished rel-CBF in the anterior cingulate and dorsolateral prefrontal cortices, bilaterally, and left basal ganglia. The patient with apathy had diminished rel-CBF in the basal ganglia and dorsolateral prefrontal cortex, bilaterally. Results are consistent with the hypothesis of a common frontal-temporal-subcortical substrate (e.g., involving aminergic nuclei) in the etiology of depression in AD. Frontal-subcortical dysfunction may also be associated with emotional lability and apathy in AD, although these may be related to a greater involvement of frontal-basal ganglia circuits.  相似文献   

18.
fMRI investigation on the neural substrates involved in tactile imagery is reported. Healthy subjects performed mental imagery of tactile stimulation on the dorsal aspect of the right hand. The results were compared with the regions of activation during the actual tactile stimulation. During imagery, contralateral primary and secondary somatosensory areas were activated along with activation in the left parietal lobe. Activations in left inferior frontal gyri (Brodmann's area 44), left dorsolateral prefrontal area, left precentral gyrus, left insula, and medial frontal gyrus were also observed. In the basal ganglia, activation in the left thalamus (ventral posteromedial nucleus) and putamen was found. Our results suggest that the primary and secondary somatosensory areas are recruited during tactile imagery, and have partially overlapping neural substrates for the perception of tactile stimulation.  相似文献   

19.
OBJECTIVES: Bipolar patients are impaired in Stroop task performance, a measure of selective attention. Structural and functional abnormalities in task-associated regions, in particular the prefrontal cortex (PFC), have been reported in this population. We aimed to examine the relationship between functional abnormalities, impaired task performance and the severity of depressive symptoms in bipolar patients. METHODS: Remitted bipolar patients (n = 10; all medicated), either euthymic or with subsyndromal depression, and age-matched control subjects (n = 11) viewed 10 alternating blocks of incongruent Stroop and control stimuli, naming the colour of the ink. Neural response was measured using functional magnetic resonance imaging. We computed between-group differences in neural response and within-group correlations with mood and anxiety. RESULTS: There were no significant between-group differences in task performance. During the Stroop condition, controls demonstrated greater activation of visual and dorsolateral and ventrolateral prefrontal cortical areas; bipolar patients demonstrated relative deactivation within orbital and medial prefrontal cortices. Depression scores showed a trend towards a negative correlation with the magnitude of orbitofrontal cortex deactivation in bipolar patients, whereas state anxiety correlated positively with activation of dorsolateral PFC and precuneus in controls. CONCLUSIONS: Our findings confirm previous reports of decreased ventral prefrontal activity during Stroop task performance in bipolar patients, and suggest a possible negative correlation between this and depression severity in bipolar patients. These findings further highlight the ventromedial PFC as a potential candidate for illness related dysfunction in bipolar disorder.  相似文献   

20.
The sources of ipsilateral cortical afferent projections to basoventral and mediodorsal prefrontal cortices that receive some visual input were studied with retrograde tracers (horseradish peroxidase or fluorescent dyes) in eight rhesus monkeys. The basoventral regions injected with tracers included basal (orbital) areas 11 and 12, lateral area 12, and ventral area 46. The mediodorsal regions included portions of medial area 32 and the caudal part of dorsal area 8. These sites represent areas within basoventral and mediodorsal prefrontal cortices that show a gradual increase in architectonic differentiation in a direction from the least differentiated orbital and medial limbic cortices toward the most differentiated cortices in the arcuate concavity. The results showed that the visual input to basoventral and mediodorsal prefrontal cortices originated largely in topographically distinct visual areas. Thus, basoventral sites received most of their visual cortical projections from the inferior temporal cortex. The rostral inferior temporal region was the predominant source of visual projections to orbital prefrontal sites, whereas lateral area 12 and ventral area 46 also received projections which were found more caudally. In contrast, mediodorsal prefrontal sites received most of their visual projections from dorsolateral and dorsomedial visual areas. The cells of origin were located in rostromedial visual cortices after injection of retrograde tracers in area 32 and in more caudal medial and dorsolateral visual areas after injection in caudal area 8. The latter also received substantial projections from visuomotor regions in the caudal portion of the lateral bank of the intraparietal sulcus. These results suggest that the basoventral prefrontal cortices are connected with ventral visual areas implicated in pattern recognition and discrimination, whereas the mediodorsal cortices are connected with medial and dorsolateral occipital and parietal areas associated with visuospatial functions. In addition, the prefrontal areas studied received projections from auditory and/or somatosensory cortices, from areas associated with more than one modality, and from limbic regions. Orbital area 12 seemed to be a major target of projections from somatosensory cortices and the rostral portion of medial area 32 received substantial projections from auditory cortices. The least architectonically differentiated areas (orbital area 11 and medial area 32) had more widespread corticocortical connections, including strong links with limbic cortices.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号